孔瑋婷 皋軍 丁澤超 史恭波
摘要:針對基于局部紋理特征的人臉表情識別算法不能有效表達不同表情狀態(tài)下人臉運動單元差異性的問題,提出一種改進的稀疏表示人臉表情識別算法,將人臉紋理特征與全局位置特征用稀疏表示模型相結(jié)合,得到人臉表情的稀疏系數(shù)矩陣,并作為支持向量機表情識別的輸入。人臉表情庫BU_3DFE實驗結(jié)果表明,該算法提高了表情識別的準(zhǔn)確率。
關(guān)鍵詞:表情識別;稀疏表示;特征融合
DOIDOI:10.11907/rjdk.161671
中圖分類號:TP312文獻標(biāo)識碼:A文章編號:1672-7800(2016)006-0031-02
參考文獻:
[1]JI ZHENG Y,XIA M,MITSURU L,YU-LI X.Facial expression recognition based on feature point vector and texture deformation energy parameters[J].Journal of Electronics and Information Technology,2013,35(10):2403-2410.
[2]ZHAN YONGZHAO,YE JINGFU,NIU DEJIAO.Facial expression recognition based on gabor wavelet transformation and elastictemplates matching[J].International Journal of Image and Graphics,2006,6(1):125-138.
[3]L YIN,X WEI,J WANG,et al.A 3D facial expression database for facial behavior research[C].IEEE International Conference on Automatic Face and Gesture Recognition.(FG2006)[C],IEEE Computer Society TC PAMI.Southampton,UK,2006.
[4]MOORE S,BOWDEN R.Local binary patterns for multi-view facial expression recognition[J].Computer Vision and Image Understanding,2011,115(4):541-558.
[5]BU FA H,YIN-CHENG H,BING-XING C.A novel facial expression recognition method based on semantic knowledge of analytical hierarchy process[J].Journal of Image and Graphics,2011.
[6]RUDOVIC,OGNJEN,PATRAS.Coupled Gaussian process regression for pose-invariant facial expression recognition[J].IEEE Transactions on Pattern Analysis and Machine Intelligence,2013,35(6):1357-1369.