張桂霞
(三門峽市教師進(jìn)修學(xué)校,河南 三門峽 472000)
?
半線性Timoshenko系統(tǒng)解的爆破性
張桂霞
(三門峽市教師進(jìn)修學(xué)校,河南 三門峽 472000)
[摘要]研究了一類半線性Timoshenko系統(tǒng)初邊值問(wèn)題解的爆破性.利用凸性方法分三種情況給出了具任意初始能量和適當(dāng)?shù)某跏紬l件下,Timoshenko系統(tǒng)初邊值問(wèn)題解的爆破性條件.
[關(guān)鍵詞]Timoshenko系統(tǒng);初邊值問(wèn)題;凸性方法;爆破性
1引言
本文研究如下一類半線性Timoshenko系統(tǒng)初邊值問(wèn)題解的爆破性
utt-uxx+k(u+vx)=(p+1)|v|q+1|u|p-1u,
0
(1.1)
vtt-k(u+vx)x=(q+1)|u|p+1|v|q-1v,
0
(1.2)
u(0,t)=v(0,t)=u(1,t)=v(1,t)=0,
t>0,
(1.3)
u(x,0)=u0(x),ut(x,0)=u1(x),
0 (1.4) v(x,0)=v0(x),vt(x,0)=v1(x), 0 (1.5) 其中k>0為正常數(shù),p,q>1 ,初始值u0,u1,v0,v1是給定的.當(dāng)方程(1.1),(1.2)的右邊非線性項(xiàng)是零時(shí),即 utt-uxx+k(u+vx)=0, (1.6) vtt-k(u+vx)x=0 (1.7) 它是著名的Timoshenko梁方程[1],這里其中,t表示時(shí)間變量,x表示位置變量,梁的長(zhǎng)度是1,v表示梁的橫向位移,u是旋轉(zhuǎn)角.由于它的廣泛應(yīng)用,在過(guò)去的幾十年中,Timoshenko梁方程引起了人們的極大興趣.方程(1.6),(1.7)在各種邊界條件下,其解的存在性和漸近性已有許多好的結(jié)果, 例如,Kim和Renardy[2]用乘子技巧在邊界條件 下得到了問(wèn)題的能量指數(shù)衰減.Raposo等[3]則用半群方法在具有線性摩擦阻尼項(xiàng)和齊次Dirichlet邊界條件下得到了問(wèn)題的能量指數(shù)衰減估計(jì).Soufyane和Wehbe[4]利用局部分布反饋給出問(wèn)題的一致穩(wěn)定的充要條件.還有許多文獻(xiàn)研究了具有記憶項(xiàng)等情況,這里不再一一列舉.下面我們僅提一下對(duì)半線性Timoshenko系統(tǒng)的研究情況.Parente等[5]研究了如下問(wèn)題 utt-uxx+k(u+vx)+f(u)=0, (1.8) vtt-k(u+vx)x+g(v)=0 (1.9) vtt-k(u+vx)x=g(v), 解的衰減估計(jì)和吸收集的估計(jì),其中外力項(xiàng)f(u),g(v)滿足局部Lipschitz連續(xù).Messaoudi和Soufyane[9,10]在高維情形邊界記憶項(xiàng)非線性Timoshenko系統(tǒng)的一般衰減估計(jì) 然而,據(jù)作者所知,很少有人研究帶有源項(xiàng)的Timoshenko系統(tǒng).最近,Pei等人[11, 12]利用位勢(shì)井理論研究了ReissnerMindlin-Timoshenko板系統(tǒng)解的整體適定性和長(zhǎng)時(shí)間行為,他們主要聚焦于非線性阻尼項(xiàng)和源項(xiàng)的相互作用問(wèn)題. 本文將研究帶有源項(xiàng)的Timoshenko系統(tǒng)整體解的不存在性.雖然我們用的是經(jīng)典的凸性方法[13],但本文也遇到了出現(xiàn)范數(shù)‖u+vx‖如何處理的困難,為此,我們給出了一個(gè)等價(jià)不等式.另外,我們避免引入位勢(shì)井而證明了對(duì)任意初始能量解的爆破問(wèn)題.我們分初始能量小于、等于和大于三種情況對(duì)初始值要求不同的條件證明爆破結(jié)果.特別是,對(duì)初始能量大于零的情況,我們的方法不同于已有文獻(xiàn)[14,15]. 第二節(jié)中將會(huì)給出一些概念和準(zhǔn)備,第三節(jié)中將給出解爆破的證明. 2準(zhǔn)備知識(shí) ‖u‖s≤C*‖ux‖. (2.1) E(t)=E(0), (2.2) 其中 (2.3) (2.4) 再引入如下泛函 (2.5) 為以后處理‖u+vx‖的需要,我們給出如下引理. α1(‖ux‖2+k‖u+vx‖2)≤‖ux‖2+‖vx‖2≤α2(‖ux‖2+k‖u+vx‖2). (2.6) 證明注意到 |vx|2=|u+vx-u|2≤2(|u+vx|2+|u|2), 利用(2.1)得 ‖ux‖2+‖vx‖2 ≤‖ux‖2+2‖u+vx‖2+2‖u‖2 ≤(1+2C*)‖ux‖2+2‖u+vx‖2 ‖ux‖2+k‖u+vx‖2 ≤‖ux‖2+2k‖vx‖2+2k‖u‖2 ≤(1+2kC*)‖ux‖2+2k‖vx‖2 ≤α1-1(‖ux‖2+‖vx‖2) 其中α1-1=max{1+2kC*,2k},從而得結(jié)論. 3解的爆破 下面分E(0)<0、E(0)=0和E(0)>0三種情況討論解的爆破條件.對(duì)E(0)≤0我們用經(jīng)典的凸性方法[13],而對(duì)E(0)>0,我們的方法不同于已有文獻(xiàn)[13,14,15]. (u0,u1)+(v0,v1)>0, 證明首先討論E(0)<0的情況,構(gòu)造輔助函數(shù) φ(t)=‖u‖2+‖v‖2+b(t+T2)2, (3.1) 其中b和T2是待定的正常數(shù).易得 φ′(t)=2(u,ut)+2(v,vt)+2b(t+T2), (3.2) φ″(t)=2‖ut‖2+2‖vt‖2+2(u,utt)+2(v,vtt)+2b =2‖ut‖2+2‖vt‖2-2I(u,v)+2b. (3.3) 再利用E(t)的表示式知 φ″(t)=(p+q+4)(‖ut‖2+‖vt‖2)+(p+q)(‖ux‖2+k‖u+vx‖2)-2(p+q+2)E(t)+2b. 因?yàn)镋(0)<0,取常數(shù)b滿足0 -2(p+q+2)E(t)+2b>(p+q+4)b, 這意味著 φ″(t)≥(p+q+4)(‖ut‖2+‖vt‖2+b). 顯然,有 φ″(t)≥0,t∈[0,T1). (3.4) 進(jìn)一步,可取充分大的T2和適當(dāng)?shù)腷使 φ′(0)=2(u0,u1)+2(v0,v1)+2bT2>0, 于是對(duì)每一t∈[0,T1)有φ(t)>0和φ′(t)>0,從而t∈[0,T1)有φ(t)和φ′(t)在t∈[0,T1)上嚴(yán)格增.由Cauchy-Schwartz不等式,易得 (3.6) 于是對(duì)每一t∈[0,T1) (3.7) 下面討論的E(0)=0且(u0,u1)+(v0,v1)>0情況.這時(shí),定義 G(t)=‖u‖2+‖v‖2 直接計(jì)算知 G′(t)=2(u,ut)+2(v,vt), (3.8) G″(t)=2‖ut‖2+2‖vt‖2-2I(u,v). (3.9) 易知, 由(3.9)則 G″(t)>0, (3.10) 注意到G′(0)=2(u0,u1)+2(v0,v1)>0則有 G′(t)>0, (3.11) 于是由(3.10),(3.11)知,G(t)和G′(t)在t∈[0,T1)上嚴(yán)格增.進(jìn)一步, G″(t)=(p+q+4)(‖ut‖2+‖vt‖2)+(p+q)(‖ux‖2+k‖u+vx‖2)-2(p+q+2)E(0) 注意到E(0)=0知 G″(t)≥(p+q+4)(‖ut‖2+‖vt‖2), 因G(t)>0,由Cauchy-Schwartz不等式,易得 余下類似E(0)<0的情況得結(jié)論. E(0)>0, (3.12) I(u0,v0)<0, (3.13) (u0,u1)+(v0,v1)>0, (3.14) (3.15) 證明分兩步證明.首先證明對(duì)t∈[0,T1) I(u(t),v(t))<0, (3.16) (3.17) 用反證法證明(3.16). 假設(shè)(3.16)對(duì)某一t∈[0,T1)不成立,即存在T>0使得 T=min{t∈[0,T1),I(u(t),v(t))≥0}, (3.18) 則由I(u(t),v(t))關(guān)于t的連續(xù)性, I(u(T),v(T))=0. (3.19) 令G(t)=‖u‖2+‖v‖2有 G′(t)=2(u,ut)+2(v,vt), (3.20) G″(t)=2‖ut‖2+2‖vt‖2-2I(u,v). (3.21) 注意到由(3.18)的定義知對(duì)每一t∈[0,T) I(t)=I(u(t),v(t))<0, (3.22) 可知在t∈[0,T)上有G″(t)>0.再由(3.13)知,對(duì)t∈[0,T)上有G′(t)>0.從而有在t∈[0,T)上在G(t)和G′(t)嚴(yán)格增.再由(3.15) 對(duì)t∈[0,T)則 ‖u‖2+‖v‖2 (3.23) 因u(t),v(t)關(guān)于t連續(xù),從(3.18)得 (3.24) 另一方面,由(2.2)和E(t)的定義 <2E(0), (3.25) 由(3.19)知 此式結(jié)合(3.25)得 ‖ux(T)‖2+k‖(u+vx)(T)‖2 (3.26) 由(3.26)結(jié)合(2.2)知 G(T)=‖u(T)‖2+‖v(T)‖2 ≤C*(‖ux(T)‖2+‖vx(T)‖2) ≤C*α2(‖ux(T)‖2+k‖(u+vx)(T)‖2) (3.27) 顯然,(3.24)和(3.27)矛盾,于是得結(jié)論(3.16).由上述討論可見,若I(u(t),v(t))<0和(3.14)成立,G(t)在t∈[0,T)上嚴(yán)格增,由(3.16)易知(3.17)成立. 最后證明爆破性.簡(jiǎn)單的計(jì)算知 (3.28) 由(3.28)及Cauchy-Schwartz不等式得 余下類似E(0)<0的情況得結(jié)論. [參考文獻(xiàn)] [1]Timoshenko S. On the correction for shear of the differential equation for transverse vibrations of prismatic bars[J]. Philosophical Magazine, 41(1921), 744 - 746. [2]Kim J.U.,Renardy Y. Boundary control of the Timoshenko beam[J]. SIAM J. Control Optim., 25(6)(1987):1417-1429. [3]Raposo C.A., Ferreira J., Santos M.L., Castro N.N.O. Exponential stability for the Timoshenko system with two weak dampings[J]. Appl. Math. Lett., 2005, 18: 535-541. [4]Soufyane A., Wehbe A. Uniform stabilization for the Timoshenko beam by a locally distributed damping[J]. Electron.J.Differential Equations, 29(2003): 1-14. [5]Parente A., Miranda M.M., Jutuc L.P.S.G. On local solution for a nonlinear Timoshenko system[C]. Proccedings of the 55° SBA, UFU, Uberlandia-MG-Brazil, 2002:167-179. [6]Araruna F.D., Borges J.E.S. Existence and boundary stabilization of the semilinear Mindlin-Timoshenko system[J]. EJQTDE, 34(2008):1-27. [7]Chueshov I. Lasiecka I. Global attractors for Mindlin-Timoshenko plates and for their Kirchhoff limits[J]. Milan J.Math.,74(2006):117-138. [8]Gorgi C., Vegni F.M. Uniform energy estimates for a semilinear evolution equation of the Mindlin-Timoshenko beam with memory[J], Mathematical and Computer Modelling, 39 (2004), 1005-1021. [9]Messaoudi S. A., Soufyane A. Boundary stabilization of a nonlinear system of Timoshenko type[J]. Nonlinear Analysis, 67 (2007), 2107 - 2112. [10]Soufyane A., Afilal M., Aouam T. General decay of solutions of a nonlinear Timoshenko system with a boundary control of memory type[J]. Differential and Integral Equations, 22(2009), 1125 - 1139. [11]Pei P., Rammaha M.A., Toundykov D. Local and global well-posedness of semilinear Reissner-Mindlin-Timoshenko plate equations[J]. Nonlinear Analysis, 105 (2014), 62 - 85. [12]Pei P., Rammaha M.A., Toundykov D. Global well-posedness and stability of semilinear Mindlin-Timoshenko systems[J]. J. Math. Anal. Appl., 418 (2014), 535 - 568. [13]Levine H A. Instability and nonexistence of global solutions to nonlinear wave equations of the form [J]. Trans. Amer .Math. Soc. 192(1974), 1-21. [14]Messaoudi S A,Said-Houari B, Global nonexistence of positive initial energy solutions of a system of nonlinear viscoelastic wave equation with damping and source terms[J],J. Math Anal Appl,365(2010),277-287. [15]Ma J, Mu C L, Zeng R, A blow-up result for viscoelastic equations with arbitrary positive initial energy[J], Boundary Value Problems,6(2011),1-10. [16]Wloka J. Partial Differential Equation[M].Cambridge University Press, London, 1987. [責(zé)任編輯:張懷濤] Blow up for a semilinear Timoshenko system ZHANG Gui-xia (Sanmenxia Teachers Training School, Sanmenxia 472000,China) Abstract:This paper discusses the initial boundary value problem of the semilinear Timoshenko system. By the convexity method,based on three cases,some blow-up results for the solution to the Timoshenko system is obtained under arbitrary initial energy and appropriate initial datum. Key words:Timoshenko system; convexity method; initial boundary value problem; blowup [收稿日期]2015-12-05 [基金項(xiàng)目]河南省基礎(chǔ)與前沿研究項(xiàng)目(1323004100360) [作者簡(jiǎn)介]張桂霞(1963-), 女,高級(jí)講師,主要從事微分方程方向的研究。 [中圖分類號(hào)]O172.27 [文獻(xiàn)標(biāo)識(shí)碼]A [文章編號(hào)]1671-5330(2016)02-0007-05