• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    MORPHOLOGY,GROWTH AND PHOTOSYNTHETIC RESPONSES OF THE CYANOBACTERIUM ARTHROSPIRA PLATENSIS TO DIFFERENT WAVEBANDS IN SOLAR SPECTRUM

    2016-06-29 09:50:49MAZengLingArocenaJoselito2andGAOKunShanZhejiangProvincialKeyLaboratoryforSubtropicalWaterEnvironmentandMarineBiologicalResourcesProtectionWenzhouUniversityWenzhou2505ChinaEnvironmentalScienceandEngineeringUniversityofNorth
    水生生物學(xué)報(bào) 2016年3期

    MA Zeng-Ling,M.Arocena Joselito,2and GAO Kun-Shan(.Zhejiang Provincial Key Laboratory for Subtropical Water Environment and Marine Biological Resources Protection,Wenzhou University,Wenzhou 2505,China; 2.Environmental Science and Engineering,University of Northern British Columbia,Prince George V2N4Z9,Canada; .State Key Laboratory of Marine Environmental Science,Xiamen University,Xiamen 6005,China)

    MORPHOLOGY,GROWTH AND PHOTOSYNTHETIC RESPONSES OF THE CYANOBACTERIUM ARTHROSPIRA PLATENSIS TO DIFFERENT WAVEBANDS IN SOLAR SPECTRUM

    MA Zeng-Ling1,M.Arocena Joselito1,2and GAO Kun-Shan3
    (1.Zhejiang Provincial Key Laboratory for Subtropical Water Environment and Marine Biological Resources Protection,Wenzhou University,Wenzhou 325035,China; 2.Environmental Science and Engineering,University of Northern British Columbia,Prince George V2N4Z9,Canada; 3.State Key Laboratory of Marine Environmental Science,Xiamen University,Xiamen 361005,China)

    Abstract:Light is known to regulate morphological development and photosynthetic performance of the economically important cyanobacterium,Arthrospira platensis.However,light quality under different wavelengths on its growth and physiology is yet to be understood.In this study,we grew A.platensis D-0083 trichomes in quartz tubes covered with different cutoff foils and one band-pass filter,so that the cells received different wavebands of irradiances,and measured its growth,morphology and photosynthetic performances.Spirals of A.platensis D-0083 were compressed and the biomass increased with exposures under all wavebands.Both the wavebands of UV-A + blue light(320—500 nm)and red light(600—700 nm)could initiate the spiral compression,growth and photosynthetic activities in A.platensis D-0083 efficiently.The efficiencies per unit energy of irradiance to induce helix pitch changes in wavebands 320—500,395—700,510—700 and 610—700 nm were 0.070,0.015,0.021 and 0.045 μm/(W·m2)respectively.Waveband 320—500 nm had little suppression on effective quantum yield(Fv′/Fm′),electron transfer rate(ETR)and phycocyanin(PC)fluorescence emission of the filaments but led to spiral compression and growth efficiently.The waveband-dependent responses in spiral compression and specific growth rate appeared to be consistent with the photosynthetic capability under the different light regimes.

    Key words:Arthrospira platensis; Growth; Morphology; Photosynthetically active radiation(PAR); Photosynthesis

    Brief introduction of the author:Ma Zeng-Ling,Ph.D.,Associate professor; E-mail:mazengling@wzu.edu.cn

    Light quality and intensity are critical environmental signals that allow cells to sense the time of day,the potential intracellular energy status,and to tune metabolic activities towards its optimal growth potential[1].Rates of photosynthesis,growth,morphogenesis[2—7]and pigment composition[8—11]are some of the light-dependent growth characteristics of cyanobacteria.Recently,blue light was suggested to promote the metabolism of nitrogen-derived compounds such as mycosporine-like amino acids(MAAs),phycoerythrin and proteins in Porphyra leucosticta[12].Blue light increases the chlorophyll and phycocyanin contents and biomass production in Spirulina fussiformis[13].Light intensity is a major trigger in the heterocyst and akinete differentiation of many cyanobacterial species[7,14—17].

    The genes responsible for these light-sensitive growth responses are well characterized and the signaling mechanisms are reasonably well established[18].In many cyanobacterial species,chromatic acclimation(CA)results in lesser phycoerythrin(PE)and more phycocyanin(PC)when grown under red than in green light[19,20].The morphology of the Fremyella diplosiphon is also affected during the CA process when grown in red or green light[19,21].

    Cyanobacteria contain phytochrome,blue-light,and UV-A receptors which can receive irradiance spanning visible spectrum and near-UV[22-25].Arthrospira platensis is an economically important cyanobacterium and commercially cultured around the world to supply biomass and provide a rich source of protein for the health food industry[26,27].Environmental factors such as light and temperature determine the gross biomass productivity in Arthrospira cultures[27].Elevated photosynthetically active radiation(PAR)levels decrease the helix pitch of A.platensis[6],while UV radiation adding to PAR leads to compressed spirals[28].Oxidative stress induced by light or UV stresses lead to broken trichomes in A.platensis and A.variabilis PCC 7937[29,30].

    Although PAR is known to control the morphology and photosynthesis[6],we have yet to ascertain the influence of the PAR region(i.e.400 to 700 nm)in the growth patterns,morphological and photosynthetic changes in A.platensis.PAR penetration depth decreased with wavelength in water body due to water absorption generally increases with wavelength[31].The filaments of Arthorspira spp.in natural water body have to face the fluctuations of light quality and intensity when they stayed at different depth in natural water body.Algal acclimation to fluctuating irradiance can lead to differently photosynthetic rate,growth rates and cellular pigments content compared to the cells acclimated to constant irradiance[32].Therefore we predict that morphology,growth and photosynthesis of A.platensis are waveband-specific responding to solar PAR.Under this scenario,we investigated the morphology,growth and photosynthesis of A.platensis D-0083 filaments grown in quartz tubes that were selectively exposed to various regions of the PAR using three cut-off and one bandpass light filters.

    1 Materials and Methods

    1.1 Experimental organism

    Arthrospira platensis(D-0083)was obtained from the Hainan Dainippon Ink and Chemicals(DIC)microalgae CO.LTD.Hainan,China.A single healthy spiral was chosen and all the trichomes were propagated from it in a Zarrouk medium[33]containing(g/L):NaHCO3—16.8,NaNO3—2.5,K2HPO4—0.5,K2SO4—1.0,NaCl—1.0,MgSO4.7H2O—0.2,CaCl2—0.04,F(xiàn)eSO47H2O—0.01,EDTA—0.08 and micronutrients.The cultures were aerated with filtered(0.22 μm)air at 30℃ and 60 μmol/m2·s of cool-white light(12 L∶12 D).Cells in the exponential growth phase were sampled at the beginning of dark period and used in subsequent experiments.

    1.2 Radiation treatments and measurement

    The A.platensis cells were filtered,washed and removed from the GF/C filter(25 mm ?,Whatman)and diluted with fresh Zarrouk medium to 0.16 optical densities at 560 nm(A560 nm).The cells were then transferred to quartz tubes(2 cm ?,length 12 cm)and horizontally placed in opaque plastic containers with removable and replaceable lids.The lids were fitted with light filters for different wavebands(i.e.Ultraphan395(395—700 nm),JB510(510—700 nm),HB610(610—700 nm)and QB24(320—500 nm)that can be inserted and pulled out of the containers upon demand to supply the A.platensis cells with the appropriate radiation wavelengths(Fig.1).The loosened trichomes grown in laboratory,aerated with filtered(0.22 μm)air at 30℃ and 60 μmol/(m2·s)of cool-white light(12 L∶12 D),were set as the control group,since the same irradiance level of full solar spectrum would result in tightened spirals due to the UV-stimulating effects[6].

    Fig.1 Irradiance spectrum of local solar radiation and the transmission characteristics of the Ultraphan 395(395—700 nm),JB510(510—700 nm),HB610(610—700 nm)cut-off films and band-passing filter QB24(320—500 nm)(A),and the corresponding doses(MJ)of PAR,UV-A and UV-B during the period of 6 to 12 May,2007(B)

    The incident solar irradiance falling on the quartz tube was measured by using a broadband EL-DONET filter radiometer(Real Time Computer,M?hrendorf,Germany)equipped with three channels dedicated for PAR(400—700 nm),UV-A(315—400 nm)and UV-B(280—315 nm)wavebands.The quartz containers were manually shaken for 4—5 times everyday to mix the culture and alleviate the accumulations of cells at the bottom of the tube[5].Furthermore and to minimize damage to cells caused by the O2or reactive oxygen species(ROS)accumulation in the tubes triggered by photosynthetic activities during the daytime[29],the cultures were aerated with ambient air for 1min every night.Five replicates were done for each treatment.

    1.3 Temperature control

    During the growth experiments,the containers holding the quartz tubes were placed in a water bath to maintain a(30±1)℃ temperature using a circulating refrigerator(Eyela,CAP-3000,Tokyorikakikai Co.Ltd.Tokyo,Japan).

    1.4 Morphological examination

    Morphological changes in A.platenssis spirals were examined with a microscope(Zeiss Axioplan 2,Carl Zeiss,Germany)after one week of growth(13—19 April 2007)under different filters.Digital images were recorded with a Zeiss Axicam and were analyzed with an image analysis system(Axio Vision 3.0).Because the spirals of A.platensis D-0083 are highly compressed,the helix pitch(the distance between two neighboring spirals)was calculated as the number of spirals per a given length.We randomly estimated the helix pitch from at least 50 individual filaments.

    1.5 Determination of biomass and specific growth rate

    After the morphological examination of A.platensis,cells in each tube were filtered to pre-dried Whatman GF/C glass fiber filter(25 mm ?,Whatman)and washed with 20 mL acidified distilled water(pH 4)to remove residual salts.The cells were then dried in an oven at 80℃ for 24h for the determination of biomass.Specific growth rate(μ,/d)of A.platensis was calculated as μ =(lnx2-lnx1)/(t2-t1),where x1and x2were the biomass at time t1and t2,respectively.

    1.6 Determination of photosynthetic activity

    To examine the effects of solar irradiance in different waveband on the photosynthetic capacity,the effective photochemical quantum yield(Fv′/Fm′)and elative electron transport(ETR)of cells grown under different filters for a week were determined with a portable pulse amplitude modulated fluoro- meter(Water-PAM,Walz,Effeltrich,Germany).The actinic light set at 100 μmol photons/(m2·s)and saturating pulse was 5000 μmol photons/(m2·s)(0.8s).The ETR was calculated as follows[34]:ETR[μmol e/(m2·s)]= Fv′/Fm′ × 0.5 × PFD × A,where Fv′/Fm′ represents the effective PSII quantum yield,PFD is the photosynthetically active photon flux density,and A is the fraction of incident photons absorbed by A.platensis filaments[35].The rapid light curves for ETR were measured under eight different PAR levels(every measurement lasted for 10s).The parameters of the ETR curves were analyzed according to Webb,et al.[36]:ETR = ETRmax×[1-e(2α × E/ETRmax)],where α is the efficiency of electron transport and E is the irradiance.Five replicates were measured for each treatment.

    1.7 Measurement of chlorophyll fluorescence emission spectra

    Arthorspira species contains chlorophyll a(Chl.a),phycocyanobilin and allophycocyanin as light harvesting pigments[37,38].In order to investigate whether phycobilisome(PBS)was changed,we examined the changes in room-temperature chlorophyll fluorescence of the cells grown under different filters for a week.The chlorophyll fluorescence emission spectra were measured with the spectrofluorimeter(RF-5310PC,Shimadzu).The excitation wavelength was set at 580 nm for PBS[29,39].

    1.8 Statistical analysis

    A one-way ANOVA was used to analyze the differences among treatments.When significant differences occurred,Tukey's HSD test was used to identify differences among treatment means.A confidence level of 95% was used in all statistical analyses.

    2 Results

    The spectrum of local solar radiation and the transmission of light intensities through the different filters used in the radiation experiments were shown in Fig.1A.Transmitted light to solar radiation ratios through Ultraphan 395(395—700 nm),JB510(510—700 nm),HB610(610—700 nm)and QB24(320—500 nm)were 284:187:88:47(Fig.1A).The sky was clear and provided with similar doses of solar radiation throughout the duration of the experiments(6—12 May 2007)(Fig.1B).

    Compared to the loosened filaments grown in lab,the spirals of A.platensis D-0083 compressed after one week exposure to solar irradiance in different wavebands(Fig.2A).The length of trichomes in various treatments was affected by the wavelength of irradiance(Tab.1).The length of filaments before exposure(Control)and those cultured under QB24 ranged from 0 to 400 μm,but most(70%)of the filaments under QB24 were shorter than 200 μm.No fila-ments longer than 300 μm were observed when cells of A.platensis D-0083 were cultured outdoors under Ultraphan395,JB510 and HB610 cut-off films.Furthermore,the distribution of filaments with length shorter than 100 mm followed the order Ultraphan395(62%)> JB510(46%)> HB610(43%)> QB24(21%)> Control(11%)indicating that more intense irradiance doses led to shorter filaments.The helix pitch of the spirals decreased significantly(P<0.01)in cells grown under various cut-off films and band-pass filter compared with the Control.There were significant differences(P<0.05)in helix pitch between means except in the comparison of JB510 with HB610 treatments(Tab.1,F(xiàn)ig.2A).

    When the variation in helix pitch of A.platensis D-0083 was normalized to the energy that transmitted through the filters,the efficiency of waveband 320—500 nm(i.e.UV-A + blue light or QB24)to compress the spirals was much higher(P<0.01)than other wavebands(Fig.2B).The lowest effective irradiance to compress a spiral was the waveband covering full visible irradiance(395—700 nm,Ultraphan395).The efficiencies per unit energy of irradiance to induce helix pitch changes in wavebands 320—500,395—700,510—700 and 610—700 nm were 0.070,0.015,0.021 and 0.045 μm/(W·m2),respectively(Fig.2B).

    Specific growth rate(μ,/d)of the cells after one week exposure to different wavebands was highest under Ultraphan395 and JB510,followed by HB610 and QB24(Fig.3A).It was 0.198(± 0.021),0.048(± 0.007),0.098(± 0.007),0.099(± 0.003)and 0.090(± 0.005)/d when grown indoors(Control)and covered with QB24,Ultraphan395,JB510 and HB610 filters during the exposure period(Fig.3A).The efficiency of luminous energy to influence the growth rate of A.platensis D-0083 was similar to the variation in helix pitch(Fig.3B).Waveband-specific light efficiency to induce specific growth rate variations for 320—500,395—700,510—700 and 610—700 nm were 0.0010(± 0.0002),0.0003(± 0.0000),0.0005(± 0.0000)and 0.0010(±0.000)/d/(W·m2),respectively.

    Fig.2 Morphological changes(A)helix pitch change per energy[μm/(W?m2)](B)of Arthrospira platensis D-0083 filaments under solar exposures of different wavebands during the exposures(Fig.1)

    Tab.1 Distribution of trichome lengths and helix pitch of A.platensis D-0083 after one week of exposure under solar irradiance of the different wavebands

    Effective quantum yields(Fv′/Fm′)and electron transfer rate[ETR,μmol e/(m2·s)]of A.platensis D-0083 on the last noontime of exposure period(12 May,2007)was highest under QB24 and lowest in Ultraphan395(Figs.4A,B).Furthermore,quantum yields and ETR increased with PAR wavebands to-wards longer wavelength(UL3950.05)inhibited by the irradiance between 320-500 nm but was significantly(P<0.01)depressed by other wavebands.

    When the cells grown under different filters were excited at 580 nm,the emitted phycpcyanin(PC)fluorescence intensity of the cells cultured indoors(Control)and under QB24,Ultraphan395,JB510 and HB610 filters were 144.5,122.4,149.8,171.9 and 180.1,respectively(Fig.5).Furthermore,compared with the PC emission fluorescence of indoor cultures(with peak at 646 nm),the emission peaks of cells cultured under QB24,Ultraphan395,JB510 and HB610 filters for a week shifted to longer wavelength by 1,7,6 and 3 nm,respectively.

    3 Discussion

    Fig.3 Specific growth rate(/d)(A)and Specific growth rate per energy[/d/(W?m2)](B)of Arthrospira platensis D-0083 exposed to different wavebands of solar radiation from 6 to 12 May,2007

    Fig.4 Effective quantum yield(A)and relative electron transfer rate(B)at noontime of Arthrospira platensis D-0083 exposed to different wavebands of solar radiation from 6 to 12 May,2007

    Spirals of A.platensis D-0083 were compressed and the biomass increased with exposures under different light wavebands.Both the wavebands of UV-A + blue light(320—500 nm)and red light(600—700 nm)could initiate the spiral compression,growth and photosynthetic activities in A.platensis D-0083 efficiently.Our observations are in agreement with the literatures with respect to the influence of various wavebands to the growth and morphological regulation of cyanobacteria.For example,cells of F.diplosiphon are long,brick-shaped and red under green light,and smaller,spherical and blue-green under red light due to synthesis of phycoerythrin or phycocyanin,respectively[19].Furthermore,filaments of F.diplosiphon are shorter when grown in red light compared to green light[19,21].Pure UV radiation seems not capable of spiral modification in A.platensis[6].However,the waveband spanning UV-A(320—400 nm)to blue light(400—500 nm)could tighten the spiralsof A.platensis D-0083 efficiently(Figs.2A,B).It indicates that blue light was more effective in triggering spiral compression in A.platensis,although any irradiance with wavelength between 400 and 700 nm might also induce the change.The similarity in spiral helix pitch in JB510 and HB610 treatments and the 2X irradiance level under JB510 suggests that the waveband 610—700 nm was a more effective trigger to the spiral compression than 510—610 nm.

    Fig.5 Changes in fluorescence emission of phycocyanin(PC)in A.platensis D-0083 cells grown under the exposures(Fig.1).The excitation wavelength 580 nm and the means were based on triplicate incubations

    The specific growth rates of A.platensis D-0083 were similar when exposed to Ultraphan395 and JB510,although the irradiance dose that the cells actually received was 1.5X in Ultraphan 395 compared to JB510.This observation may mean that the maximal growth rate of the cells was not reached under filter JB510,HB610 and QB24 but was inhibited under Ultraphan395.The lower specific growth rates observed in this study than those under Ultraphan395 and aerated with ambient air[40]could be ascribed to the build up of ROS produced from the photosynthetic process[29,30].The cell depositions in the bottom of quartz tubes could be attributed to the carbohydrate accumulation during the photosynthesis[5]and the cell deposits may have blocked the irradiance to reach the entire photosynthetic cells of A.platensis D-0083.Furthermore,the similar patterns in helix pitch and specific growth rate(Figs.2,3)of A.platensis D-0083 suggests the same irradiance waveband may be responsible for morphological changes and growth rate in Arthrospira species.

    Cyanobacterial phytochrome(Cph)[41,42]is similar to plant phytochromes(red/farred photoreceptors)that influence plant development including accessory roles to sense the presence of UV-B and blue lights[43,44].Phycobilisome(PBS),the pigment-protein complexes responsible for light harvesting in cyanobacteria,extend the absorption of light into red and green regions of the visible spectrum to increase energy capture for photosynthesis[20,45].The PBS molds to light quality through CA depending on the genetic characteristics of an organism,which in turn is associated with its evolutionary environment[46,47].The increased intensities and red shifted(to longer wavelengths)peaks of PC emission fluorescence(Fig.5)under Ultraphan395,JB510 and HB610 revealed the damage and structural modification of PBS induced by the wavebands transmitted the filters[29,39].Furthermore,the more changes in PC emission fluorescence peaks of cells under filters Ultraphan395 and JB510 compared with those under QB24 and HB610 indicated more structural modification of the PBS occurred in the former.Another phytochrome-like photoreceptor and regulator of CA in cynobac- teria is RcaE that regulates light-dependent changes in phycobiliprotein content[45,48]and the cellular and filament morphology of F.diplosiphon[21].However,the exact molecular mechanism behind this morphological regulation is unknown.In this study,the light quality and intensity could not be clearly separated due to the continuity and inhomogeneity of solar spectrum as well as the flaw in transmissions of the filters(Fig.1A).Nevertheless,this study substantiated that light quality has significant effects on morphology and physiological activities of the filamentous cyanobacterium in that its spiral compression,growth and photosynthetic activities were wavebandspecifically regulated.

    Furthermore,Spirulina fussiformis when exposed to blue light increased the production of C-phycocyanin by photo-physiological mechanisms[13]where the C-phycocyanin has high in vitro antioxidant activity[49].The effectiveness of blue and red light to trigger the growth and morphological change maybe related to the dominant absorbance of PC and chlorophyll a(Chl.a)in the blue and red light regions[50]or the regulatory role of Cph,PBS and RcaE to promote cell development.As prokaryotic organism,the control of Cph,PBS and RcaE on morphology of cells or trichomes of A.platensis still needs to be understood.However,the natural physiological flexibility will undoubtedly facilitate the survival and adaptation of an organism under rapidly changing environmental conditions including changes in spectral component of solar radiation in natural water body.

    4 Conclusion

    In conclusion,the growth characteristics of A.platensis D-0083 when exposed to solar irradiance revealed the wavelength-dependent influence in physiological and morphological regulations.Both the waveband of UV-A + blue light(320—500 nm)and the waveband of red light(600—700 nm)could initiate the growth,spiral compression and photosynthetic activities in A.platensis D-0083 efficiently.We speculated that the efficiency of visible light to induce changes in morphology and growth of Arthrospira spp.was related to the capabilities of wavelengths to regulate the photosynthetic activities.

    參 考 文 獻(xiàn):

    [1]Sharrock R A.The phytochrome red/far-red photoreceptor superfamily[J].Genome Biology,2008,9(8):230

    [2]Dring M J.Photocontrol of development in algae[J].Annual Review of Plant Physiology and Plant Molecular Biology,1998,39:157—174

    [3]Aguilera J,Gordillo F J L,Karsten U,et al.Light quality effect on photosynthesis and efficiency of carbon assimilation in the red alga Porphyra leucosticte[J].Journal of Plant Physiology,2000,157(1):86—92

    [4]Tsekos I,Niell F X,Aguilera J,et al.Ultrastructure of the vegetative gametophytic cells of Porphyra leucosticta(Rhodophyta)grown in red,blue and green light[J].Phycological Research,2002,50(4):251—264

    [5]Ma Z,Gao K.Photosynthetically active and UV radiation act in an antagonistic way in regulating buoyancy of Arthrospira(Spirulina)platensis(cyanobacterium)[J].Environmental and Experimental Botany,2009,66(2):265—269

    [6]Ma Z,Gao K.Photoregulation of morphological structure and its physiological relevance in the cyanobacterium Arthrospira(Spirulina)platensis[J].Planta,2009,230(2):329—337

    [7]Singh S P,Montgomery B.Determining cell shape:adaptive regulation of cyanobacterial cellular differentiation and morphology[J].Trends in Microbiology,2011,19(6):278—285

    [8]Babu T S,Kumar A,Varma A K.Effect of light quality on phycobilisome components of the cyanobacterium Spirulina platensis[J].Plant Physiology,1991,195(2):492—497

    [9]Takano H,Arai T,Hirano M,et al.Effects of intensity and quality of light on phycocyanin production by a marine cyanobacterium Synechococcus sp.NKBG 042902[J].Applied Microbiology and Biotechnology,1995,43(6):1014—1018

    [10]Tandeau de Marsac N.Phycobiliproteins and phycobilisomes:the early observations[J].Photosynthesis Research,2003,76(1):197—205

    [11]Vijaya V,Anand N.Blue light enhance the pigment synthesis in cyanobacterium Anabaena ambigua Rao(Nostacales)[J].Archive of ARPN Journal of Agricultural and Biological Science,2009,4(3):36—43

    [12]Korbee N,F(xiàn)igueroa F L,Aguilera J.Effect of light quality on the accumulation of photosynthetic pigments,proteins and mycosporine-like amino acids in the red alga Porphyra leucosticta(Bangiales,Rhodophyta)[J].Journal of Photochemistry and Photobiology B:Biology,2005,80(2):71—78

    [13]Madhyastha H K,Vatsala T M.Pigment production in spirulina fussiformis in different photophysical conditions[J].Biomolecular Engineering,2007,24(3):301—308

    [14]Adams D G,Duggan P A.Tansley review No.107.heterocyst and akinete differentiation in cyanobacteria[J].New Phytologist,1999,144(1):3—33

    [15]Moore D,O'donohue M,Garnett C,et al.Factors affecting akinete differentiation in Cylindrospermopsis raciborskii(Nostocales,Cyanobacteria)[J].Freshwater Biology,2005,50(2):345—352

    [16]Thompson P A,Jamesson I,Blackburn S I.The influence of light quality on akinete formation and germination in the toxic cyanobacterium Anabaena circinalis[J].Harmful Algae,2009,8(3):504—512

    [17]Kaplan-Levy R,Hadas O,Summers M L,et al.Akinetes:dormant cells of cyanobacteria.In:Lubzens E,Cerda J,Clark M(Eds.),Dormancy and Resistance in Harsh Environments[M].Springer,Berlin/Heidelberg.2010,5—27

    [18]Grossman A R,Bhaya D,He Q.Tracking the light environment by cyanobacteria and the dynamic nature of light harvesting[J].Journal of Biological Chemistry,2001,276(15):11449—11452

    [19]Bennett A,Bogorad L.Complementary chromatic adaptation in a filamentous blue-green alga[J].Journal of Cell Biology,1973,58:419—435

    [20]Kehoe D M,Gutu A.Responding to color:The regulation of complementary chromatic adaptation[J].Annual Review of Plant Biology,2006,57(1):127—150

    [21]Bordowitz J R,Montgomery B L.Photoregulation of cellular morphology during complementary chromatic adaptation requires sensor-kinase-class protein RcaE in Fremyella diplosiphon[J].Journal of Bacteriology,2008,190(11):4069—4074

    [22]Tsinoremas N F,Schaefer M,Golden S S.Blue and red light reversibly control psbA expression in the cyanobacterium Synechococcus sp strain PCC 7942[J].Journal of Biological Chemistry,1994,269(23):16143—16147

    [23]Lamparter T,Mittmann F,G?rtner W,et al.Characterization of recombinant phytochrome from the cyanobacterium Synechocystis[J].Proceedings of the National Academy of Sciences of the United States of America,1997,94(22):11792—11797

    [24]Alfonso M,Perewoska I,Kirilovsky D.Redox control of psbA gene expression in the cyanobacterium Synechocystis PCC 6803:involvement of the cytochrome b6/f complex[J].Plant Physiology,2000,122(2):505—515

    [25]Hirose Y,Rockwell N C,Martin S S,et al.Green/red cyanobacteriochromes regulate complementary chromatic accli-mation via a protochromic photocycle[J].Proceedings of the National Academy of Sciences of the United States of America,2013,110(13):4974—4979

    [26]Torzillo G,Vonshak A.Biotechnology of algal mass cultivation.In:Fingerman M,Nagabhushanam R(Eds.),Recent advances in marine biotechnology,Biomaterials and bioprocessing[M].Science Publishers,Inc,Plymouth.2003,45—77

    [27]Sili C,Torzillo G,Vonshak A.Arthrospira(Spirulina).In:Whitton B A(Eds.),Ecology of Cyanobacteria II:their Diversity in Space and Time[M].Springer.2012,677—705

    [28]Wu H,Gao K,Villafa?e V,et al.Effects of solar UV radiation on morphology and photosynthesis of the filamentous cyanobacterium Arthrospira platensis[J].Applied Environmental Microbiology,2005,71(9):5004—5013

    [29]Ma Z,Gao K.Spiral breakage and photoinhibition of Arthrospira platensis(Cyanophyta)caused by accumulation of reactive oxygen species under solar radiation[J].Environmental and Experimental Botany,2010,68(2):208—213

    [30]Rastogi R P,Singh S P,Hader D P,et al.Detection of reactive oxygen species(ROS)by the oxidant-sensing probe 2′,7′-dichlorodihydrofluorescein diacetate in the cyanobacterium Anabaena variabilis PCC 7937[J].Biochemical and Biophysical Research Communications,2010,397(3):603—607

    [31]Kokhanoovsky A A.The depth of sunlight penetration in cloud fields for remote sensing[J].IEEE Geoscience and Remote Sensing Letters,2004,1(4):242—245

    [32]van de Poll W H,Visser R J W,Buma A G.Acclimation to a dynamic irradiance regime changes excessive irradiance sensitivity of Emiliania huxleyi and Thalassiosira weissflogii[J].Limnology and Oceanography,2007,52(4):1430—1438

    [33]Zarrouk C.Contribution a l'etude d' une cyanophycee.Influence de diverse facteurs physiques et chimiques sur la croissance et la photosynthese de Spirulina maxima(Setch et Gardner)Geitler.Ph.D.Thesis,University of Paris,F(xiàn)rance.1966

    [34]Genty B,Briantais J M,Baker N R.The relationship between the quantum yield of photosynthetic electron transport and quenching of chlorophyll fluorescence[J].BBA General Subjects,1989,990(1):87—92

    [35]Franklin L A,Badger M R.A comparison of photosynthetic electron transport rates in macroalgae measured by pulse amplitude modulated chlorophyll fluorometry and mass spectrometry[J].Journal of Phycology,2001,37(5):756—767

    [36]Webb W L,Newton M,Starr D.Carbon dioxide exchange of Alnus rubra:mathematical model[J].Oecologia,1974,17(4):281—291

    [37]Cohen Z.The chemicals of Spirulina.In:Vonshak A(Eds.),Spirulina platensis(Arthrospira):Physiology,Cell-biology and Biotechnology[M].Taylor &map; Francis Publishers,London.1997,175—204

    [38]Nuhu A A.Spirulina(Arthrospira):an important source of nutritional and medicinal compounds[J].Journal of Marine Biology,2013:Article ID 325636,8

    [39]Wen X,Gong H,Lu C.Heat stress induces an inhibition of excitation energy transfer from phycobilisomes to photosystem II but not to photosystem I in a cyanobacterium Spirulina platensis[J].Plant Physiology and Biochemistry,2005,43(4):389—395

    [40]Gao K,Ma Z.Photosynthesis and growth of Arthrospira(Spirulina)platensis(Cyanophyta)in response to solar UV radiation,with special reference to its minor variant[J].Environmental and Experimental Botany,2008,63(1—3):123—129

    [41]Hughes J,Lamparter T,Mittman F,et al.A prokaryotic phytochrome[J].Nature,1997,386(6626):663

    [42]Yeh K C,Wu S H,Murphy J T,et al.A cyanobacterial phytochrome two-component light sensory system[J].Science,1997,277(5331):1505—1508

    [43]Whitelam G C,Devlin P F.Roles of different phytochromes in Arabidopsis photomorphogenesis[J].Plant,Cell Environment,1997,20(6):752—758

    [44]Kim B C,Tennessen D J,Last R L.UV-B-induced photomorphogenesis in Arabidopsis thaliana[J].Plant Journal,1998,15(5):667—674

    [45]Kehoe D M,Grossman A R,The molecular mechanisms controlling complementary chromatic adaptation.In:Peschek G A,L?ffelhardt W,Schmetterer G(Eds.),The Phototrophic Prokaryotes[M].Kluwer Academic/Plenum Publishers,New York.1999,61—69

    [46]Montgomery B L.Sensing the light:photoreceptive systems and signal transduction in cyanobacteria[J].Molecular Microbiology,2007,64(1):16—27

    [47]Gutu A,Kehoe D M.Emerging perspectives on the mechanisms,regulation,and distribution of light color acclimation in cyanobacteria[J].Molecular Plant,2012,5(1):1—13

    [48]Terauchi K,Montgomery B L,Grossman A R,et al.RcaE is a complementary chromatic adaptation photoreceptor required for green and red light responsiveness[J].Molecular Microbiology,2004,51(2):567—577

    [49]Madhyastha H K,Sivashankari S,Vatsala T M.C-phycocyanin from Spirulina fussiformis exposed to blue light demonstrates higher efficacy of in vitro antioxidant activity[J].Biochemical Engineering Journal,2009,43(2):221—224

    [50]Minkova K M,Tchernov A A,Tchorbadjieva M I,et al.Purification of C-phycocyanin from Spirulina(Arthrospira)Fusiformis[J].Journal of Biotechnology,2003,102(1):55—59

    CLC number:Q948.11

    Document code:A Article ID:1000-3207(2016)03-0538-09

    doi:10.7541/2016.72

    Received date:2015-05-11; Accepted date:2015-12-04

    Foundation item:Supported by the National Natural Science Foundation of China(No.41430967,41120164007,31370381,31170338);Zhejiang Provincial Natural Science Foundation(No.LZ12C03001; LY14C030006); Project of Science and Technology department of Zhejiang Province(No.2015C33246)

    Corresponding author:Gao Kun-Shan,E-mail:ksgao@xmu.edu.cn,Tel:86-592-2187963

    自拍欧美九色日韩亚洲蝌蚪91 | 在线免费观看不下载黄p国产| 亚洲天堂国产精品一区在线| 色综合色国产| 日本色播在线视频| 久久6这里有精品| 51国产日韩欧美| 国产成人a区在线观看| av天堂中文字幕网| 爱豆传媒免费全集在线观看| 69av精品久久久久久| 久久精品久久久久久久性| 久久久精品免费免费高清| 午夜福利在线观看免费完整高清在| 26uuu在线亚洲综合色| 欧美性猛交╳xxx乱大交人| 亚洲国产色片| 欧美97在线视频| av在线蜜桃| 久久久久久久久大av| 国产免费视频播放在线视频| 又爽又黄a免费视频| 国产精品一区二区三区四区免费观看| 久久精品国产自在天天线| 视频中文字幕在线观看| 免费看av在线观看网站| 国产午夜精品一二区理论片| 天堂中文最新版在线下载 | 免费看av在线观看网站| 国产毛片在线视频| 国产精品福利在线免费观看| 视频中文字幕在线观看| 内地一区二区视频在线| 熟女电影av网| 啦啦啦在线观看免费高清www| 亚洲va在线va天堂va国产| 亚洲av在线观看美女高潮| 色综合色国产| 日韩不卡一区二区三区视频在线| 欧美成人一区二区免费高清观看| 别揉我奶头 嗯啊视频| 五月开心婷婷网| 亚洲精品,欧美精品| 丰满乱子伦码专区| 欧美丝袜亚洲另类| 国产精品人妻久久久久久| 91午夜精品亚洲一区二区三区| 亚洲欧洲日产国产| 国产人妻一区二区三区在| 日韩视频在线欧美| 亚洲av国产av综合av卡| 欧美日韩视频高清一区二区三区二| 久久99热6这里只有精品| 亚洲欧美成人精品一区二区| 汤姆久久久久久久影院中文字幕| 国产黄片视频在线免费观看| 亚洲精品一区蜜桃| 成年女人看的毛片在线观看| 国产精品三级大全| 成人鲁丝片一二三区免费| 人妻一区二区av| 中文欧美无线码| 一级二级三级毛片免费看| 人妻系列 视频| 日韩成人伦理影院| 午夜福利在线观看免费完整高清在| 日本午夜av视频| 精品少妇久久久久久888优播| 精品酒店卫生间| 欧美最新免费一区二区三区| 纵有疾风起免费观看全集完整版| 日韩不卡一区二区三区视频在线| 我要看日韩黄色一级片| 日日摸夜夜添夜夜爱| 亚洲精品日本国产第一区| 啦啦啦啦在线视频资源| 美女视频免费永久观看网站| 少妇人妻精品综合一区二区| 亚洲美女搞黄在线观看| 亚洲av成人精品一区久久| 成人午夜精彩视频在线观看| 国产一区二区三区综合在线观看 | 新久久久久国产一级毛片| av专区在线播放| 国产精品人妻久久久久久| 欧美最新免费一区二区三区| 午夜福利在线在线| xxx大片免费视频| 一级毛片我不卡| 最近最新中文字幕大全电影3| 成人亚洲精品一区在线观看 | 亚洲精品乱码久久久久久按摩| 亚洲国产av新网站| 69人妻影院| 三级国产精品片| 国产一区有黄有色的免费视频| 白带黄色成豆腐渣| 国产精品无大码| 搡老乐熟女国产| 中文乱码字字幕精品一区二区三区| 欧美高清性xxxxhd video| 亚洲国产日韩一区二区| 蜜臀久久99精品久久宅男| 一级毛片电影观看| 在线免费十八禁| 久久精品国产鲁丝片午夜精品| 国产成人freesex在线| 日韩欧美 国产精品| 日韩人妻高清精品专区| 亚州av有码| 六月丁香七月| 久久久久久久大尺度免费视频| 人人妻人人看人人澡| 日本黄大片高清| 久久精品久久久久久噜噜老黄| 777米奇影视久久| 成人无遮挡网站| 成人亚洲精品av一区二区| 97在线人人人人妻| 少妇高潮的动态图| 亚洲精品久久久久久婷婷小说| av国产免费在线观看| 日本wwww免费看| 男女边吃奶边做爰视频| 欧美激情在线99| 麻豆成人午夜福利视频| 亚洲国产成人一精品久久久| 97在线人人人人妻| 91精品一卡2卡3卡4卡| 99精国产麻豆久久婷婷| 汤姆久久久久久久影院中文字幕| 亚洲欧美成人综合另类久久久| 国产伦精品一区二区三区四那| 亚洲性久久影院| 亚洲真实伦在线观看| 丰满乱子伦码专区| 97精品久久久久久久久久精品| 美女被艹到高潮喷水动态| 亚洲精品aⅴ在线观看| 国产精品三级大全| 国产黄色视频一区二区在线观看| 亚洲三级黄色毛片| 国产高潮美女av| 国产国拍精品亚洲av在线观看| 热99国产精品久久久久久7| 国产精品伦人一区二区| 熟妇人妻不卡中文字幕| 男人添女人高潮全过程视频| 欧美+日韩+精品| 波野结衣二区三区在线| 2022亚洲国产成人精品| 七月丁香在线播放| 久久人人爽av亚洲精品天堂 | 日日摸夜夜添夜夜爱| 午夜爱爱视频在线播放| 欧美高清性xxxxhd video| a级一级毛片免费在线观看| 亚洲色图av天堂| 亚洲真实伦在线观看| 黑人高潮一二区| av国产精品久久久久影院| 国产精品久久久久久精品电影小说 | 国产一区亚洲一区在线观看| 在线观看美女被高潮喷水网站| 禁无遮挡网站| 超碰97精品在线观看| 夜夜爽夜夜爽视频| 成人免费观看视频高清| 91午夜精品亚洲一区二区三区| 日韩制服骚丝袜av| 色哟哟·www| 一区二区三区乱码不卡18| 亚洲成人一二三区av| 美女被艹到高潮喷水动态| 波野结衣二区三区在线| 中文欧美无线码| 一级a做视频免费观看| 国产免费一区二区三区四区乱码| 色视频www国产| 成人综合一区亚洲| av福利片在线观看| 91aial.com中文字幕在线观看| 国产一区亚洲一区在线观看| 一个人观看的视频www高清免费观看| 水蜜桃什么品种好| 国产色爽女视频免费观看| 大香蕉久久网| 一区二区三区精品91| 午夜激情久久久久久久| 国产成人a∨麻豆精品| 国产精品一二三区在线看| 夜夜爽夜夜爽视频| 国产男女超爽视频在线观看| 精品人妻视频免费看| 精品久久国产蜜桃| 美女cb高潮喷水在线观看| 成人亚洲精品av一区二区| 久久久欧美国产精品| 欧美三级亚洲精品| 99热国产这里只有精品6| 国产精品女同一区二区软件| 下体分泌物呈黄色| 亚洲天堂国产精品一区在线| 不卡视频在线观看欧美| 在线观看av片永久免费下载| 国产精品一及| 久久韩国三级中文字幕| 国产亚洲一区二区精品| 成人美女网站在线观看视频| 国产高清不卡午夜福利| 亚洲国产精品专区欧美| 国语对白做爰xxxⅹ性视频网站| 99热这里只有精品一区| 欧美高清成人免费视频www| 欧美三级亚洲精品| eeuss影院久久| 久久影院123| 久久久久精品性色| 亚洲图色成人| 成年女人看的毛片在线观看| 毛片一级片免费看久久久久| 中国美白少妇内射xxxbb| 高清日韩中文字幕在线| 亚洲精品国产av蜜桃| 成人毛片60女人毛片免费| 亚洲精品久久午夜乱码| 赤兔流量卡办理| 日韩不卡一区二区三区视频在线| 干丝袜人妻中文字幕| 国产精品.久久久| 久久精品久久久久久噜噜老黄| 国产精品女同一区二区软件| 国产片特级美女逼逼视频| 最近最新中文字幕大全电影3| 成人亚洲精品一区在线观看 | 免费av观看视频| 国产乱人视频| 日本猛色少妇xxxxx猛交久久| 亚洲国产精品成人综合色| 青春草国产在线视频| 另类亚洲欧美激情| 亚洲精品aⅴ在线观看| 亚洲一级一片aⅴ在线观看| av国产久精品久网站免费入址| 如何舔出高潮| 欧美激情国产日韩精品一区| 久久99精品国语久久久| 国产亚洲最大av| 午夜爱爱视频在线播放| 日韩电影二区| 制服丝袜香蕉在线| 成人国产av品久久久| 内地一区二区视频在线| 国产精品99久久久久久久久| 亚洲av中文av极速乱| 有码 亚洲区| 男人和女人高潮做爰伦理| 国产在线一区二区三区精| 岛国毛片在线播放| av国产免费在线观看| 色视频在线一区二区三区| 成年免费大片在线观看| 人人妻人人看人人澡| 国内精品美女久久久久久| xxx大片免费视频| 亚洲最大成人手机在线| 18禁动态无遮挡网站| 特级一级黄色大片| 只有这里有精品99| 欧美另类一区| 熟女人妻精品中文字幕| 人妻 亚洲 视频| av在线蜜桃| 国产av不卡久久| 一本一本综合久久| 国产色爽女视频免费观看| 日本免费在线观看一区| 国产成年人精品一区二区| 在线 av 中文字幕| 美女被艹到高潮喷水动态| 久久久久久九九精品二区国产| 一级a做视频免费观看| 97精品久久久久久久久久精品| 亚洲人成网站在线观看播放| 国内少妇人妻偷人精品xxx网站| 亚洲欧洲日产国产| 欧美xxxx性猛交bbbb| 国产又色又爽无遮挡免| 午夜日本视频在线| 国产成人福利小说| 狂野欧美白嫩少妇大欣赏| kizo精华| 黄片无遮挡物在线观看| 观看美女的网站| 国产一级毛片在线| 大香蕉久久网| 国产精品av视频在线免费观看| 亚洲精品影视一区二区三区av| 99久久人妻综合| 三级男女做爰猛烈吃奶摸视频| 亚洲怡红院男人天堂| 亚洲va在线va天堂va国产| 在线观看人妻少妇| 日本黄大片高清| 自拍欧美九色日韩亚洲蝌蚪91 | 22中文网久久字幕| 男女国产视频网站| 国产视频内射| 国产探花极品一区二区| 日本色播在线视频| 国产一区二区亚洲精品在线观看| 亚洲精品日本国产第一区| 99热这里只有是精品50| 亚洲精品aⅴ在线观看| 国产男女内射视频| 亚洲精品日本国产第一区| 免费少妇av软件| 亚洲精品久久久久久婷婷小说| 青春草亚洲视频在线观看| 国产69精品久久久久777片| 久久久久久久久久成人| 日本午夜av视频| 热99国产精品久久久久久7| 99精国产麻豆久久婷婷| 国产在视频线精品| 精品熟女少妇av免费看| 六月丁香七月| 国产精品不卡视频一区二区| 亚洲精品久久久久久婷婷小说| 欧美精品人与动牲交sv欧美| 综合色丁香网| 欧美一级a爱片免费观看看| 日产精品乱码卡一卡2卡三| 国产精品久久久久久av不卡| 欧美一级a爱片免费观看看| 亚洲欧美一区二区三区黑人 | 在线看a的网站| 夫妻午夜视频| 国产爽快片一区二区三区| 欧美精品一区二区大全| 国产精品爽爽va在线观看网站| 国产精品麻豆人妻色哟哟久久| 久久久久精品久久久久真实原创| 青春草国产在线视频| 欧美xxⅹ黑人| 欧美成人a在线观看| 搞女人的毛片| 日本猛色少妇xxxxx猛交久久| 久久精品国产a三级三级三级| 午夜日本视频在线| 日本一二三区视频观看| 麻豆成人av视频| av免费在线看不卡| 91精品国产九色| 午夜福利高清视频| 欧美成人一区二区免费高清观看| 国国产精品蜜臀av免费| 香蕉精品网在线| 亚洲av中文av极速乱| 亚洲欧美清纯卡通| 搞女人的毛片| 菩萨蛮人人尽说江南好唐韦庄| 久久精品夜色国产| 三级男女做爰猛烈吃奶摸视频| 亚洲欧洲日产国产| 别揉我奶头 嗯啊视频| 午夜福利网站1000一区二区三区| 国产高清有码在线观看视频| 免费黄频网站在线观看国产| 亚洲av中文av极速乱| 日本爱情动作片www.在线观看| 国产一区有黄有色的免费视频| 久久99精品国语久久久| 亚洲av免费高清在线观看| 搞女人的毛片| 久久精品综合一区二区三区| 另类亚洲欧美激情| 午夜福利在线在线| 97热精品久久久久久| 在线播放无遮挡| 亚州av有码| 免费看av在线观看网站| 三级国产精品欧美在线观看| 久久6这里有精品| 另类亚洲欧美激情| 日本wwww免费看| 韩国高清视频一区二区三区| 亚洲第一区二区三区不卡| 视频中文字幕在线观看| 国产探花在线观看一区二区| 一区二区av电影网| 亚洲精品成人av观看孕妇| 日本免费在线观看一区| 日本爱情动作片www.在线观看| a级一级毛片免费在线观看| 久久99热这里只有精品18| 热re99久久精品国产66热6| 亚洲精品亚洲一区二区| 免费看av在线观看网站| 精品国产三级普通话版| 最近最新中文字幕大全电影3| 爱豆传媒免费全集在线观看| 久久这里有精品视频免费| 综合色av麻豆| 天天一区二区日本电影三级| 少妇猛男粗大的猛烈进出视频 | 国产成人a∨麻豆精品| 国产高清不卡午夜福利| 五月天丁香电影| 久久热精品热| 成人二区视频| 精品一区二区免费观看| 亚洲人成网站高清观看| 亚洲国产av新网站| 又爽又黄无遮挡网站| 国产中年淑女户外野战色| 伦理电影大哥的女人| 亚洲最大成人av| 欧美极品一区二区三区四区| 亚洲精品乱码久久久久久按摩| 王馨瑶露胸无遮挡在线观看| 亚洲精华国产精华液的使用体验| 日韩av免费高清视频| 新久久久久国产一级毛片| av免费观看日本| 久久精品国产亚洲网站| 日韩人妻高清精品专区| 99久久精品国产国产毛片| 五月开心婷婷网| 一区二区三区四区激情视频| 免费av观看视频| 男女边吃奶边做爰视频| 精品久久久噜噜| 色吧在线观看| 国产爽快片一区二区三区| av播播在线观看一区| 黄色视频在线播放观看不卡| 国产熟女欧美一区二区| 亚洲欧美日韩卡通动漫| 久久久精品免费免费高清| 99热网站在线观看| 狠狠精品人妻久久久久久综合| av播播在线观看一区| 精品人妻熟女av久视频| av.在线天堂| 亚洲婷婷狠狠爱综合网| 亚洲成色77777| 国产成人免费无遮挡视频| 天天一区二区日本电影三级| 国产精品女同一区二区软件| 亚洲欧美成人精品一区二区| 国产国拍精品亚洲av在线观看| 直男gayav资源| 哪个播放器可以免费观看大片| 建设人人有责人人尽责人人享有的 | 欧美成人a在线观看| 午夜视频国产福利| 国产精品一及| 丝瓜视频免费看黄片| 国产黄色免费在线视频| 高清欧美精品videossex| av福利片在线观看| 少妇猛男粗大的猛烈进出视频 | 亚洲av福利一区| 亚洲久久久久久中文字幕| 夜夜爽夜夜爽视频| 久久亚洲国产成人精品v| 国产成人免费观看mmmm| 蜜桃久久精品国产亚洲av| 91aial.com中文字幕在线观看| 最近2019中文字幕mv第一页| 高清午夜精品一区二区三区| 日本爱情动作片www.在线观看| 夜夜爽夜夜爽视频| 日韩中字成人| 亚洲成人久久爱视频| 大话2 男鬼变身卡| 一区二区三区乱码不卡18| 亚洲在久久综合| 麻豆国产97在线/欧美| 观看免费一级毛片| 26uuu在线亚洲综合色| 久久久久性生活片| 麻豆久久精品国产亚洲av| 亚洲精品国产av成人精品| 夫妻性生交免费视频一级片| 亚洲欧美日韩卡通动漫| 亚洲最大成人中文| 精品少妇久久久久久888优播| av在线亚洲专区| 国产亚洲最大av| 午夜视频国产福利| 国产男女内射视频| 男人添女人高潮全过程视频| 国产成年人精品一区二区| 最近最新中文字幕大全电影3| 草草在线视频免费看| 蜜桃久久精品国产亚洲av| 3wmmmm亚洲av在线观看| 免费看日本二区| 亚洲成人精品中文字幕电影| 在线免费观看不下载黄p国产| 久久热精品热| 国产黄色视频一区二区在线观看| 精品熟女少妇av免费看| 高清欧美精品videossex| 夜夜看夜夜爽夜夜摸| 一本久久精品| 熟女电影av网| 亚洲四区av| 国产免费福利视频在线观看| 久久久色成人| 永久免费av网站大全| 一本一本综合久久| 三级国产精品欧美在线观看| 日韩亚洲欧美综合| 两个人的视频大全免费| 91在线精品国自产拍蜜月| 久久精品国产亚洲av涩爱| 欧美少妇被猛烈插入视频| 美女被艹到高潮喷水动态| 国产精品国产三级国产av玫瑰| 久久精品国产亚洲av天美| 亚洲天堂av无毛| 国产69精品久久久久777片| 国产永久视频网站| 老司机影院成人| 国产午夜福利久久久久久| 2021少妇久久久久久久久久久| 永久网站在线| 国产精品嫩草影院av在线观看| 九九在线视频观看精品| 日韩欧美精品免费久久| 99精国产麻豆久久婷婷| 欧美日韩国产mv在线观看视频 | 日本熟妇午夜| 国产av国产精品国产| 成年版毛片免费区| 一个人观看的视频www高清免费观看| 成人亚洲精品一区在线观看 | 国产av不卡久久| 成人综合一区亚洲| 欧美精品国产亚洲| 男人添女人高潮全过程视频| 高清日韩中文字幕在线| 伊人久久国产一区二区| 亚洲av男天堂| 欧美成人午夜免费资源| 一区二区av电影网| 日本三级黄在线观看| 亚洲伊人久久精品综合| 国产在线一区二区三区精| 精品国产三级普通话版| 中文字幕人妻熟人妻熟丝袜美| 国产精品久久久久久精品电影| 亚洲av在线观看美女高潮| 色吧在线观看| 日韩视频在线欧美| 国产精品三级大全| 国产免费又黄又爽又色| 久久久欧美国产精品| 97在线视频观看| 91狼人影院| 噜噜噜噜噜久久久久久91| 亚洲在久久综合| videossex国产| 22中文网久久字幕| 亚洲精品中文字幕在线视频 | 国产真实伦视频高清在线观看| 欧美丝袜亚洲另类| 自拍偷自拍亚洲精品老妇| 欧美 日韩 精品 国产| 久久久久久伊人网av| 黄色欧美视频在线观看| 一边亲一边摸免费视频| 欧美日本视频| 一级毛片久久久久久久久女| 大香蕉久久网| 春色校园在线视频观看| 男人舔奶头视频| 18禁动态无遮挡网站| 亚洲av免费在线观看| 亚洲精品一二三| 国产高清有码在线观看视频| av.在线天堂| 日韩一区二区三区影片| 国产精品av视频在线免费观看| 精品一区二区三卡| 色视频在线一区二区三区| 熟女电影av网| 久久精品国产亚洲网站| 一区二区av电影网| 成人综合一区亚洲| 综合色丁香网| 夜夜看夜夜爽夜夜摸| 久久精品国产亚洲网站| 国产伦精品一区二区三区视频9| 精品视频人人做人人爽| 久久99热这里只频精品6学生| 插逼视频在线观看| 免费在线观看成人毛片| 久久99热这里只有精品18| 日韩一区二区视频免费看| 女人十人毛片免费观看3o分钟| 国产免费福利视频在线观看| 国产在视频线精品| 只有这里有精品99| 亚洲天堂国产精品一区在线| 免费不卡的大黄色大毛片视频在线观看| 欧美高清成人免费视频www| 天天躁日日操中文字幕| 天天躁夜夜躁狠狠久久av| 中文字幕亚洲精品专区| 国产av不卡久久| 国产欧美亚洲国产|