肖冰,李珺,李春(北京理工大學(xué)生命學(xué)院,北京 100081)
?
類泛素介導(dǎo)和熱激響應(yīng)協(xié)同提高釀酒酵母的熱穩(wěn)定性
肖冰,李珺,李春
(北京理工大學(xué)生命學(xué)院,北京 100081)
摘要:通過調(diào)節(jié)類泛素和熱激響應(yīng)介導(dǎo)的釀酒酵母內(nèi)部的活性蛋白質(zhì)平衡,提高酵母細(xì)胞的熱穩(wěn)定性和乙醇發(fā)酵性能,從而達(dá)到工業(yè)生產(chǎn)中降低控溫能耗的目的。將5個(gè)蛋白質(zhì)平衡相關(guān)基因分別與調(diào)控基因FBA1p組合構(gòu)建耐熱元器件,并將其導(dǎo)入釀酒酵母 Saccharomyces cerevisiae INVSC1,通過梯度升溫培養(yǎng)篩選得到能賦予酵母細(xì)胞較好耐熱性的類泛素元器件FBA1p-atg8和熱激蛋白元器件FBA1p-hsp104;其對(duì)應(yīng)的工程菌S.c-ATG8和S.c-HSP104在40℃恒定培養(yǎng)下,OD660值均比對(duì)照高50%以上(84 h),細(xì)胞存活率分別是對(duì)照的1.64倍和3.01倍(72 h),且都具有較好的細(xì)胞壁完整性及海藻糖合成量。將atg8與hsp104組合構(gòu)建成雙功能耐熱元器件,其工程菌S.c-ATG8-HSP104在40℃恒定發(fā)酵的生長能力、細(xì)胞活力和乙醇生產(chǎn)能力都明顯優(yōu)于S.c-ATG8與S.c-HSP104。結(jié)果表明,通過類泛素介導(dǎo)與熱激蛋白響應(yīng)協(xié)同調(diào)節(jié)胞內(nèi)活性蛋白質(zhì)平衡可以有效地提高釀酒酵母的熱穩(wěn)定性。
關(guān)鍵詞:合成生物學(xué);發(fā)酵;生物技術(shù);類泛素;熱激蛋白;蛋白質(zhì)平衡;熱穩(wěn)定性
2015-11-26收到初稿,2016-01-14收到修改稿。
聯(lián)系人:李春。第一作者:肖冰(1991—),女,碩士研究生。
Received date: 2015-11-26.
Foundation item: supported by the National Natural Science Foundation of China (21376028, 21576027) and the Science Fund for Distinguished Youth Scholars of China (21425624).
工業(yè)微生物發(fā)酵過程中,由于細(xì)胞密度較高、新陳代謝旺盛而產(chǎn)生大量熱,會(huì)導(dǎo)致發(fā)酵溫度持續(xù)升高,對(duì)菌體生長和生產(chǎn)造成不利影響[1],因此需要冷卻降溫,造成大量能耗。釀酒酵母最適生長溫度為30℃,是微生物發(fā)酵的常用菌種,所以提高釀酒酵母的耐熱性,使其可以在較高的發(fā)酵溫度下保持正常的生長代謝,成為改進(jìn)發(fā)酵工業(yè)的重中之重[2-3]。
熱脅迫導(dǎo)致酵母細(xì)胞內(nèi)功能蛋白的變性失活,造成蛋白質(zhì)內(nèi)穩(wěn)態(tài)失衡,從而使細(xì)胞的結(jié)構(gòu)和功能遭到破壞,嚴(yán)重影響細(xì)胞的生長與代謝[4-5]。因此維持胞內(nèi)蛋白質(zhì)平衡是提高細(xì)胞在高溫條件下的生存能力與耐受性的關(guān)鍵。酵母細(xì)胞內(nèi)存在著多種熱防御機(jī)制來維持熱脅迫狀態(tài)下的蛋白質(zhì)平衡,包括自噬系統(tǒng)、泛素蛋白酶系統(tǒng)與熱激蛋白[6-7]。自噬系統(tǒng)與泛素蛋白酶系統(tǒng)通過清除因高溫環(huán)境而變性的蛋白質(zhì),為新生多肽合成提供原料,從而幫助細(xì)胞維持蛋白質(zhì)平衡[8-9]。除此之外,熱激蛋白是一類功能相似的蛋白質(zhì),在細(xì)胞受到高溫誘導(dǎo)時(shí)大量表達(dá),具有維持新合成多肽的穩(wěn)定性,以及阻止變性蛋白聚集并幫助變性蛋白復(fù)性的功能[10]。但目前通過維持胞內(nèi)蛋白質(zhì)平衡從而提高耐熱性的研究鮮有報(bào)道。Hiraishi等[11]通過過表達(dá)泛素連接酶Rsp5使釀酒酵母在41℃持續(xù)生產(chǎn)并在43℃具有更強(qiáng)的魯棒性。Chen等[12]通過過表達(dá)同源小熱激蛋白,發(fā)現(xiàn)雙歧桿菌在55℃熱激存活率高于對(duì)照,說明加強(qiáng)小熱激蛋白表達(dá)可以提高熱耐受性。高溫條件下需要加強(qiáng)酵母蛋白質(zhì)平衡網(wǎng)絡(luò),以幫助細(xì)胞提高生長活力以應(yīng)對(duì)熱脅迫帶來的損傷[13-14]。
本研究將通過對(duì)蛋白質(zhì)平衡相關(guān)基因進(jìn)行發(fā)掘,利用分子生物學(xué)和合成生物學(xué)的方法,將來自酵母自噬系統(tǒng)的atg8(類泛素蛋白)、泛素蛋白酶系統(tǒng)的ubc4(E2泛素接合酶)、ump1(蛋白酶體亞基)以及熱激蛋白的kar2和hsp104分別與酵母組成型強(qiáng)啟動(dòng)子FBA1p組裝成具有蛋白質(zhì)平衡功能的耐熱元器件。將篩選出的耐熱效果穩(wěn)定且良好的元器件進(jìn)行組合、表征以增強(qiáng)高溫下的蛋白質(zhì)穩(wěn)態(tài)平衡并提高細(xì)胞生長活力,以期得到具有協(xié)同增效的耐熱酵母工程菌,從而達(dá)到工業(yè)微生物發(fā)酵節(jié)能降耗的目的。
1.1主要儀器
PCR儀(Veriti)9902:美國ABI公司;電泳儀:美國Bio-rad有限公司;高速冷凍離心機(jī)D37520:美國Thermo Heraeus公司;恒溫培養(yǎng)箱GHX-9050B-2:上海?,攲?shí)驗(yàn)設(shè)備有限公司;電轉(zhuǎn)化儀Bio-Rad:美國Bio-Rad公司;SBA生物傳感分析儀SBA-40C:山東省科學(xué)院生物技術(shù)研究室。
1.2菌株與質(zhì)粒
釀酒酵母(Saccharomyces cerevisiae INVSC1)為實(shí)驗(yàn)室保藏菌株,用于質(zhì)粒構(gòu)建的宿主為本實(shí)驗(yàn)室保藏的大腸桿菌Top10。所用質(zhì)粒pRS42K從德國法蘭克福的EUROSCARF購買。
1.3試劑和培養(yǎng)基
質(zhì)粒提取試劑盒及DNA凝膠回收試劑盒分別為北京博邁德生物技術(shù)有限公司和北京百泰克生物技術(shù)有限公司產(chǎn)品。Prime star DNA聚合酶、限制性內(nèi)切酶、T4 DNA連接酶為TaKaRa公司產(chǎn)品。RNA提取試劑盒、反轉(zhuǎn)錄試劑盒及qRT-PCR試劑盒分別為OMGA、TaKaRa和羅氏公司生產(chǎn)。丙酮酸激酶酶活試劑盒購于南京建成生物工程研究室。
YPD+G418培養(yǎng)基:20 g·L?1胰蛋白胨,10 g·L?1酵母提取物,20 g·L?1葡萄糖,含有300 mg·ml?1的遺傳霉素(G418),用于釀酒酵母轉(zhuǎn)化子篩選和培養(yǎng)。
1.4釀酒酵母工程菌的構(gòu)建及篩選
功能基因(atg8、ubc4、ump1、kar2、hsp104)與啟動(dòng)子(FBA1p)都以釀酒酵母基因組為模板,通過Prime Star DNA聚合酶進(jìn)行擴(kuò)增,回收產(chǎn)物經(jīng)過酶切,與多拷貝的穿梭載體pRS42K連接,轉(zhuǎn)入大腸桿菌TOP10菌株進(jìn)行陽性克隆篩選。對(duì)陽性克隆進(jìn)行重組質(zhì)粒的提取,將提取的質(zhì)粒轉(zhuǎn)入釀酒酵母INVSC1,篩選陽性重組子。挑取釀酒酵母工程菌陽性克隆到40 ml 的YPD液體培養(yǎng)基中,30℃、170 r·min?1培養(yǎng)36 h進(jìn)行活化,將活化后的釀酒酵母工程菌按初始OD660= 0.1進(jìn)行轉(zhuǎn)接。酵母在30℃培養(yǎng)12 h后,將培養(yǎng)溫度調(diào)至35℃,并每12 h提高2℃,直到培養(yǎng)溫度為45℃,整個(gè)發(fā)酵過程持續(xù)84 h。每12 h進(jìn)行取樣,用紫外可見分光光度計(jì)測量OD660,繪制出生長曲線,以此表征釀酒酵母的耐熱性。
1.5恒定高溫培養(yǎng)
種子液活化及轉(zhuǎn)接方法同1.4節(jié),將釀酒酵母在30℃培養(yǎng)12 h后,將培養(yǎng)溫度提高到40℃進(jìn)行培養(yǎng),整個(gè)發(fā)酵過程持續(xù)84 h。每12 h取樣測定OD660,繪制生長曲線。在48、60 h分別進(jìn)行取樣,選取合適的稀釋度,取100 μl菌液進(jìn)行涂板,在30℃培養(yǎng)2 d后進(jìn)行菌落計(jì)數(shù)(每個(gè)固體平板菌落個(gè)數(shù)為30~300個(gè)時(shí)有效)。每個(gè)實(shí)驗(yàn)組重復(fù) 3 次。
1.6qRT-PCR
種子液活化后,將釀酒酵母在30℃培養(yǎng)12 h,繼續(xù)在40℃條件下培養(yǎng)24 h,收集細(xì)胞,用RNA提取試劑盒提取RNA。以相同初始量的RNA作為模板反轉(zhuǎn)錄合成cDNA。采取相對(duì)定量qRT-PCR,選擇持家基因act1為內(nèi)參基因,用羅氏96孔熒光定量PCR儀進(jìn)行反應(yīng)。
1.7丙酮酸激酶活性測定
種子液經(jīng)過活化,將釀酒酵母在30℃培養(yǎng)12 h,再在40℃條件下培養(yǎng)24 h,收集細(xì)胞,將收集的細(xì)胞懸浮于100 mmol·L?1Tris-HCl(pH = 7. 0,1 mmol·L?1DTT,10 mmol·L?1MgCl2,1mmol·L?1EDTA)中,冰浴條件下超聲破碎細(xì)胞(工作2 s,間歇2 s,全程15 min,功率80 W),4℃,10000 r·min?1離心5 min,取上清液即為酶蛋白溶液。按照丙酮酸激酶酶活試劑盒說明書進(jìn)行酶活測定。
1.8雙功能釀酒酵母工程菌的構(gòu)建
利用DNA assemble的方法進(jìn)行雙功能元器件的組裝。質(zhì)粒pRS42K經(jīng)過限制性內(nèi)切酶EcoRⅠ和SalⅠ雙酶切后經(jīng)瓊脂糖凝膠回收,單功能耐熱元器件經(jīng)過PCR擴(kuò)增回收后,經(jīng)過Nanodrop測定濃度,根據(jù)計(jì)算,將基因片段與質(zhì)?;旌希ɑ蚱芜_(dá)到300 ng,質(zhì)粒達(dá)到500 ng),加入兩倍體積的無水乙醇,置于?20℃冰箱4~5 h;將上清棄去后,進(jìn)行低溫旋蒸除去多余無水乙醇。加入5 μl ddH2O溶解混合基因片段,電轉(zhuǎn)導(dǎo)入釀酒酵母。
1.9乙醇發(fā)酵
種子液活化及轉(zhuǎn)接方法同1.4節(jié),30℃培養(yǎng)12 h,將溫度升至40℃進(jìn)行發(fā)酵,每24 h補(bǔ)加40%葡萄糖溶液4 ml,整個(gè)發(fā)酵過程為72 h。每12 h取樣,用紫外可見分光光度計(jì)測量OD660,SBA測量乙醇濃度。
2.1單功能耐熱釀酒酵母工程菌的構(gòu)建及篩選
將來自釀酒酵母的與蛋白質(zhì)平衡相關(guān)的基因kar2(hsp70)、hsp104(hsp100)、atg8(類泛素)、ubc4(E2泛素接合酶)、ump1(蛋白酶體亞基)構(gòu)成核心功能元器件,結(jié)合調(diào)控元器件(選自酵母本身的組成型強(qiáng)啟動(dòng)子FBA1p),利用合成生物學(xué)方法對(duì)其進(jìn)行設(shè)計(jì)、組裝,成為耐熱元器件,將其轉(zhuǎn)入釀酒酵母,得到釀酒酵母工程菌(表1)。
表1 耐熱元器件與釀酒酵母工程菌Table 1 Heat-resistant devices and S.cerevisiae engineered strains
本文通過使釀酒酵母工程菌在梯度升溫(35~45℃)條件下生長來模擬沒有溫控的發(fā)酵過程,從而考察菌株的耐熱性。從圖1中可以看出,所有釀酒酵母工程菌的生長情況均優(yōu)于對(duì)照菌株,由此初步篩選得到兩株熱穩(wěn)定性良好的耐熱工程菌,分別為S.c-ATG8與S.c-HSP104。ATG8被認(rèn)為是類泛素,與自噬體形成有關(guān)[15-16]。HSP104可以使錯(cuò)誤折疊的蛋白解凝集,恢復(fù)其原始的構(gòu)象和功能,對(duì)維持熱脅迫條件下胞內(nèi)蛋白平衡十分重要[17-18]。
圖1 釀酒酵母工程菌在35~45℃培養(yǎng)條件下的生長能力Fig.1 Growth ability of S.cerevisiae engineered strains cultured at temperature from 35℃ to 45℃
37℃是釀酒酵母的熱激溫度,41℃為野生酵母的生長上限[19]。本文選擇將S.c-ATG8與S.c- HSP104在相對(duì)較高的40℃進(jìn)行恒定高溫發(fā)酵。結(jié)果[圖2(a)]顯示,不同工程菌在40℃高溫條件下的生長能力不同,在培養(yǎng)24 h后S.c-ATG8與S.c-HSP104的生長能力逐漸高于對(duì)照,且隨著時(shí)間的推移生長情況差距變大,84 h時(shí)S.c-ATG8與S.c-HSP104的OD660均高于對(duì)照50%以上。存活率結(jié)果顯示[圖2(b)],48 h時(shí)S.c-ATG8與S.c-HSP104存活率分別是對(duì)照的1.39倍和2.87倍;72 h時(shí)S.c-ATG8與S.c-HSP104的存活率分別是對(duì)照的1.64倍和3.01倍。梯度升溫培養(yǎng)、恒定高溫培養(yǎng)共同證明了S.c-ATG8與S.c-HSP104具有良好的耐熱性,這些耐熱元器件的導(dǎo)入可以提高酵母的熱穩(wěn)定性。
圖2 耐熱工程菌在40℃的生長能力及細(xì)胞存活率Fig.2 Growth ability and cell viability of thermotolerant engineered strains cultured at 40℃
2.2耐熱酵母工程菌的生理特性
以持家基因ACT1作為內(nèi)參,通過qRT-PCR考察相關(guān)基因的相對(duì)轉(zhuǎn)錄水平,結(jié)果如圖3(a),可知導(dǎo)入的ATG8與HSP104基因均正常表達(dá),但在相同啟動(dòng)子調(diào)控下,其轉(zhuǎn)錄水平并不一致。
細(xì)胞壁的完整性對(duì)酵母熱脅迫的耐受至關(guān)重要[20]。幾丁質(zhì)是細(xì)胞壁的重要組成成分,而chs1是編碼酵母幾丁質(zhì)合酶的基因,因此chs1表達(dá)水平的高低對(duì)細(xì)胞壁完整性意義重大。從圖3(b)可以看出,S.c-ATG8與S.c-HSP104中chs1的轉(zhuǎn)錄水平分別是對(duì)照的1.62倍和1.43倍,說明耐熱元器件的導(dǎo)入可能通過上調(diào)chs1基因從而提高酵母在熱脅迫下細(xì)胞壁的完整性,進(jìn)而使工程菌在高溫培養(yǎng)下保持較好的生長能力。
海藻糖是一種重要的能量貯藏物質(zhì),不僅能夠維持熱脅迫環(huán)境下細(xì)胞膜穩(wěn)定性,而且能維持細(xì)胞活性[21-23]。耐熱工程菌S.c-ATG8與S.c-HSP104中編碼海藻糖-6-磷酸合成酶的tps1表達(dá)水平均優(yōu)于對(duì)照[圖3(c)],這與熱脅迫下釀酒酵母以海藻糖作為細(xì)胞保護(hù)劑的觀點(diǎn)一致[24]。
2.3雙功能耐熱工程菌的構(gòu)建及表征
將表現(xiàn)優(yōu)良的類泛素atg8與熱激蛋白hsp104組合成雙功能元器件[圖4(a)],導(dǎo)入釀酒酵母得到雙功能耐熱工程菌S.c-ATG8-HSP104,以期在變性蛋白降解和變性蛋白復(fù)性雙重層次上緩解高溫對(duì)釀酒酵母的脅迫。40℃恒定高溫發(fā)酵結(jié)果表明[圖4(b)],前24 h生長無明顯差異,24 h后工程菌生長能力均逐漸高于對(duì)照,84 h時(shí)S.c-ATG8-HSP104的OD660為對(duì)照的1.73倍,且約為單功能工程菌S.c-ATG8與S.c-HSP104的1.22倍??梢婋p功能耐熱元器件能進(jìn)一步賦予酵母耐熱性。
酵母代謝途徑中的關(guān)鍵酶活性可以作為衡量細(xì)胞活力的指標(biāo)。丙酮酸激酶(PK)是糖酵解過程中的主要限速酶之一,催化磷酸烯醇式丙酮酸和ADP變?yōu)锳TP和丙酮酸,為細(xì)胞代謝提供能量,PK的酶活在一定程度上可以表征細(xì)胞的生理狀況。由圖4(d)發(fā)現(xiàn),構(gòu)建的耐熱酵母工程菌的PK酶活力均比對(duì)照高,且雙功能酵母工程菌S.c-ATG8-HSP104的酶活最高,為對(duì)照的1.95倍??芍惙核卦骷蜔峒さ鞍自骷?duì)維持熱脅迫下細(xì)胞活力有一定作用,且雙功能耐熱元器件的效果更好,可能由于同時(shí)通過自噬降解與熱激蛋白復(fù)性兩個(gè)途徑共同加強(qiáng)了細(xì)胞維持蛋白質(zhì)平衡的能力,使細(xì)胞保持較高的活力,從而更好地提高了酵母的熱穩(wěn)定性。
圖3 40℃時(shí)耐熱相關(guān)基因的表達(dá)水平Fig.3 Expression level of thermotolerance related gene at 40℃
圖4 雙功能耐熱元器件的構(gòu)建及雙功能酵母工程菌的耐熱性表征結(jié)果Fig.4 Construction of bifunctional gene device and thermotolerant characterization results of bifunctional engineered S. cerevisiae
2.4耐熱工程菌在乙醇發(fā)酵中的應(yīng)用
將S.c-ATG8、S.c-HSP104與S.c-ATG8-HSP104三株耐熱工程菌進(jìn)行40℃補(bǔ)料分批發(fā)酵。結(jié)果顯示(圖5), 40℃高溫發(fā)酵的早期(36 h時(shí)),耐熱工程菌的細(xì)胞生長優(yōu)勢并沒有展現(xiàn);40℃發(fā)酵60 h時(shí),耐熱工程菌株酵母細(xì)胞的生長與對(duì)照在30℃常規(guī)溫度生長情況無明顯差異(OD660)。檢測40℃高溫發(fā)酵下的乙醇產(chǎn)量發(fā)現(xiàn),三株耐熱工程菌的產(chǎn)乙醇能力有一定提高,其中發(fā)酵60 h時(shí),工程菌S.c-ATG8-HSP104的乙醇產(chǎn)量比對(duì)照在30℃常規(guī)條件下發(fā)酵的乙醇產(chǎn)量有顯著性提高。結(jié)果說明耐熱元器件的引入可以賦予酵母耐熱性,使酵母能夠在較高的發(fā)酵溫度下進(jìn)行乙醇生產(chǎn),從而節(jié)約能耗。
圖5 釀酒酵母工程菌40℃生產(chǎn)的生長情況及乙醇產(chǎn)量的比較Fig.5 Comparison of growth ability and ethanol yield of engineered strain cultured at 40℃**, * mean significant difference at 1% and 5% level
本研究克隆了多個(gè)與蛋白質(zhì)平衡機(jī)制緊密相關(guān)的,分別來自自噬系統(tǒng)、泛素蛋白酶系統(tǒng)和熱激蛋白的基因,并與調(diào)控基因FBA1p組合構(gòu)成耐熱元器件,分別將其導(dǎo)入釀酒酵母Saccharomyces cerevisiae INVSC1。通過梯度升溫培養(yǎng)篩選到能穩(wěn)定賦予酵母良好耐熱性的類泛素元器件FBA1p-atg8和熱激蛋白元器件FBA1p-hsp104,其相應(yīng)的工程菌S. c-ATG8和S.c-HSP104在40℃恒定培養(yǎng)時(shí),細(xì)胞存活率明顯好于對(duì)照,OD660值提高50%。進(jìn)而將這兩種耐熱元器件組合獲得的雙功能耐熱工程菌S.c-ATG8-HSP104,在相同條件下培養(yǎng),其生長能力、細(xì)胞活力以及高溫補(bǔ)料發(fā)酵時(shí)的乙醇生產(chǎn)能力皆具顯著優(yōu)勢;特別是用丙酮酸激酶表征的細(xì)胞活力達(dá)對(duì)照的1.95倍,印證了蛋白質(zhì)穩(wěn)態(tài)平衡的維持有助于增強(qiáng)細(xì)胞活力的理論。類泛素介導(dǎo)與熱激響應(yīng)協(xié)同作用可以更好維護(hù)熱脅迫條件下酵母胞內(nèi)的蛋白質(zhì)平衡,使工程化的釀酒酵母的熱穩(wěn)定性更強(qiáng)。本文為提高釀酒酵母耐熱性,降低乙醇發(fā)酵成本,節(jié)能降耗提供了重要的理論依據(jù)和研究思路。
References
[1]AMILLASTRE E, ACEVES-LARA C A, URIBELARREA J L, et al. Dynamic model of temperature impact on cell viability and major product formation during fed-batch and continuous ethanolic fermentation in Saccharomyces cerevisiae [J]. Bioresource Technology, 2012, 117 (4): 242-250.
[2]SHAHSAVARANI H, HASEGAWA D, YOKOTA D, et al. Enhanced bio-ethanol production from cellulosic materials by semi-simultaneous saccharification and fermentation using high temperature resistant Saccharomyces cerevisiae TJ14 [J]. Journal of Bioscience & Bioengineering, 2013, 115 (1): 20-23.
[3]ZHU L, YAN Z, ZHANG Y, et al. Engineering the robustness of industrial microbes through synthetic biology [J]. Trends in Microbiology, 2012, 20 (2): 94-101.
[4]BUSTAMANTE C J, KAISER C M, MAILLARD R A, et al. Mechanisms of cellular proteostasis: insights from single-molecule approaches [J]. Annual Review of Biophysics, 2014, 43 (5): 119-140.
[5]MORIMOTO R. Cell stress and proteostasis networks in biology, aging, and disease [J]. Biophysical Journal, 2014, 106 (2): 34a.
[6]ZHANG S X, SANDERS E, FLIESLER S J, et al. Endoplasmic reticulum stress and the unfolded protein responses in retinal degeneration [J]. Experimental Eye Research, 2014, 125: 30-40.
[7]BENYAIR R, RON E, LEDERKREMER G Z. Protein quality control, retention, and degradation at the endoplasmic reticulum [J]. International Review of Cell & Molecular Biology, 2011, 292: 197-280.
[8]SMITH S E, KOEGL M, JENTSCH S. Role of the ubiquitin/ proteasome system in regulated protein degradation in Saccharomyces cerevisiae [J]. Biological Chemistry, 1996, 377 (7/8): 437-446.
[9]FINLEY D, ULRICH H D, SOMMER T, et al. The ubiquitinproteasome system of Saccharomyces cerevisiae [J]. Genetics, 2012, 192 (2): 319-360.
[10]HARTL H U, MANAJIT H. Molecular chaperones in the cytosol: from nascent chain to folded protein [J]. Science, 2002, 295 (6): 1852-1858.
[11]HIRAISHI H, MOCHIZUKI M, TAKAGI H. Enhancement of stress tolerance in Saccharomyces cerevisiae by overexpression of ubiquitin ligase Rsp5 and ubiquitin-conjugating enzymes [J]. Bioscience Biotechnology & Biochemistry, 2006, 70 (11): 2762-2765.
[12]KHASKHELI G B, ZUO F L, YU R, et al. Overexpression of small heat shock protein enhances heat-and salt-stress tolerance of Bifidobacterium longum NCC2705 [J]. Current Microbiology, 2015, 71: 1-8.
[13]TROTTER E W, CAMILLA M-F K, LUDMILLA B, et al. Misfolded proteins are competent to mediate a subset of the responses to heat shock in Saccharomyces cerevisiae [J]. Journal of Biological Chemistry, 2002, 277 (47): 44817-44825.
[14]HIPP M S, PARK S H, HARTL F U. Proteostasis impairment in protein-misfolding and -aggregation disease [J]. Trends in Cell Biology, 2014, 24 (9): 506-514.
[15]XIE Z, NAIR U, KLIONSKY D. Atg8 controls phagophore expansion during autophagosome formation [J]. Molecular Biology of the Cell, 2008, 19 (8): 3290-3298.
[16]NAKATOGAWA H, ICHIMURA Y, OHSUMI Y. Atg8, a ubiquitin-like protein required for autophagosome formation, mediates membrane tethering and hemifusion [J]. Cell, 2007, 130 (1): 165-178.
[17]SANCHEZ Y, TAULIEN J, BORKOVICH K A, et al. Hsp104 is required for tolerance to many forms of stress [J]. EMBO Journal, 1992, 11 (6): 2357-2364.
[18]TESSARZ P, MOGK A, BUKAU B. Substrate threading through the central pore of the Hsp104 chaperone as a common mechanism for protein disaggregation and prion propagation [J]. Molecular Microbiology, 2008, 68 (1): 87-97.
[19]SHI D J, WANG C L, WANG K M. Genome shuffling to improve thermotolerance, ethanol tolerance and ethanol productivity of Saccharomyces cerevisiae [J]. Journal of Industrial Microbiology & Biotechnology, 2009, 36 (1): 139-147.
[20]MAGALI M, STéPHANIE W, FLORENCE D B, et al. Adaptation of the wine bacterium Oenococcus oeni to ethanol stress: role of the small heat shock protein Lo18 in membrane integrity [J]. Applied & Environmental Microbiology, 2014, 80 (10): 2973-2980.
[21]PLOURDE-OWOBI L, DURNER S, GOMA G, et al. Trehalose reserve in Saccharomyces cerevisiae: phenomenon of transport, accumulation and role in cell viability [J]. International Journal of Food Microbiology, 2000, 55 (1/2/3): 33-40.
[22]ODUMERU J A, D’AMORE T, RUSSELL I, et al. Alterations in fatty acid composition and trehalose concentration of Saccharomyces brewing strains in response to heat and ethanol shock [J]. Journal of Industrial Microbiology & Biotechnology, 1993, 11 (2): 113-119.
[23]MAHMUD S A, HIRASAWA T, SHIMIZU H. Differential importance of trehalose accumulation in Saccharomyces cerevisiae in response to various environmental stresses [J]. Journal of Bioscience & Bioengineering, 2010, 109 (3): 262-266.
[24]VIRGILIO C D, HOTTIGER T, DOMINGUEZ J, et al. The role of trehalose synthesis for the acquisition of thermotolerance in yeast [J]. European Journal of Biochemistry, 1994, 219 (1/2): 179-186.
Synergistically enhanced thermostability of Saccharomyces cerevisiae by ubiquitin-like protein mediation and heat shock response
XIAO Bing, LI Jun, LI Chun
(School of Life Science, Beijing Institute of Technology, Beijing 100081, China)
Abstract:To improve the thermostability and fermentation performance of Saccharomyces cerevisiae to reduce the energy consumption of the cooling progress in industrial fermentation, the protein homeostasis was regulated through ubiquitin-like protein mediation and heat shock response. In this study, many heat-resistant gene devices were mined out from genes related to protein homeostasis and constructed with the regulatory device FBA1p,and then transformed into Saccharomyces cerevisiae INVSC1. Outstanding heat-resistant devices FBA1p-atg8 and FBA1p-hsp104 were screened through gradually increased temperature incubation. Compared with the control, the OD660of the engineered yeast strains S.c-ATG8 and S.c-HSP104 were both over 50% higher (84 h) and their cell viability were 1.64 to 3.01 times higher (72 h) when cultured at 40℃. The physiological characteristics implied that the thermotolerant strains possessed better cell wall integrity and higher trehalose content. In order to strengthening the regulatory mechanisms of both ubiquitin-proteasome system pathway and heat-shock responses within the network of protein homeostasis, atg8 and hsp104 were assembled to construct bifunctional engineered strain S.c-ATG8-HSP104, which showed better growth ability, stronger cell activity and higher ethanol yield at 40℃. The results revealed that the synergistic effect of ubiquitin-like protein and heat shock protein could enhanceyeast thermotolerance and improve strain activity.
Key words:synthetic biology; fermentation; biotechnology; ubiquitin-like protein; heat shock protein; protein homeostasis; thermostability
中圖分類號(hào):TQ 028.8
文獻(xiàn)標(biāo)志碼:A
文章編號(hào):0438—1157(2016)06—2503—07
DOI:10.11949/j.issn.0438-1157.20151778
基金項(xiàng)目:國家自然科學(xué)基金項(xiàng)目(21376028,21576027);國家杰出青年科學(xué)基金項(xiàng)目(21425624)。
Corresponding author:Prof. LI Chun, lichun@bit.edu.cn