王士強(qiáng) 趙海紅 蕭長(zhǎng)亮 趙黎明 顧春梅 那永光 解保勝 程式華
(1沈陽(yáng)農(nóng)業(yè)大學(xué) 農(nóng)學(xué)院, 沈陽(yáng) 110161;2中國(guó)水稻研究所 水稻生物學(xué)國(guó)家重點(diǎn)實(shí)驗(yàn)室, 杭州 310006;3黑龍江省農(nóng)墾科學(xué)院 水稻研究所, 黑龍江 佳木斯 154007;4黑龍江省農(nóng)業(yè)科學(xué)院佳木斯分院, 黑龍江 佳木斯 154007;*通訊聯(lián)系人, E-mail: shcheng@mail.hz.zj.cn)
孕穗期冷水脅迫對(duì)寒地水稻干物質(zhì)生產(chǎn)的影響
王士強(qiáng)1,2,3趙海紅4蕭長(zhǎng)亮3趙黎明3顧春梅3那永光3解保勝3程式華1,2,*
(1沈陽(yáng)農(nóng)業(yè)大學(xué) 農(nóng)學(xué)院, 沈陽(yáng) 110161;2中國(guó)水稻研究所 水稻生物學(xué)國(guó)家重點(diǎn)實(shí)驗(yàn)室, 杭州 310006;3黑龍江省農(nóng)墾科學(xué)院 水稻研究所, 黑龍江 佳木斯 154007;4黑龍江省農(nóng)業(yè)科學(xué)院佳木斯分院, 黑龍江 佳木斯 154007;*通訊聯(lián)系人, E-mail: shcheng@mail.hz.zj.cn)
王士強(qiáng), 趙海紅, 蕭長(zhǎng)亮,等. 孕穗期冷水脅迫對(duì)寒地水稻干物質(zhì)生產(chǎn)的影響. 中國(guó)水稻科學(xué), 2016, 30(3): 313-322.
摘要:以黑龍江省30份主栽水稻品種或品系為試材,在孕穗期設(shè)置17℃冷水灌溉處理(20 d),以常規(guī)栽培管理為對(duì)照,分析冷水脅迫對(duì)水稻干物質(zhì)生產(chǎn)的影響。結(jié)果表明,冷水脅迫導(dǎo)致所有試材每穴實(shí)粒數(shù)、結(jié)實(shí)率、千粒重和產(chǎn)量下降,并根據(jù)相對(duì)結(jié)實(shí)率將試材耐冷性分為1、3、5、7和9級(jí),以7和9級(jí)最多,1級(jí)最少,分別占總材料的30%和10%。在冷水處理下,全部材料抽穗期至成熟期干物質(zhì)積累量及比例、群體生長(zhǎng)率、凈同化率、粒葉比、收獲指數(shù)、葉面積指數(shù)、劍葉葉基角、劍葉和倒2葉與倒3葉披垂度均下降,但高效葉面積率增加。相關(guān)分析表明,冷水處理的相對(duì)結(jié)實(shí)率與收獲指數(shù)(r=0.96**)、產(chǎn)量(r=0.91**)、粒葉比(r=0.84**)和干物質(zhì)積累量(r=0.48**)的冷水反應(yīng)指數(shù)(CRI)呈極顯著正相關(guān),與群體生長(zhǎng)率(r=0.44*)、凈同化率(r=0.44*)和干物質(zhì)積累比例(r=0.43*)的CRI顯著正相關(guān)。綜上,孕穗期冷水脅迫對(duì)水稻干物質(zhì)生產(chǎn)的影響在品種間存在很大差異,在冷水脅迫下耐冷性極強(qiáng)品種(系)干物質(zhì)積累量及比例、群體生長(zhǎng)率、凈同化率、粒葉比和收獲指數(shù)對(duì)冷水反應(yīng)遲鈍,這是耐冷性極強(qiáng)品種(系)保持較高產(chǎn)量的重要形態(tài)特征和生理原因。
關(guān)鍵詞:寒地水稻; 產(chǎn)量; 相對(duì)結(jié)實(shí)率; 冷水脅迫; 干物質(zhì)生產(chǎn)
溫度是影響作物生長(zhǎng)發(fā)育和產(chǎn)量的重要環(huán)境因素,在全球氣候變暖的大趨勢(shì)下,近年來(lái)氣候變化異常,極端低溫天氣頻繁出現(xiàn),尤其寒地稻作區(qū)特殊的地理位置,冷害更加嚴(yán)重。水稻原產(chǎn)于熱帶亞熱帶地區(qū),是喜溫作物,對(duì)低溫十分敏感,在水稻生長(zhǎng)發(fā)育過(guò)程中,低溫會(huì)導(dǎo)致生長(zhǎng)遲緩、分蘗減少[1],在孕穗期若遇上低溫冷害,枝梗及穎花分化不良,每穗粒數(shù)減少,結(jié)實(shí)率大幅下降,容易造成水稻減產(chǎn),按平均計(jì)算,低溫年的產(chǎn)量?jī)H為正常年的50%~80%[2]。同時(shí),溫度變化直接影響光合產(chǎn)物[3]、呼吸作用及碳水化合物的運(yùn)轉(zhuǎn)[4],從而影響作物產(chǎn)量。因此,解析孕穗期冷水脅迫對(duì)水稻產(chǎn)量構(gòu)成與干物質(zhì)生產(chǎn)特性的影響, 對(duì)培育耐低溫水稻品種以保障我國(guó)糧食高產(chǎn)穩(wěn)產(chǎn)具有重要現(xiàn)實(shí)意義。目前對(duì)于水稻的耐冷性研究多集中于產(chǎn)量構(gòu)成、冷害監(jiān)測(cè)、生理機(jī)制、鑒定、代謝物圖譜、基因等多方面[1, 5-9],且在低溫逆境下關(guān)于水稻干物質(zhì)生產(chǎn)特性的研究報(bào)道也主要集中在低溫下葉面積、秧苗、葉片干質(zhì)量和根干質(zhì)量、籽粒干物質(zhì)積累等[10-12]方面,而在北方寒地稻作區(qū)孕穗期低溫脅迫下,以相對(duì)結(jié)實(shí)率進(jìn)行耐冷性分級(jí),并對(duì)各耐冷性級(jí)別干物質(zhì)生產(chǎn)特性進(jìn)行比較分析則鮮見(jiàn)報(bào)道。因此,本研究以當(dāng)?shù)刂髟缘?0個(gè)粳稻品種和苗頭品系為試驗(yàn)材料,在相同施肥和管理措施下,設(shè)置孕穗期平均17℃的冷水脅迫(20 d)處理,以常規(guī)栽培管理為對(duì)照,對(duì)產(chǎn)量及其構(gòu)成因素、抽穗期干物質(zhì)生產(chǎn)與冠層結(jié)構(gòu)、水稻后期干物質(zhì)生產(chǎn)與輸出特征方面進(jìn)行了系統(tǒng)的比較研究,以明確孕穗期冷水脅迫下寒地水稻相對(duì)結(jié)實(shí)率與干物質(zhì)生產(chǎn)的關(guān)系,進(jìn)而為寒地水稻高產(chǎn)、高效栽培提供理論和技術(shù)支撐。
1材料與方法
1.1試驗(yàn)材料
試驗(yàn)選用黑龍江省30個(gè)品種(系)作為供試材料,并于2013年和2014年在黑龍江省農(nóng)墾科學(xué)院徐一戎水稻科技園區(qū)耐冷鑒定試驗(yàn)田進(jìn)行。 試驗(yàn)地土壤為草甸白漿土,0~20 cm土層pH為6.2,含堿解氮105.28 mg/kg, 有效磷21.2 mg/kg,速效鉀111.8 mg/kg,有機(jī)質(zhì)38.35 g/kg(表1)。
1.2試驗(yàn)設(shè)計(jì)
試驗(yàn)采用隨機(jī)區(qū)組設(shè)計(jì),其中冷水處理采用恒溫冷水灌溉法,7月1日品種(系)進(jìn)入減數(shù)分裂期開(kāi)始,于8:00-16:00用(17±1)℃冷水持續(xù)處理20 d,水深25 cm,同熟期材料均用隔水板分開(kāi),單排單灌,對(duì)照區(qū)不隔離。17℃左右的冷水為地下井水(出水口水溫8.3℃左右)與曬水池中的水(2013年和2014年分別為22.4℃左右和23.0℃左右)混合形成,冷水處理期間每天6:00和17:30測(cè)量各冷水處理區(qū)水溫(維持在16℃~18℃)。正常灌溉處理(CK):在冷水處理期間(2013年7月4日-8月14日和2014年7月1日—8月1日),室外晝、夜平均氣溫分別為17.50℃~27.69℃(2013年)和18.16℃~28.48℃(2014年)(圖1),供試品種(系)未受到持續(xù)低溫影響,可作為對(duì)照。
于4月12日播種,旱育中苗,每盤(pán)播芽谷100 g,5月20日插秧,移栽葉齡3.5 葉左右,插秧規(guī)格30 cm×12 cm,每穴4苗,每處理占地面積5.4 m2,3次重復(fù),整個(gè)生育期均用正常水溫灌溉。孕穗期耐冷性評(píng)價(jià)指標(biāo)參照鄒德堂等[13]的方法并加以改進(jìn),以相對(duì)結(jié)實(shí)率進(jìn)行耐冷性分級(jí):1級(jí),結(jié)實(shí)率≥80%,耐冷性極強(qiáng)(HR);3級(jí),80%>結(jié)實(shí)率≥60%,耐冷性強(qiáng)(R);5級(jí):60%>結(jié)實(shí)率≥40%,耐冷性中等(M);7級(jí):40%>結(jié)實(shí)率≥20%,耐冷性弱(S);9級(jí):結(jié)實(shí)率<20%,耐冷性極弱(HS)。相對(duì)結(jié)實(shí)率(%)=處理區(qū)結(jié)實(shí)率/對(duì)照區(qū)結(jié)實(shí)率×100。施肥水平為mN∶mP2O5∶mK2O=2∶1∶1,尿素250 kg/hm2,N按m基∶m蘗∶m調(diào)∶m穗=4∶3∶1∶2比例施入,基肥在插秧前施入,分蘗肥在4.5~5.0葉施入,調(diào)節(jié)肥在倒5葉期施入,穗肥在倒2葉前期施入,磷酸二銨全部基施,氯化鉀按m基∶m穗=1∶1比例施入。整個(gè)生育期水、病、蟲(chóng)、草正常管理。
1.3樣品采集與測(cè)定
1.3.1葉面積和干物質(zhì)積累
于抽穗期和蠟熟期進(jìn)行取樣分析,對(duì)每小區(qū)調(diào)查單位面積莖蘗數(shù),算出每穴平均值,按照平均數(shù)每小區(qū)各取代表性植株3穴,3次重復(fù),用于植株分析,方格法測(cè)定植株葉面積[14]。將以上所有樣品于105℃下殺青30 min,80℃烘箱烘48 h至恒重,測(cè)定干物質(zhì)質(zhì)量。
表1供試水稻品種(系)耐冷性分級(jí)
Table 1. Grade of tolerance to chilling of rice cultivars used in this study.
耐冷性級(jí)別Gradeoftolerancetochilling品種(系)Variety(Line)相對(duì)結(jié)實(shí)率Relativeseed-settingrate/%20132014生育期Growthduration/d來(lái)源Origin極強(qiáng)HR龍粳25Longjing25 80.7880.38130黑龍江省農(nóng)業(yè)科學(xué)院HLJAAS空育131Kongyu131 81.8482.02127黑龍江省農(nóng)墾科學(xué)院HLJALRS東農(nóng)428Dongnong428 85.2884.09133東北農(nóng)業(yè)大學(xué)NAU強(qiáng)R龍粳26Longjing26 79.4179.92126黑龍江省農(nóng)業(yè)科學(xué)院HLJAAS保糯1號(hào)Baonuo1 79.1978.28132^134黑龍江省農(nóng)墾科學(xué)院HLJALRS龍稻8號(hào)Longdao8 78.0669.83135黑龍江省農(nóng)業(yè)科學(xué)院HLJAAS墾稻10Kendao10 66.9166.50134^136黑龍江省農(nóng)墾科學(xué)院HLJALRS東農(nóng)427Dongnong427 79.4176.90135東北農(nóng)業(yè)大學(xué)NAU中等M墾稻9號(hào)Kendao9 44.5744.03125黑龍江省農(nóng)墾科學(xué)院HLJALRS墾稻19Kendao19 41.4741.06125黑龍江省農(nóng)墾科學(xué)院HLJALRS墾稻20Kendao20 46.2641.25127黑龍江省農(nóng)墾科學(xué)院HLJALRS龍粳29Longjing29 48.2847.48127黑龍江省農(nóng)業(yè)科學(xué)院HLJAAS龍粳20Longjing20 53.1752.62125^130黑龍江省農(nóng)業(yè)科學(xué)院HLJAAS龍粳31Longjing31 56.1755.20130黑龍江省農(nóng)業(yè)科學(xué)院HLJAAS墾稻25Kendao25 46.5241.09132黑龍江省農(nóng)墾科學(xué)院HLJALRS龍粳37Longjing37 54.7453.55125黑龍江省農(nóng)業(yè)科學(xué)院HLJAAS龍粳21Longjing21 53.4849.89126^132黑龍江省農(nóng)業(yè)科學(xué)院HLJAAS弱S龍粳36Longjing36 27.9826.83130黑龍江省農(nóng)業(yè)科學(xué)院HLJAAS墾稻17Kendao17 28.1724.70127^129黑龍江省農(nóng)墾科學(xué)院HLJALRS墾系017Kenxi017 28.2827.89133黑龍江省農(nóng)墾科學(xué)院HLJALRS墾粳2號(hào)Kenjing2 33.6333.69133黑龍江八一農(nóng)墾大學(xué)HLJBYAU墾稻12Kendao12 37.0933.85130^132黑龍江省農(nóng)墾科學(xué)院HLJALRS墾稻23Kendao23 39.0037.51132黑龍江省農(nóng)墾科學(xué)院HLJALRS墾粳5號(hào)Kenjing5 30.0625.61134黑龍江八一農(nóng)墾大學(xué)HLJBYAU龍稻12Longdao12 36.0134.46134黑龍江省農(nóng)業(yè)科學(xué)院HLJAAS龍粳27Longjing27 33.1131.98127黑龍江省農(nóng)業(yè)科學(xué)院HLJAAS極弱HS墾稻26Kendao26 19.6518.04126黑龍江省農(nóng)墾科學(xué)院HLJALRS墾糯1號(hào)Kennuo1 14.4614.18132^134黑龍江省農(nóng)墾科學(xué)院HLJALRS龍稻10Longdao10 12.1111.44135黑龍江省農(nóng)業(yè)科學(xué)院HLJAAS墾鑒稻6號(hào)Kenjiandao6 8.277.98127^129黑龍江省農(nóng)墾科學(xué)院HLJALRS
HLJAAS, Heilongjiang Academy of Agricultural Sciences; HLJALRS, Heilongjing Academy of Land Reclamation Sciences; NAU, Northeast Agriclutural University; HLJBYAU, Heilongjiang Bayi Agriclutural University. HR, Highly resistant; R, Resistant; M, Moderately resistant; S, Sensitive; HS, Highly sensitive.
DAT2013, Day average temperature in 2013; DAT2014, Day average temperature in 2014; NAT2013, Night average temperature in 2013; NAT2014, Night average temperature in 2014.
圖1黑龍江佳木斯7月1日至8月4日的氣溫變化(2013和2014年)
Fig.1. Changes in air temperature from July 1 to August 4 in Jiamusi, Heilongjiang Province (2013 and 2014).
1.3.2水稻的產(chǎn)量及其構(gòu)成要素
每小區(qū)調(diào)查1m2收獲穗數(shù),選擇有代表性的植株,根據(jù)平均值每小區(qū)取3穴,3次重復(fù),調(diào)查每穴粒數(shù)、粒重、結(jié)實(shí)率、千粒重等指標(biāo),由產(chǎn)量構(gòu)成因素計(jì)算理論產(chǎn)量。
1.3.3株型性狀
于抽穗期取30株分別測(cè)定上3葉葉基角(葉片基部的延長(zhǎng)線與莖稈延長(zhǎng)線的夾角)及葉開(kāi)角(葉枕至葉尖的連線與莖稈的夾角)。計(jì)算披垂度(葉開(kāi)角-葉基角)。
1.4數(shù)據(jù)計(jì)算和統(tǒng)計(jì)分析
莖鞘物質(zhì)輸出率(%)=(抽穗期莖鞘干物質(zhì)質(zhì)量-成熟期莖鞘干物質(zhì)質(zhì)量)/抽穗期莖鞘干物質(zhì)質(zhì)量×100;莖鞘物質(zhì)轉(zhuǎn)化率(%)=(抽穗期莖鞘干物質(zhì)質(zhì)量-成熟期莖鞘干物質(zhì)質(zhì)量)/成熟期籽粒干物質(zhì)質(zhì)量×100;高效葉面積率(%)=(上3葉葉面積/全葉面積)×100;粒葉比(粒·cm-2)=總實(shí)粒數(shù)/抽穗期葉面積;群體生長(zhǎng)率(g·m-2d-1)=(W2-Wl)/(t2-t1), 式中,W1和W2為前后兩次測(cè)定的干物質(zhì)質(zhì)量,t1和t2為前后兩次測(cè)定的時(shí)間(d);凈同化率(g·m-2d-1)=[(ln LAI2-ln LAI1)/(LAI2-LAI1)]×[(W2-W1)/(t2-t1)] ,式中,LAI1和LAI2為前后兩次測(cè)定的葉面積指數(shù),t1和t2為前后兩次測(cè)定的時(shí)間,W1和W2為前后兩次測(cè)定的干物質(zhì)質(zhì)量;葉面積衰減率(d-1)=(LAI2-LAI1)/(t2-t1),式中LAI1和LAI2為前后兩次測(cè)定的葉面積指數(shù),t1和t2為前后兩次測(cè)定的時(shí)間(d);冷水反應(yīng)指數(shù)(CRI)=(冷水脅迫下性狀值/自然條件下性狀值)×100%。2年數(shù)據(jù)趨勢(shì)基本一致,文中數(shù)據(jù)以2014年為例。
使用 Microsoft Excel 2003 整理數(shù)據(jù)和作圖,采用 DPS 7.05數(shù)據(jù)處理系統(tǒng),進(jìn)行顯著性測(cè)定和相關(guān)分析。
2結(jié)果與分析
2.1冷水脅迫下水稻產(chǎn)量、產(chǎn)量構(gòu)成及分類(lèi)
以相對(duì)結(jié)實(shí)率(表1)對(duì)30份水稻材料進(jìn)行孕穗期耐冷性分級(jí)。材料間相對(duì)結(jié)實(shí)率差異較大,變幅為7.98%~84.09%,變異系數(shù)為49.78%,其中5和7級(jí)材料最多,均為9份,均占總材料的30%;1級(jí)材料包括龍粳25、空育131和東農(nóng)428,僅占總材料的10%;3級(jí)材料為5份,占總材料的17%;墾鑒稻6號(hào)等4個(gè)材料為9級(jí)。
表2表明,冷水處理下,所有材料每穴實(shí)粒數(shù)、結(jié)實(shí)率、千粒重和每穴產(chǎn)量均下降,但1、3、5、7和9級(jí)材料的每穴實(shí)粒數(shù)、結(jié)實(shí)率、千粒重和每穴產(chǎn)量變化存在差異;每穴實(shí)粒數(shù)、結(jié)實(shí)率和每穴產(chǎn)量表現(xiàn)為HR>R>M>S>HS,而千粒重表現(xiàn)為R>HR>M>S>HS;其中1、3、5、7和9級(jí)處理的結(jié)實(shí)率和每穴產(chǎn)量與對(duì)照間差異均達(dá)極顯著水平,每穴實(shí)粒數(shù)與對(duì)照間差異達(dá)極顯著或顯著水平。從CRI值可知,每穴實(shí)粒數(shù)、結(jié)實(shí)率、千粒重和每穴產(chǎn)量CRI值表現(xiàn)為HR>R>M>S>HS,且每穴實(shí)粒數(shù)、結(jié)實(shí)率和每穴產(chǎn)量CRI值均小于千粒重CRI值。說(shuō)明孕穗期冷水脅迫下,材料耐冷性越弱,每穴實(shí)粒數(shù)、結(jié)實(shí)率、千粒重和每穴產(chǎn)量變化越大,每穴實(shí)粒數(shù)、結(jié)實(shí)率和每穴產(chǎn)量比千粒重對(duì)冷水脅迫越敏感。
2.2 冷水脅迫下不同基因型水稻抽穗期干物質(zhì)生產(chǎn)與冠層結(jié)構(gòu)的差異
表3表明,冷水處理材料的粒葉比、上3葉和全葉葉面積指數(shù)均下降,而高效葉面積率增加,但1、3、5、7和9級(jí)材料的粒葉比、高效葉面積率、上3葉和全葉葉面積指數(shù)變化不同;粒葉比表現(xiàn)為HR>R>M>S>HS,而1、3、5、7和9級(jí)材料高效葉面積率、上3葉和全葉葉面積指數(shù)規(guī)律不明顯;其中,3、5、7和9級(jí)材料處理的粒葉比,3、5和7級(jí)材料處理的高效葉面積率,1、5和7級(jí)材料處理的全葉葉面積指數(shù)與對(duì)照差異達(dá)顯著或極顯著水平。從CRI值可以看出,粒葉比CRI 值表現(xiàn)為HR>R>M>S>HS;全葉葉面積指數(shù)CRI值均小于90%,高效葉面積率CRI值均大于110%,而上3葉葉面積指數(shù)CRI值為93.51%~99.56%。說(shuō)明材料耐冷性越弱,粒葉比對(duì)孕穗期冷水脅迫越敏感;冷水脅迫下,全葉葉面積指數(shù)和高效葉面積率的變化大于上3葉葉面積指數(shù)。
從表4可知,冷水處理材料的劍葉葉基角與劍葉、倒2和倒3葉披垂度減小,而倒2、3葉葉基角變化不穩(wěn)定,但1、3、5、7和9級(jí)材料的劍葉、倒2葉、倒3葉葉基角和披垂度變化不同;劍葉葉基角和倒3葉披垂度表現(xiàn)為HR>R>M>S>HS,倒2葉葉基角和劍葉披垂度表現(xiàn)為HR>S>R>M>HS,倒2葉披垂度表現(xiàn)為HR>M>R>S>HS。從CRI值可以看出,9級(jí)材料劍葉、倒2、倒3葉披垂度CRI值均小于1級(jí)和3級(jí)材料,7級(jí)材料劍葉葉基角與倒2和倒3葉披垂度CRI值均小于1級(jí)和3級(jí)材料。說(shuō)明在冷水處理?xiàng)l件下,耐冷性弱和極弱的品種(系)劍葉和倒3葉葉基角略有減小,上3葉披垂度減幅大,葉片挺立。
表2冷水灌溉處理與正常水溫灌溉處理水稻產(chǎn)量及其構(gòu)成因素比較
Table 2. Comparison of grain yield and its components of rice under cold water irrigation and normal water temperature treatment.
耐冷性級(jí)別Gradeoftolerancetochilling處理Treatment每穴實(shí)粒數(shù)FGNH千粒重1000-GW/g結(jié)實(shí)率SSR/%每穴產(chǎn)量YPH/gHRLT849.28±62.27b23.91±1.63a76.62±0.79bB21.42±1.61bBCK1160.00±95.45a26.11±1.13a93.26±0.48aA32.30±1.74aACRI/%73.3291.5682.1666.18RLT684.97±66.49bB24.49±0.73b69.30±2.78bB17.55±1.77bBCK1273.63±61.41aA27.02±0.40a93.23±0.83aA35.08±1.46aACRI/%54.5790.6074.2950.48MLT499.96±27.28bB23.74±0.43bB43.65±1.75bB12.46±0.69bBCK1171.65±44.69aA27.42±0.56aA92.22±0.83aA32.46±1.28aACRI/%42.6786.6947.3538.41SLT283.23±32.77bB22.27±0.59bB28.05±1.59bB6.58±0.71bBCK1192.61±74.08aA27.15±0.45aA91.07±1.12aA32.77±1.60aACRI/%23.9281.9630.7320.27HSLT181.42±64.69bB21.59±0.66bB11.46±1.76bB3.89±1.40bBCK1325.42±78.55aA26.37±0.53aA89.37±1.50aA35.46±1.76aACRI/%12.9981.8712.9110.48
數(shù)據(jù)后跟不同大小寫(xiě)字母分別表示在1%和5%水平上差異顯著(新復(fù)極差法,HR、R、M、S、HS的n=3、5、9、9和4)。LT-冷水處理; CK-對(duì)照,正常水溫處理; FGNH-每穴實(shí)粒數(shù); 1000-GW-千粒重; SSR-結(jié)實(shí)率;YPH-每穴產(chǎn)量; CRI-冷水反應(yīng)指數(shù)。下同。
Values followed by different letters are significantly different at 5% (lowercase) and 1% (uppercase) levels, respectively (by Duncan’s test,n=3,5,9,9,4). LT, Cold water irrigation; CK, Normal water temperature; FGNH, Filled grain number per hill; 1000-GW, 1000-grain weight; SSR, Seed-setting rate; YPH, Yield per hill; CRI, Cold water response index. The same as below.
表3 冷水灌溉處理與正常水溫灌溉處理水稻粒葉比、葉面積指數(shù)和葉面積率的比較
Table 3. Difference in grain-leaf ratio, leaf area index and ratio of leaf area under cold water irrigation and normal water temperature treatment.
耐冷性級(jí)別Gradeoftolerancetochilling處理Treatment上3葉葉面積指數(shù)LAITTL全葉葉面積指數(shù)LAIAL高效葉面積率RLATTL/%粒葉比GLR/(grain·cm-2)HRLT3.37±0.11a3.74±0.25b91.13±3.33a0.58±0.05aCK3.59±0.08a4.44±0.28a82.07±7.18a0.72±0.05aCRI/%93.9484.18112.1981.17RLT3.44±0.23a3.75±0.15a90.89±3.20a0.50±0.05bCK3.50±0.11a4.77±0.32a75.49±5.73b0.76±0.09aCRI/%99.3980.37122.1968.68MLT3.33±0.07a3.68±0.10b91.06±1.70aA0.38±0.03bBCK3.40±0.17a4.22±0.23a81.39±2.11bB0.80±0.05aACRI/%99.5688.63112.1649.12SLT3.37±0.06a3.75±0.07bB91.14±1.15aA0.21±0.03bBCK3.48±0.12a4.36±0.16aA79.90±1.20bB0.77±0.04aACRI/%97.5986.62114.2127.47HSLT3.41±0.17a3.83±0.18a89.48±0.90a0.12±0.04bBCK3.71±0.32a4.67±0.47a81.87±3.99a0.83±0.07aACRI/%93.5184.0111014.94
LAITTL, Leaf area index of top three leaves; LAIAL, Leaf area index of all leaves; RLATTL, Ratio of leaf area of top three leaves; GLR, Grain-leaf ratio. The same as below.
表4冷水灌溉處理與正常水溫灌溉處理水稻上3葉受光姿態(tài)比較
Table 4. Comparison of basic angle, drooping angle of top three leaves in rice under cold water irrigation and normal water temperature treatment.
性狀 Trait 處理TreatmentHRRMSHS劍葉葉基角D1LBA/°LT34.58±7.98a31.25±6.55a29.31±5.19a29.22±3.13a18.81±7.33aCK36.75±7.88a32.55±2.34a33.22±4.62a34.33±4.81a19.81±4.84aCRI/%94.1096.0188.2385.1294.95倒2葉葉基角D2LBA/°LT26.75±1.28a21.20±1.91a18.47±1.70a20.53±1.83b17.38±3.23aCK21.08±0.74b20.50±3.42a18.72±1.08a24.36±2.07a16.94±1.35aCRI/%126.90103.4198.6684.28102.60倒3葉葉基角D3LBA/°LT27.64±2.36a27.60±1.66a24.25±1.70a25.42±1.71a22.25±4.36aCK28.17±1.60a25.70±2.05a25.03±1.39a28.58±1.62a25.50±1.49aCRI/%98.12107.3996.8888.9487.25劍葉披垂度D1DA/°LT16.67±7.48a10.95±4.89a10.25±2.97a11.00±2.23a6.40±1.85aCK26.17±9.34a18.45±3.41a12.25±2.91a13.75±2.49a14.30±3.58aCRI/%63.7059.3583.6780.0044.76倒2葉披垂度D2DA/°LT13.33±1.34a9.20±2.00a10.61±1.64a9.14±1.28b6.50±2.46aCK17.92±5.68a14.80±3.23a16.97±3.73a18.67±3.48a12.44±3.14aCRI/%74.3962.1662.5248.9652.25倒3葉披垂度D3DA/°LT16.28±3.64a14.95±4.00a13.36±1.43a12.06±2.46a8.63±1.55bCK16.50±0.88a15.90±2.60a18.69±3.47a22.78±4.27a18.38±1.22aCRI/%98.6794.0371.4852.9446.95
D1LBA, Basic angle of flag leaf; D2LBA, Basic angle of second leaf from top; D3LBA, Basic angle of third leaf from top; D1DA, Drooping angle of flag leaf; D2DA, Drooping angle of second leaf from top; D3DA, Drooping angle of third leaf from top.
2.3冷水脅迫下,不同基因型水稻后期干物質(zhì)生產(chǎn)與輸出特征的差異
表5表明,冷水處理的材料生育后期(抽穗至成熟期)干物質(zhì)積累量、干物質(zhì)積累量比例、群體生長(zhǎng)率、凈同化率、葉面積衰減率和收獲指數(shù)均下降,干物質(zhì)積累量、干物質(zhì)積累比例、凈同化率和收獲指數(shù)表現(xiàn)為HR>R>M>S>HS,群體生長(zhǎng)率表現(xiàn)為HR>R>M>HS>S。其中5級(jí)和7級(jí)材料生育后期干物質(zhì)積累量、干物質(zhì)積累量比例、群體生長(zhǎng)率、凈同化率和收獲指數(shù)與對(duì)照間差異極顯著,9級(jí)材料干物質(zhì)積累量占生物產(chǎn)量的比例、群體生長(zhǎng)率和凈同化率與對(duì)照間差異顯著。從CRI值可以看出,除葉面積衰減率以外,其他干物質(zhì)生產(chǎn)特性CRI值表現(xiàn)為HR>R>M>S>HS??梢?jiàn),冷水處理下,耐冷性越弱的品種(系)抽穗至成熟期干物質(zhì)積累量、干物質(zhì)積累比例、群體生長(zhǎng)率、凈同化率和收獲指數(shù)變化越大。抽穗前莖鞘所儲(chǔ)藏的光合產(chǎn)物向穗部輸出與轉(zhuǎn)換特性直接影響著水稻產(chǎn)量形成。從圖2可知,冷水處理的1、5、7和9級(jí)材料莖鞘物質(zhì)輸出率均下降,3級(jí)材料莖鞘物質(zhì)輸出率變化不大,其中7級(jí)和9級(jí)材料莖鞘物質(zhì)輸出率小于1,且5、7和9級(jí)材料均顯著低于對(duì)照;冷水處理的1、3和5 級(jí)材料莖鞘物質(zhì)轉(zhuǎn)化率均增加,7和9 級(jí)材料莖鞘物質(zhì)轉(zhuǎn)化率小于1。因此,冷水處理下耐冷性弱和極弱的品種(系)成熟期莖鞘干物質(zhì)量大于抽穗期,且莖鞘輸出率和轉(zhuǎn)化率更敏感。
2.4相關(guān)性分析
冷水處理下,與相對(duì)結(jié)實(shí)率組成的19對(duì)性狀間有7對(duì)達(dá)極顯著或顯著相關(guān)(表6), 其中,相對(duì)結(jié)實(shí)率分別與收獲指數(shù)(0.96**)、產(chǎn)量(0.91**)、粒葉比(0.84**)和抽穗到成熟期干物質(zhì)積累量(0.48**)CRI值均呈極顯著正相關(guān);相對(duì)結(jié)實(shí)率分別與群體生長(zhǎng)率(0.44*)、凈同化率(0.44*)和干物質(zhì)積累比例(0.43*)CRI值均呈顯著正相關(guān)。說(shuō)明在冷水脅迫下,收獲指數(shù)、產(chǎn)量、粒葉比、抽穗到成熟期干物質(zhì)積累量、干物質(zhì)積累比例、群體生長(zhǎng)率和凈同化率CRI值對(duì)相對(duì)結(jié)實(shí)率影響較大,均是正向的。相對(duì)結(jié)實(shí)率分別與劍葉、倒2葉、倒3葉葉基角和披垂度正相關(guān),與莖鞘物質(zhì)輸出率和轉(zhuǎn)化率正相關(guān),與葉面積衰減率呈負(fù)相關(guān)。冷水脅迫對(duì)耐冷性弱的品種(系)冠層結(jié)構(gòu)和莖鞘物質(zhì)轉(zhuǎn)運(yùn)的影響大于耐冷性強(qiáng)的品種(系)。
表5冷水灌溉處理與正常水溫灌溉處理水稻抽穗后干物質(zhì)生產(chǎn)的差異
Table 5. Difference in dry matter production in rice after heading under cold water irrigation and normal water temperature treatment.
性狀與處理TraitandtreatmentHRRMSHS干物質(zhì)積累量DAR/(g·m-2) LT409.97±41.27a307.44±61.55b279.98±20.05bB257.43±28.09bB255.24±67.34bB CK526.81±58.19a530.65±38.06a586.89±49.23aA573.56±49.77aA658.28±49.28aA CRI/%80.0959.0349.4347.6538.40干物質(zhì)積累比例DMAR/% LT29.94±4.32a24.49±4.77b21.96±1.52bB19.57±2.13bB19.33±4.50b CK36.01±4.69a34.92±3.82a38.30±2.39aA36.19±2.55aA38.40±0.85a CRI/%84.9070.1258.1355.9150.36群體生長(zhǎng)率CGR/(g·m-2d-1) LT7.92±0.42a6.54±0.99a5.76±0.44bB5.25±0.60bB5.26±1.42b CK9.72±0.85a11.17±1.35a10.58±0.81aA10.50±0.85aA12.49±1.21a CRI/%83.4163.3056.0152.9241.96凈同化率NAR/(g·m-2d-1) LT2.95±0.17a2.40±0.34a2.19±0.17bB1.95±0.23bB1.94±0.56b CK3.35±0.19a3.44±0.30a3.57±0.25aA3.42±0.29aA3.77±0.34a CRI/%88.7171.9763.0659.3749.38葉面積衰減率DRLA/(d-1) LT0.037±0.01a0.042±0.00a0.038±0.00a0.038±0.00a0.039±0.00a CK0.050±0.01a0.056±0.01a0.041±0.01a0.042±0.00a0.044±0.01a CRI/%75.3478.4498.6893.9091.05收獲指數(shù)HI LT0.48±3.17a0.44±2.75bB0.35±1.20bB0.25±1.25bB0.18±1.03bB CK0.55±1.39a0.55±1.18aA0.58±1.88aA0.55±1.32aA0.58±0.92aA CRI/%86.5479.7260.4646.1831.70
DAR, Dry matter accumulation; DMAR, Dry matter accumulation ratio after heading; CGR, Crop growth rate; NAR, Net assimilation rate; DRLA, Decreasing rate of leaf area; HI, Harvest index. The same as below.
ERMSS-莖鞘物質(zhì)輸出率; TRMSS-莖鞘物質(zhì)轉(zhuǎn)化率。下同。
ERMSS, Export rate of dry matter in stem-sheath; TRMSS, Translocation rate of dry matter in stem-sheath. The same as below.
圖2 冷水灌溉處理與正常水溫灌溉處理水稻的莖鞘物質(zhì)輸出率和莖鞘物質(zhì)轉(zhuǎn)化率
Fig. 2. Difference in export rate and translocation rate of dry matter in stem-sheath under cold water irrigation and normal water temperature treatment.
表6孕穗期冷水脅迫下相對(duì)結(jié)實(shí)率與產(chǎn)量、冠層結(jié)構(gòu)和物質(zhì)生產(chǎn)特性CRI的關(guān)系
Table 6. Correlation coefficients between relative seed setting rate(RSR) and cold water response indices of rice grain yield, canopy structure and dry matter production at booting stage under cold water irrigation.
指標(biāo)IndexYPHD1LBAD2LBAD3LBAD1DAD2DAD3DALAITTLLAIALRLATTLRSR0.91**0.080.280.290.290.200.290.02-0.100.20指標(biāo)IndexGLRERMSSTRMSSDARDMARCGRNARDRLAHIRSR0.84**0.030.250.48**0.43*0.44*0.44*-0.320.96**
*和**分別表示在0.05 和 0.01 水平上顯著相關(guān)。RSR-相對(duì)結(jié)實(shí)率。
*and**mean significant correlation at 0.05 and 0.01 levels,respectively. RSR, Relative seed setting rate.
3討論
眾所周知,水稻的生長(zhǎng)發(fā)育與氣象條件密切相關(guān),其中溫度是最重要的影響因子之一[15,16]。 相關(guān)研究[17-22]表明,水稻孕穗期葉片光合作用和穗分化受氣溫影響較大,低溫脅迫降低光合作用速率,而東北寒地稻區(qū)孕穗期冷水脅迫對(duì)群體光合生產(chǎn)能力和粒(重)葉比研究較少。葉面積、群體生長(zhǎng)率、凈同化率等都是表征群體光合生產(chǎn)能力的重要指標(biāo),在一定的范圍內(nèi),作物的產(chǎn)量隨葉面積指數(shù)的增大而提高。本研究設(shè)置孕穗期17℃冷水處理,抽穗期葉面積指數(shù)(CRI值小于90%)、粒葉比和光合速率降低,品種(系)間群體生長(zhǎng)率和凈同化率差異明顯。相對(duì)結(jié)實(shí)率與群體生長(zhǎng)率CRI值(r=0.44*)、凈同化率CRI值(r=0.44*)和粒葉比CRI值(r=0.84*)均顯著或極顯著正相關(guān),說(shuō)明耐冷性弱的品種(系)抽穗至成熟期群體生長(zhǎng)率、凈同化率及抽穗期粒葉比對(duì)冷水脅迫更敏感,單位葉面積供給的物質(zhì)量少,葉面積質(zhì)量低,產(chǎn)量也低。
迄今為止,低溫脅迫對(duì)小麥葉片結(jié)構(gòu)和形態(tài)特征的研究報(bào)道較多,如葉片厚度、冠層結(jié)構(gòu)、維管束、葉綠體和基粒片層,葉肉細(xì)胞的形態(tài)結(jié)構(gòu),葉脈的間距和橫截面積[23-25];而對(duì)水稻葉片結(jié)構(gòu)和形態(tài)特征研究報(bào)道較少,只有劍葉、倒2葉、倒3葉長(zhǎng)和寬[26]方面的研究。筆者認(rèn)為水稻孕穗期倒2、3葉的長(zhǎng)和寬變化已經(jīng)定型,冷水處理無(wú)本質(zhì)影響,因此,試驗(yàn)僅對(duì)劍葉、倒2葉以及倒3葉的葉基角和披垂度進(jìn)行了調(diào)查分析。其中,葉角是影響葉片空間態(tài)勢(shì)的主要因子。本研究表明,冷水處理后劍葉葉基角與劍葉、倒2葉和倒3葉披垂度減小,這與趙國(guó)珍等[27]研究結(jié)果一致。我們還觀察到,冷水處理后劍葉、倒2葉和倒3葉葉基角CRI值與相對(duì)結(jié)實(shí)率正相關(guān),相關(guān)性大小為倒3葉葉基角>倒2葉葉基角>劍葉葉基角。究其原因,可能是因?yàn)樵谠兴肫诶渌{迫下,各葉位干物質(zhì)分配受到影響而導(dǎo)致葉片葉基角發(fā)生變化。
水稻籽粒的產(chǎn)量一部分來(lái)自抽穗后的光合產(chǎn)物,另外一部分來(lái)自葉與莖鞘貯藏物質(zhì)的再分配。前人研究[10-12]表明,秧苗期低溫脅迫下,水稻秧苗隨著生長(zhǎng)時(shí)間的延長(zhǎng),不但沒(méi)有干物質(zhì)積累,其干質(zhì)量反而下降;分蘗期低溫處理也會(huì)降低單株的干物質(zhì)累積量;孕穗期冷水灌溉持續(xù)時(shí)間越長(zhǎng)籽粒干物質(zhì)積累量降幅越大。然而,在東北寒地稻區(qū)關(guān)于孕穗期冷水脅迫對(duì)抽穗至成熟期干物質(zhì)生產(chǎn)研究較少。我們發(fā)現(xiàn),一方面,冷水處理后干物質(zhì)生產(chǎn)特性存在明顯差異,相對(duì)結(jié)實(shí)率與抽穗至成熟期干物質(zhì)積累量CRI值(r=0.48**)及干物質(zhì)積累比例CRI值(r=0.43*)分別呈極顯著和顯著正相關(guān),說(shuō)明耐冷性弱的品種(系)抽穗至成熟期干物質(zhì)積累量及比例對(duì)冷水脅迫更敏感;另一方面,不同耐冷性品種(系)經(jīng)冷水處理后,抽穗后的光合生產(chǎn)能力及莖鞘干物質(zhì)的轉(zhuǎn)化與輸出對(duì)結(jié)實(shí)率的貢獻(xiàn)不同,其中相對(duì)結(jié)實(shí)率與莖鞘物質(zhì)輸出率(r=0.03)和轉(zhuǎn)化率(r=0.25)呈正相關(guān),說(shuō)明耐冷性弱的品種(系)抽穗至成熟期群體生長(zhǎng)率、凈同化率、抽穗期粒葉比、莖鞘物質(zhì)輸出率和轉(zhuǎn)化率對(duì)冷水脅迫更敏感。
以上說(shuō)明,在孕穗期冷水脅迫條件下,東北寒地水稻抽穗到成熟期干物質(zhì)生產(chǎn)顯著減少,同時(shí)改變了干物質(zhì)在各器官的輸出特征。籽粒產(chǎn)量受干物質(zhì)生產(chǎn)的控制,干物質(zhì)生產(chǎn)又取決于作物進(jìn)行光合作用的潛在能力和穎花接受光合產(chǎn)物的能力。因此,關(guān)于東北寒地稻區(qū)孕穗期冷水脅迫對(duì)光合作用影響研究還有待于進(jìn)一步深入。
參考文獻(xiàn):
[1]趙秀琴, 張婷, 王文生, 等. 水稻低溫脅迫不同時(shí)間的代謝物譜圖分析. 作物學(xué)報(bào), 2013, 39(4): 720-726.
Zhao X Q, Zhang T, Wang W S, et al. Time-course metabolic profiling in rice under low temperature treatment.ActaAgronSin, 2013, 39(4): 720-726.(in Chinese with English abstract)
[2]程式華,李建.現(xiàn)代中國(guó)水稻.北京:金盾出版社,2007:94-96.
Cheng S H, Li J. Modern Chinese Rice. Beijing:Golden Shield Press, 2007, 94-96.(in Chinese)
[3]Zhang Y P, Xiang J, Chen H Z, et al. Physiological characterization of green turning of rice seedlings at different temperatures.AgricSci&Technol, 2015,16(7):1390-1394,1513. (in Chinese with English abstract)
[4]王艷春,王士強(qiáng),趙海紅.寒地水稻冷害減產(chǎn)原因與生理機(jī)制的研究進(jìn)展.現(xiàn)代化農(nóng)業(yè),2009(9):7-8.
Wang Y C, Wang S Q, Zhao H H. Progress in research on the reason of yield reduce and the physiological mechanism of cold injury of rice in cold regions.ModAgric, 2009,(9):7-8. (in Chinese)
[5]張榮萍, 馬均, 蔡光澤, 等.開(kāi)花期低溫脅迫對(duì)四川攀西稻區(qū)水稻開(kāi)花結(jié)實(shí)的影響. 作物學(xué)報(bào), 2012, 38(9):1734-1742.
Zhang R P, Ma Y, Cai G Z, et al. Effects of low temperature stress during flowering stage on flowering and seed setting of rice in Panxi Region, Sichuan Province.ActaAgronSin, 2012, 38(9):1734-1742. (in Chinese with English abstract)
[6]李健陵, 霍治國(guó), 吳麗姬, 等. 孕穗期低溫對(duì)水稻產(chǎn)量的影響及其生理機(jī)制. 中國(guó)水稻科學(xué), 2014, 28(3): 277-288.
Li J L, Huo Z G, Wu L J, et al. Effects of low temperature on grain yield of rice and its physiological mechanism at the booting stage.ChinJRiceSci, 2014, 28(3): 277-288. (in Chinese with English abstract)
[7]李廣旭, 陳華民, 吳茂森, 等.OsBTF3過(guò)量表達(dá)和RNAi轉(zhuǎn)基因水稻抗鹽和抗低溫脅迫鑒定. 中國(guó)水稻科學(xué), 2012, 26(1): 5-8.
Li G X, Chen H M, Wu R S. et al. Resistance to high salt and cold stress of transgenic rice seedings with over-expressed and RNAi-silencedOsBTF3.ChinJRiceSci, 2012, 26(1):5-8.(in Chinese with English abstract)
[8]周玲艷,姜大剛,李靜,等.逆境處理下水稻葉角質(zhì)層蠟質(zhì)積累及其與蠟質(zhì)合成相關(guān)基因OsGL1表達(dá)的關(guān)系.作物學(xué)報(bào),2012,38(6):1115-1120.
Zhou L Y, Jiang D G, Li J, et al. Effect of stresses on leaf cuticular wax accumulation and its relationship to expression of OsGL1-Homologous genes in rice.ActaAgronSin, 2012, 38(6):1115-1120. (in Chinese with English abstract)
[9]謝勇武,楊樹(shù)明,曾亞文,等.粳稻02428×02428c重組自交系孕穗期耐冷性QTL分析.中國(guó)水稻科學(xué),2011,25(6):681-684.
Xie Y W, Yang S M, Zheng Y W, et al. QTL analysis of cold tolerance in japonica rice using reconbinant inbred lines from 02428×02428c at booting stage.ChinJRiceSci,2011, 25(6): 681-684. (in Chinese with English abstract)
[10]張金恩,李迎春,陸魁東,等.溫度脅迫對(duì)早稻分蘗期生長(zhǎng)和分蘗能力影響研究.第32屆中國(guó)氣象學(xué)會(huì)年會(huì)S15提升氣象為農(nóng)服務(wù)能力,保障農(nóng)業(yè)提質(zhì)增效.北京: 中國(guó)氣象學(xué)會(huì), 2015.
Zhang J N, Lin Y C, Lu K D, et al. Effect of temperature stress on growth and tillering ability of super hybrid early race at tillering stage. The 32nd Session of the Chinese Meteorological Society Annual Meeting S15 Improving the Capacity of Meteorological Service for the Agriculture, to Ensure Agricultural Quality Efficiency. Beijing: China Meteorological Society, 2015. (in Chinese with English abstract)
[11]周新橋,陳達(dá)剛,李麗君,等.秧苗期低溫脅迫對(duì)華南主推雙季水稻生長(zhǎng)的影響.西南農(nóng)業(yè)學(xué)報(bào),2013,26(3):936-941.
Zhou X Q, Chen D G, Li L J, et al. Effects of chilling stress on growth of double cropping rice in south China at seeding stage.SouthwestChinaJAgricSci, 2013,26(3):936-941.(in Chinese with English abstract)
[12]賈琰,沈陽(yáng),鄒德堂,等.孕穗期冷水灌溉對(duì)寒地粳稻籽粒灌漿及其氮素積累的影響.中國(guó)水稻科學(xué),2015,29(3):259-272.
Jia Y, Shen Y, Zou D T, et al. Effect of cold-water irrigation at booting stage on grain filling an nitrogen accumulation of rice in cold-region.ChinJRiceSci, 2015, 29(3):259-272. (in Chinese with English abstract)
[13]鄒德堂,劉化龍.寒地水稻耐冷性研究.北京:氣象出版社,2013:22-23
Zou D T, Liu H L. Studies on rice cold tolerant and sensitive lines to low temperaturestress in cold area of northeastern China. Beijing: China Meteorological Press,2013: 22-23.(in Chinese)
[14]趙黎明,李明,鄭殿峰,等.灌溉方式與種植密度對(duì)寒地水稻產(chǎn)量及光合物質(zhì)生產(chǎn)特性的影響. 農(nóng)業(yè)工程學(xué)報(bào),2015,6(31):159-169.
Zhao L M, Li M, Zheng D F, et al. Effects of irrigation methods and rice planting densities on yield and photosynthetic characteristics of matter production in cold area.TranChinSociAgricEngin, 2015, 6(31):159-169. (in Chinese with English abstract)
[15]陳金,田云錄,董文軍,等.東北水稻生長(zhǎng)發(fā)育和產(chǎn)量對(duì)夜間升溫的響應(yīng).中國(guó)水稻科學(xué),2013,27(1):84-90.
Chen J, Tian Y L, Dong W J, et al. Responses of rice growth and grain yeild to nighttime warming in northeast China.ChinJRiceSci, 2013, 27(1): 84-90. (in Chinese with English abstract)
[16]楊曉光,李茂松,霍治國(guó).農(nóng)業(yè)氣象災(zāi)害及其減災(zāi)技術(shù).北京:化學(xué)工業(yè)出版社,2010:43
Yang X G, Li M S, Huo Z G. Agrometeorological Disaster and Disaster Reduction Technology. Beijing: Chemical Industry Press, 2010: 43. (in Chinese)
[17]李健陵,霍治國(guó),吳麗姬,等.孕穗期低溫對(duì)水稻產(chǎn)量的影響及其生理機(jī)制.中國(guó)水稻科學(xué),2014,28(3):277-288.
Li J L, Huo Z G, Wu L J, et al. Effects of low temperature on grain yield of rice and its physiological mechanism at the booting stage..ChinJRiceSci, 2014, 28(3): 277-288.(in Chinese with English abstract)
[18]孫擎,楊再?gòu)?qiáng),高麗娜,等.低溫對(duì)早稻幼穗分化期葉片生理特性的影響及其與產(chǎn)量的關(guān)系.中國(guó)生態(tài)農(nóng)業(yè)學(xué)報(bào),2014,22(11):1326-1333.
Sun Q, Yang Z Q, Gao L N, et al. Effect of low temperature stress on physiological characteristics of flag leaf and its relationship with grain yield during panicle primordium differentiation stage of early rice.ChinJEco-Agric, 2014, 22(11):1326-1333. (in Chinese with English abstract)
[19]劉濤,趙娟,孫婷,等.低溫脅迫下水稻傳統(tǒng)品種與現(xiàn)代品種不同的響應(yīng)機(jī)制.分子植物育種,2015,13(2):269-275.
Liu T, Zhao J, Sun T, et al. The different response mechanisms of traditional and modern rice varieties under low temperature.MolPlantBreeding, 2015, 13(2):269-275. (in Chinese with English abstract)
[20]孫磊,陳國(guó)祥,呂川根,等.殼聚糖對(duì)低溫處理下水稻劍葉光合特性的影響.南京師大學(xué)報(bào):自然科學(xué)版,2010,33(4):75-79.
Sun L, Chen G X, Lü C G, et al. Effects of chitosan on photosyn thetic characteristics of flag leaf in rice under low temperature.JNanjingNorUniv:NatSciEd), 2010, 33(4):75-79. (in Chinese with English abstract)
[21]苗微,王國(guó)驕,馬殿榮,等.遼寧省雜草稻幼苗對(duì)低溫脅迫的生理響應(yīng).中國(guó)水稻科學(xué),2011,25(6):639-644.
Miao W, Wang G J, Ma D R, et al. Physiological responses of weedy rice to cold stress at seedling stage in Liaoning Province, China.ChinJRiceSci, 2011, 25(6):639-644.(in Chinese with English abstract)
[22]張金恩,聶秋生,李迎春,等.穎花分化期低溫處理對(duì)早稻葉片光合能力和產(chǎn)量的影響.中國(guó)農(nóng)業(yè)氣象,2014,35(4):410-416.
Zhang J E, Nie Q S, Li Y C, et al. Effects of low temperature stress on the photosynthetic capacity and yield components of early rice at the spikelet differentiation stage.ChinJAgrom, 2014, 35(4):410-416.(in Chinese with English abstract)
[23]苗芳, 張嵩午, 王長(zhǎng)發(fā), 等. 低溫小麥種質(zhì)葉片結(jié)構(gòu)及某些生理特性. 應(yīng)用生態(tài)學(xué)報(bào),2006,17(3):408-412.
Miao F, Zhang S W, Wang C F, et al. Leaf structure and some physiologic characteristics of low temperature wheat germplasm.ChinJApplEcol, 2006,17(3):408-412.(in Chinese with English abstract)
[24]王樹(shù)剛, 王振林, 王平, 等. 不同小麥品種對(duì)低溫脅迫的反應(yīng)及抗凍性評(píng)價(jià). 生態(tài)學(xué)報(bào), 2011, 31(4): 1064-1072.
Wang S G, Wang Z L, Wang P, et al. Evaluation of wheat freezing resistance based on the responses of the physiological indices to low temperature stress.ActaEcolSin. 2011, 31(4):1064-1072.(in Chinese with English abstract)
[25]徐海成, 尹燕枰, 蔡鐵, 等. 冬小麥拔節(jié)期不同莖蘗對(duì)低溫脅迫的反應(yīng)及抗凍性評(píng)價(jià). 應(yīng)用生態(tài)學(xué)報(bào),2013,24(8):2197-2204.
Xu H C, Yin Y P, Cai T, et al. Responses of winter wheat tillers at different positions to low temperature stress at stem elongation stage and their freezing resistance evaluation.ChinJApplEcol, 2013,24(8):2197-2204.(in Chinese with English abstract)
[26]劉鳳艷.寒地早粳稻耐冷害農(nóng)藝性狀調(diào)查.農(nóng)業(yè)災(zāi)害研究,2013,3(6):24-28.
Liu F Y. Investigation on cold tolerance agronomic traits of early japonica rice in cold region.JAgricCatastrophol, 2013, 3(6):24-28. (in Chinese with English abstract)
[27]趙國(guó)珍,Yang S J,Yea J D,等.冷水脅迫對(duì)云南粳稻育成品種農(nóng)藝性狀的影響.云南農(nóng)業(yè)大學(xué)學(xué)報(bào),2010,25(2):158-165.
Zhao G Z, Yang S J, Yea J D, et al. Effect of cold water irrigation on agronomic traits of improved japonica rice cultivars from Yunnan Province, China.JYunnanAgricUniv, 2010, 25(2):158-165. (in Chinese with English abstract)
Effects of Cold Stress During Booting Stage on Dry Matter Production of Rice in Cold Region
WANG Shi-qiang1,2,3, ZHAO Hai-hong4, XIAO Chang-liang3, ZHAO Li-ming3, GU Chun-mei3, NA Yong-guang3, XIE Bao-sheng3, CHENG Shi-hua1,2,*
(1College of Agronomy, Shenyang Agricultural University, Shenyang 110161, China;2State Key Laboratory of Rice Biology, China National Rice Research Institute, Hangzhou 310006, China;3Rice Research Institute of Helongjiang Academy of Land Reclamation Sciences, Jiamusi 154007, China;4Jiamusi Branch of Heilongjiang Academy of Agricultural Sciences, Jiamusi 154007, China;
Abstract:To reveal the effects of chilling at the booting stage on rice dry matter production, 30 main rice cultivars (lines) in Heilongjiang Province were selected and subjected to chilling stress (17°C cold water irrigation) for 20 days. The results showed that the filled grain number per hill, seed setting rate, 1000-grain weight, and grain yield of all cultivars decreased under cold water irrigation at booting stage. The materials were classified as grades 1, 3, 5, 7 and 9 according to relative seed setting rate. Most of them belonged to grades 7 and 9, accounting for 30% of the total, while the fewest cultivars belonged to grade 1, occupying 10%. The cold water stress decreased dry matter accumulation from heading to maturity and its ratio, crop growth rate, net assimilation rate, filled grain number per square centimeter leaf area, harvest index, leaf area index, leaf basic angle of flag leaf, drooping angle of flag leaf, drooping angle of second leaf from top, drooping angle of third leaf from top. However, the cold water stress increased the ratio of leaf area of top three leaves. The correlation analysis results showed that the relative seed setting rate was significantly positively correlated with the cold water response indices(CRI) of harvest index after heading(r=0.96**), grain yield(r=0.91**),filled grain number per square centimeter leaf area(r=0.84**), and dry matter accumulation(r=0.48**); this rate was also positively correlated with the CRI of crop growth rate(r=0.44*), net assimilation rate(r=0.44*), and ratio of dry matter accumulation from heading to maturity(r=0.43*). In conclusion, the reduction of rice dry matter production under cold water stress during early grain filling largely varied with rice cultivar. The cold tolerant germplasm was insensitive to cold water stress in dry matter accumulation, ratio of dry matter accumulation from heading to maturity, crop growth rate, net assimilation, filled grain number per square centimeter leaf area, harvest index after heading, which might be attributed to its important morphological specificity and physiological mechanism in maintaining grain yield under cold water stress at the booting stage.
Key words:rice in cold area; yield; relative seed setting rate; cold water stress; dry matter production
DOI:10.16819/j.1001-7216.2016.5187
收稿日期:2015-12-18; 修改稿收到日期: 2016-04-04。
基金項(xiàng)目:公益性(農(nóng)業(yè))行業(yè)科研專(zhuān)項(xiàng)(201403002,201303102);國(guó)家科技支撐計(jì)劃資助項(xiàng)目(2012BAD04B0102,2012BAD04B0105)。
*Corresponding author, E-mail: shcheng@mail.hz.zj.cn)
WANG Shiqiang, ZHAO Haihong, XIAO Changliang, et al. Effects of cold stress during booting stage on dry matter production of rice in cold region. Chin J Rice Sci, 2016, 30(3): 313-322.
中圖分類(lèi)號(hào):Q948.112+.2:S511.01
文獻(xiàn)標(biāo)識(shí)碼:A
文章編號(hào):1001-7216(2016)03-0313-10
中國(guó)水稻科學(xué)(Chin J Rice Sci),2016,30(3):313-322
http://www.ricesci.cn