• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Molar volume of eutectic solvents as a function of molar composition and temperature☆

    2016-06-12 03:48:30FarouqMjalli
    Chinese Journal of Chemical Engineering 2016年12期

    Farouq S.Mjalli

    Petroleum and Chemical Engineering Department,Sultan Qaboos University,123 Muscat,Oman

    1.Introduction

    The recent interest in finding alternatives to ionic liquids to alleviate their high synthesis cost obstacle has increased recently and the area of synthesis and characterization of deep eutectic solvents(DES)have been under the focus of many recent articles.Deep eutectic solvents,when carefully designed for a particular application can replace conventional ionic liquids and be used economically in large industrial scales[1].Many studies have focused on exploring the physico-chemical characteristics of these liquids[2–5].These and many similar studies indicated that the physical and thermodynamic properties of the DES are profoundly affected by the nature of DES components,their composition,temperature,pH value and moisture and impurity content.Hence,it's of extreme importance to study the DES properties under these factors.This will enable the better selection and use of these solvents for diverse current and future applications.

    Liquid volume is a fundamental physical property that is often required in engineering design and rating calculations.Examples are fluid flow calculations,thermodynamic calculations,design of separation equipment and many more.In addition,the experimental molar volume data can be utilized in predicting other physical properties[6].This property is usually determined experimentally.However,in certain situations,it's not practical to conduct such experiments due to the many factors affecting its value.This is even more serious for the case of DES molar volume data.DES can be synthesized using countless salt to hydrogen bond molar compositions and the value of this property is affected by temperature to a great extent.Hence,prediction methods for this property may fill in this gap by providing a practical and simple mathematical alternative for evaluating this property under different experimental factors.Efficient prediction methods will contribute heavily in developing reliable property calculation methods for process simulators and reduce the effort needed to design and rate industrial equipment.

    Predicting the molar volume of liquids in general and deep eutectic solvents in particular is a basic requirement for enabling their implementation in different industrial applications.This property was measured and modeled for many ionic liquids[7].However,very little studies are reported for the measurement and modeling of deep eutectic solvents molar volume[8–11].Most of the previously reported models of DES molar volume are of linear form with temperature[12–15].These simple models are specific to particular DES systems and they cannot be generalized for different DES systems.

    More general predictive models involve molecular structure parameters like group contributions[16–19]or based on the corresponding state principle[7].However,the previous methods are more suitable to molecular liquids and usually do not perform well for ionic liquids and their analogs[16].Thermodynamic methods based on the critical properties have shown reasonable success in predicting the molar volume of these liquids[17].An example of such models is the Rackett model[20–22].This model predicts the reduced saturated liquid density or volume as a function of its critical properties and temperature.

    Recently,few studies have been reported on new prediction methods and strategies.To mention some of these studies,Black-box artificial intelligence methods such as artificial neural networks(ANN)were used to model DES density as a function of temperature[23].The ANN-based model was very accurate in predicting the studied systems density with an overall deviation of 0.14%.In a similar study,the molecular structure of the DES was encoded using the concept of the mass connectivity index[24].This parameter was calculated for 20 commonly used type III DESs and adopted in a simple correlation for predicting DES density as function of temperature.The MCI-based model over performed the conventional Rackett model.

    The original form of the Rackett model was studied for predicting DES molar volume data[25].It was found that the basic Rackett assumption of ln(V/Vc)tends toZas the reduced temperature goes to zero is invalid for the case of DES.Hence,proper modifications were applied on the Rackett equation and these modifications proved to be reliable for predicting molar volume of variety of DESs.

    All the previously modeling attempts focused on taking the temperature as the major contributing factor for the DES molar volume.In this study,the effect of DES composition is added as another important factor for predicting the molar volume.The conventional Rackett molar volume model was modified to incorporate the molar DES composition.The model performance was compared to the original form using experimental data for 13 type III DESs.

    2.Proposed Molar Volume Model

    The Rackett model[20]was among the earliest successful predictive models for the molar volume of molecular liquids.In its basic form,this model can be expressed as:

    where Vc,Tc,and Zcare respectively the critical density,temperature and compressibility factor.At theTr=0,the Rackett equation reduces to:

    SubstitutingVC=ZCRTC/PCin Eq.(1)and putting this equation in its exponential form as:

    Unfortunately,the Rackett Eq.(3)was notsuccessfulin all cases,and hence,it was later modified by Spencer and Danner[21].The improved version was proved reliable in predicting the molarvolume of hydrocarbons,organic compounds,and inorganic compounds.The modification introduced by Spencer and Danner was mainly by replacing the compressibility factorZcwith a component specific compressibility factor ZRA.In this case,a reference experimental molarvolume(VSR)ata reference temperature(TR)is needed and Eq.(3)was rewritten as:

    The value ofZRAis determined from:

    This form of the Rackett model was very successful for predicting saturated molecular liquids molar volume data.For DES,experimental critical thermodynamic data are not available and hence they can be evaluated using group contribution methods[10].To improve the prediction capability of Eq.(5)when used for DES,the equation was modified by introducing two parameters(aandb)and Eq.(5)was written as:

    The two parameters were evaluated by optimizing DES molar volume data against the model predictions and were set to a=16/7 andb=5/24[25].This new form resulted in a reduction of more than three folds in the absolute relative average deviation in molar volume as compared to the original Rackett model.

    However,the model in Eq.(6)does not cater for the effect of molar composition of the DES which is an important parameter in the synthesis of DES.Altering the molar composition of the corresponding salt and HBD that makeup the DES results in considerable variation in the DES physical and thermodynamic properties.Hence,in this work,this contribution is added to Eq.(6)in the form of a quadratic polynomial with respect to salt molar fraction.Eq.(6)is rewritten in the form:

    wherexrepresents the salt molar composition in the DES anda1toa5are model parameters.

    3.Experimental Measurements of Molar Volume

    Choline chloride(2-hydroxyethyl-trimethylammonium),and urea with purity(>98%)were supplied by Merck Chemicals(Darmstadt,Germany).These two chemicals were dried in a vacuum oven before use at a temperature of 353.15 K to eliminate moisture contamination.The DES synthesis was conducted as described in our previous work[2].Three different mole fractions of the ChCl:urea DES(known as reline)were prepared.A chemical sample description table is given in Table 1.

    Experimental molar volumes were evaluated by measuring DES densities at different temperatures using a DMA4500 vibrating tube density/specific gravity meter(Anton Paar,Austria)at temperatures from 298.15 to 368.15 K with three replicates for each reading as described in Shahbazet al.[8].The average measurement standard uncertainty in density was 0.0025 g cm-3.All DES samples were prepared at atmospheric pressure and under tight control of moisture content and also kept in an airtight vials for storage in a moisture controlled desiccator.The water content of samples of the prepared DESs was measured by Karl Fisher titration method.The average measured moisture content was less than 0.05 wt%.

    4.Results and Discussion

    Atotalof 384 experimentalmolar volume data values,were used for developing the proposed model.These values were subdivided into two groups.A training set consisting of nine different DESs at different salt:HBD molar compositions with a total of 333 experimental molarvolume values.In addition,another set of four different DESs was regarded as the model validation set which consists of 50 mol·L–1volume data values.The acronyms,type of salt and HBD used and their molar composition are all given in Table 2.All experimental data were extracted from the literature.However,the data for DES10 was done in this work since the literature lacks the molar volume data for this DES at the three selected mole fractions.Measured density data for DES10 are reported in Table 3.

    Table 1Chemical sample description table

    Table 2List of DESs used in this work with their acronyms,composition and sources

    Table 3Measured density(g·cm-3)and corresponding molar volume(cm3·mol-1)data for DES10 at a pressure p=0.1 MPa①

    Fig.1,shows a comparison between the measured density data of this work with those reported in the literature for the DES10–2(ChCl:urea,1:2).The density data generated by this work deviates by an average of 1.41%from those reported by Yadav and Pandey[16]and Liron and Li[29].This may be due to the method of preparing the DES.In both reported works,the DES was purchased from Scionix Ltd.and used as received.In contrast,the DES used in the current work was prepared from its ingredients(ChCl and urea)after drying in the oven.Considering this DES in particular,comparison with literature data has been reported previously[28].Shah and Mjalli compared the density data of the DES10–2 systemwith others and the differences have been observed.

    Fig.1.Comparison of this work density data to literature data.

    The value of DES molar volume depends on the nature of its constituting components,their mole fractions and temperature.The experimental molar volumes of the DESs studied in this work are shown graphically as symbols in Fig.2.Values of molar volume occupied a wide range starting from 72 cm3·mol-1to 264 cm3·mol-1.DES9 attained the highest molar volume among all studied DESs(232–264 cm3·mol-1).DES2 and DES4 have the lowest molar volume values(72–84 cm3·mol-1)and DES5 and DES7 attained mid-range values(113–139 cm3·mol-1).It is also noticed that the DESs containing same salt result in higher molar volumes when glycerol is used as HBD compared to ethylene glycol-based DESs.This can be attributed to the difference in molecular weight of the two HBD(92.01 for glycerol and 62.07 for ethylene glycol).For example,considering the ChCl,DEAC,MTPB and TBAC salts,the glycerol based DESs have molecular mass of(107.917,112.589,158.373,149.660)resulting in molar volumes of(90.53,95.98,122.05,136.63)at the same reference temperature.However,using the same salts and mole fractions,the ethylene based DESs have molar mass of(87.894,92.566,135.858,129.255)with a corresponding molar volumes of(78.65,84.19,108.68,102.68)respectively.This effect of molar mass on the molar volume can also be seen for all studied DES.Fig.3,shows graphically the experimental molar volume and molecular weights of all studied DESs.It can be seen that the trends and to some extent the values of the DESs molar volumes have the same order as that of the corresponding molar volume.

    Fig.2.Experimental and proposed density model predictions of the used DESs.

    Fig.3.The experimental molar volume and molecular weights of the studied DES at the reference temperature.

    As expected,temperature has a direct positive effect on the values of molar volumes.The increase of temperature results in increasing molecular kinetic energy,which allows molecules to travel farther apart from each other increasing the molar volume of the DES.All studied DESs showed similar monotonic increasing trends with increasing salt content in the DES structure.In the same figure,the molar volumes and the molecular mass of the DESs show similar approximate trends.This indicates that the increase in the molar composition results in increasing the molar mass of the DES and consequently,the volume occupied by the molecules increases which results in increasing the DES molar volume.This highlights the importance of considering the molar composition of the DES in predicting the molar volume.

    The critical properties data namely;temperature,volume and pressure for all studied DESs were estimated using the modified Lydersen–Joback–Reid group contribution method[26]whereas the acentric factor was calculated based on the method of Valderrama and Robles[27].In the calculation,the critical properties of each DES salt and HBD were calculated separately,then the Lee–Kesler mixing rules equations recommended by Knappet al.were utilized to calculate the critical properties of the corresponding DES[10].Table 4 lists the calculated critical properties used in this work.

    Table 4Critical properties of the DES systems used in this work

    The experimental data of the training set of DESs composed of the first nine DESs in Table 2,were used in combination with an optimization algorithm to regress the proposed model of Eqs.(7)and(8).

    To check the predictive capability of the proposed model,the Average Relative Deviation(ARD)was calculated as:

    The proposed molar volume model for the studied DES was estimated by consolidating the model predictions with the experimentally measured molar volume data.This is done by minimizing an objective function of the form:

    The finally optimized model parameters were calculated as follows:a1=0.8604,a2=0.3330,a3=-0.6124,a4=0.0840 and a5=3.8482

    For the sake of simplifying the use of the model without sacrificing its prediction efficiency,the five model parameters were converted to equivalent fractional representations.Hence,these parameters are represented as:

    The molar volume model of Eqs.(7)and(8),can then be written as:

    The optimization algorithm reached an optimum solution with an average ARD of around 0.1,a coefficient of determinate of 0.998 and a t-test p-value of 0.994.This indicates the high degree of goodness of fit.In addition,the p-value>significance level,indicates insignificant differences between the reference experimental DESs molar volume measurements and those obtained from model predictions.

    Fig.4 shows a graphical representation of the percentage average deviation between the experimental and model predicted molar volumes as a function of temperature.In general,model predictions are better at lower temperatures.The MTPB-based DES attained the highest accuracy with lowest ARD values(ARD=0.035),the prediction of the ChCl-based DESs molar volume were the least(ARD=0.148).Values of ARD and t-test p-values of the model predictions are also given in Table 5.

    Fig.4.Comparison of DES density estimation deviations from experimental data using the new model.

    Table 5Average relative deviations(ARD)and t-test p-values for the molar volume new(NEW)and the conventional Rackett(RAC)model predictions

    Fig.5.Experimental and the Rackett density model predictions used DESs.

    Fig.6.Comparison of DES density estimation deviations from experimental data using the Rackett model.

    Fig.7.New model molar volume predictions for the validation set of DES.

    To benchmark the proposed model performance,its performance was compared to the well-known Rackett model.The calculated critical properties were utilized in the Rackett model of Eq.(5)to predictmolar volumes and the predictions are shown in Fig.5.Overall,the Rackett model gave worse predictions than that of the proposed model.This is especially clear for the ChCl and DEAC-based DESs.For these two systems the ARD reached 2.757 and 2.283 respectively.Table 5 gives a summary of the predictions deviations.The molar volume of both training and validation DES sets were predicted with an average ARD of 1.648 and 1.626,respectively.The worse prediction of the Rackett model was that for DES13 which attained at-testp-value of 0.0831 which is very close to the significance limit of 0.05.Looking at the graphical representation of the ARD in Fig.6,we notice the monotonic increase as temperature increases.Although the Rackett model predictions are acceptable at the lower temperature range,however,its accuracy deteriorates rapidly and reaches an ARD of 6.142 for the case of the ChCl-based DES.

    Fig.7,shows the model predictions for the four DESs used in the validations set.Surprisingly,the model predictions for the validation DES set were even better than that of the training set.The ARD of the model for the validation set was 0.085.This high degree of prediction for DESs that were not part of the model optimization procedure give high confidence in using the model for other DESs not studied in this work.

    Fig.8 statistically summarizes the performance of the two models predictions as compared to the experimental molar volume data.This is depicted as a grouped box plots for the four different types of DESs used.In each one of the four grouped box plots,the first box represents the experimental values while the second and third represent the proposed and Rackett model predictions.The first two boxes are almost identical in terms of size,median,and quartiles.While the third box representing the Rackett model predictions is noticeably different indicating its inferiority relative to the proposed model.

    5.Conclusions

    The effect of DES composition has a pronounce effect on its general characteristics and physical and thermodynamic properties.In this work,the effect of molar composition of DES in the form of salt molar fraction is incorporated in the well-known Rackett molar volume model.The improved model predicts the DES molar volume as a function of calculated hypothetical DES critical data based on a group contribution method.

    A set of 13 DES systems of type III DES involving four common quaternary ammonium and phosphonium salts was used to calculate the model parameters using an evolutionary optimization algorithm.Experimental data of molar volume for these DESs were collected from the literature in addition to one system(ChCl:urea)measured in this work.Nine of the DES considered were used for optimizing model parameters and four others for validating its performance.The new model prediction performance was consolidated with experimental data and compared to the conventional Rackett model predictions.

    Fig.8.Grouped box plot for the experimental and predicted molar volume data(New:new model,RK:Rackett model).

    In general,the improved model performance surpassed the conventional one for both training and validation sets.An average relative percentage deviation of around 0.1%was attained for these sets.This means that the prediction performance of the new model is more than ten folds better compared to that of the Rackett model.Additionally,the Rackett model accuracy depends on the distance of the considered temperature away from the used reference temperature.As this difference gets larger,the prediction discrepancy becomes larger.This is in contrast to the new model,which attained a smaller and more consistent deviation as the temperature is increased.

    Incorporating the effect of DES molar composition in the molar volume model enables the better prediction of this property.In addition,the DES molar volume at other not reported molar compositions can be predicted which enables using the model in related design and simulation studies.

    [1]B.Tang,K.H.Row,Recent developments in deep eutectic solvents in chemical sciences,Monatsh.Chem.144(2013)1427–1454.

    [2]F.S.Mjalli,J.Naser,B.Jibril,S.Al-Hatmi,Z.S.Gano,Ionic liquids analogues based on potassium carbonate,Thermochim.Acta575(2014)135–143.

    [3]R.Yusof,E.Abdulmalek,K.Sirat,M.B.Abdul Rahman,Tetrabutylammonium bromide(TBABr)-based deep eutectic solvents(DESs)and their physical properties,Molecules19(2014)8011–8026.

    [4]A.P.Abbott,D.Boothby,G.Capper,D.L.Davies,R.K.Rasheed,Deep eutectic solvents formed between choline chloride and carboxylic acids:Versatile alternatives to ionic liquids,J.Am.Chem.Soc.126(2004)9142–9147.

    [5]R.C.Harris,Physical properties of alcohol based deep eutectic solvents(PhD Thesis)University of Leicester,Leicester,UK,August 2008.

    [6]R.C.Reid,J.M.Prausnitz,B.E.Poling,The properties of gases and liquids,fourth ed.McGraw-Hill,New York,1987.

    [7]J.Jacquemin,G.Rile,P.Nancarrow,D.W.Rooney,F.Margarida,A.H.P.Agilio,C.Hardacre,Prediction of ionic liquid properties.I.Volumetric properties as a function of temperature at 0.1 MPa,J.Chem.Eng.Data53(2008)716–726.

    [8]K.Shahbaz,S.Ghareh Bagh,F.S.Mjalli,I.M.AlNashef,M.A.Hashim,Prediction of refractive index and density of deep eutectic solvents using atomic contributions,Fluid Phase Equilib.354(2013)304–311.

    [9]F.S.Mjalli,V.Gholamreza,K.Shahbazb,I.M.AlNashef,Application of the E?tvos and Guggenheim empirical rules for predicting the density and surface tension of ionic liquids analogues,Thermochim.Acta575(2014)40–44.

    [10]K.Shahbaz,F.S.Mjalli,I.M.AlNashef,M.A.Hashim,Prediction of deep eutectic solvents densities at different temperatures,Thermochim.Acta515(2011)67–72.

    [11]K.Shahbaz,F.S.Mjalli,I.M.AlNashef,M.A.Hashim,Prediction of the surface tension of deep eutectic solvents,Fluid Phase Equilib.319(2012)48–54.

    [12]F.S.Mjalli,J.Naser,B.Jibril,V.Alizadeh,Z.S.Gano,Tetrabutylammonium chloride based ionic liquid analogues and their physical properties,J.Chem.Eng.Data59(2014)2242–2251.

    [13]F.S.Mjalli,N.M.A.Jabbar,Acoustic investigation of choline chloride based ionic liquids analogues,Fluid Phase Equilib.381(2014)71–76.

    [14]G.W.Guo,Y.Hou,S.Ren,W.Wu,Formation of deep eutectic solvents by phenols and choline chloride and their physical properties,J.Chem.Eng.Data58(2013)866–872.

    [15]B.Jibril,F.S.Mjalli,J.Naser,Z.S.Gano,New tetrapropylammonium bromide based deep eutectic solvents:Synthesis and characterizations,J.Mol.Liq.199(2014)462–469.

    [16]A.Yadav,J.R.Kar,M.Verma,S.Naqvi,S.Pandey,Densities of aqueous mixtures of(choline chloride+ethylene glycol)and(choline chloride+malonic acid)deep eutectic solvents in the temperature range 283.15–363.15 K,Thermochim.Acta600(2015)95–101.

    [17]N.Roshan,S.Ghader,Developing models for correlating ionic liquids density:Part 1 Density at 0.1 MPa,Fluid Phase Equilib.331(2012)33–47.

    [18]C.Ye,J.M.Shreeve,Rapid and accurate estimation of densities of room temperature ionic liquids and salts,J.Phys.Chem.A111(2007)1456–1461.

    [19]R.L.Gardas,J.A.P.Coutinho,Extension of the Ye and Shreeve group contribution method for density estimation of ionic liquids in a wide range of temperatures and pressures,Fluid Phase Equilib.263(2008)26–32.

    [20]H.G.Rackett,Equation of state for saturated liquids,J.Chem.Eng.Data15(1970)514–517.

    [21]C.F.Spencer,R.P.Danner,Improved equation for prediction of saturated liquid density,J.Chem.Eng.Data17(1972)236–241.

    [22]J.O.Valderrama,W.S.Wilson,A.L.Juan,Critical properties,normal boiling temoratures and acentric factor of 200 ionic liquids,Ind.Eng.Chem.Res.47(2008)1318–1330.

    [23]K.Shahbaz,S.Baroutian,F.S.Mjalli,M.A.Hashim,I.M.AlNashef,Densities of ammonium and phosphonium based deep eutectic solvents:Prediction using artificial intelligence and group contribution techniques,Thermochim.Acta527(2012)59–66.

    [24]F.S.Mjalli,Mass connectivity index-based density prediction of deep eutectic solvents,Fluid Phase Equilib.409(2016)312–317.

    [25]F.S.Mjalli,K.Shahbaz,I.M.AlNashef,Modified Rackett equation for modelling the molar volume of deep eutectic solvents,Thermochim.Acta614(2015)185–190.

    [26]V.H.Alvarez,J.O.Valderrama,A modified Lydersen–Joback–Reid method to estimate the critical properties of biomolecules,Alimentaria254(2004)55–66.

    [27]J.O.Valderrama,P.A.Robles,Critical properties,normal boiling temperatures and acentric factor of fifty ionic liquids,Ind.Eng.Chem.Res.46(2007)1338–1344.

    [28]D.Shah,F.S.Mjalli,Effect of water on the thermo-physical properties of Reline:An experimental and molecular simulation based approach,Phys.Chem.Chem.Phys.16(2014)23900–23907.

    [29]R.B.Leron,M.-H.Li,High-pressure density measurements for choline chloride:Urea deep eutectic solvent and its aqueous mixtures atT=298.15 K to 323.15 K and up to 50 MPa,J.Chem.Thermodyn.54(2012)293–301.

    十分钟在线观看高清视频www| 大码成人一级视频| 欧美另类一区| 大片免费播放器 马上看| 精品亚洲成a人片在线观看| 老司机影院毛片| 久久精品国产亚洲av涩爱| 国语对白做爰xxxⅹ性视频网站| 国产69精品久久久久777片| 看十八女毛片水多多多| 久久精品国产自在天天线| 免费观看性生交大片5| 在线观看www视频免费| 国产欧美亚洲国产| 亚洲成国产人片在线观看| 欧美 日韩 精品 国产| 欧美人与善性xxx| 欧美精品一区二区免费开放| 国产亚洲最大av| 少妇 在线观看| 亚洲在久久综合| 亚洲精品乱码久久久久久按摩| 欧美bdsm另类| 成人无遮挡网站| 国产亚洲精品第一综合不卡 | 满18在线观看网站| 卡戴珊不雅视频在线播放| 亚洲伊人色综图| 狠狠婷婷综合久久久久久88av| 国产视频首页在线观看| 欧美亚洲日本最大视频资源| 一级毛片黄色毛片免费观看视频| 午夜免费鲁丝| 蜜臀久久99精品久久宅男| 欧美精品av麻豆av| 欧美日韩亚洲高清精品| 国产白丝娇喘喷水9色精品| 999精品在线视频| 久久精品国产鲁丝片午夜精品| 黄色怎么调成土黄色| 亚洲av在线观看美女高潮| 2022亚洲国产成人精品| 日本午夜av视频| 日本av手机在线免费观看| 久久久久国产网址| 亚洲国产av影院在线观看| 一本大道久久a久久精品| 久久婷婷青草| 成年人免费黄色播放视频| 亚洲性久久影院| 亚洲欧洲精品一区二区精品久久久 | freevideosex欧美| 波多野结衣一区麻豆| 我的女老师完整版在线观看| 日本av手机在线免费观看| 免费日韩欧美在线观看| 成人二区视频| 国产乱人偷精品视频| 亚洲成av片中文字幕在线观看 | 日韩成人av中文字幕在线观看| 日本爱情动作片www.在线观看| 黄片播放在线免费| 久久久久精品久久久久真实原创| 久久久久精品人妻al黑| 久久久久久伊人网av| 99九九在线精品视频| kizo精华| 成人黄色视频免费在线看| 亚洲四区av| 精品人妻熟女毛片av久久网站| 日本vs欧美在线观看视频| 国产无遮挡羞羞视频在线观看| 18在线观看网站| 婷婷色av中文字幕| 亚洲av中文av极速乱| 午夜福利视频精品| 尾随美女入室| 欧美国产精品一级二级三级| 男人舔女人的私密视频| 91aial.com中文字幕在线观看| 国产精品一区www在线观看| 人体艺术视频欧美日本| 春色校园在线视频观看| 高清视频免费观看一区二区| 中国三级夫妇交换| 乱人伦中国视频| 国产一区二区三区av在线| 十八禁网站网址无遮挡| 黄色怎么调成土黄色| 高清不卡的av网站| 最近2019中文字幕mv第一页| 日韩制服丝袜自拍偷拍| 丝袜脚勾引网站| 免费av不卡在线播放| 卡戴珊不雅视频在线播放| 国产成人精品一,二区| 国产欧美日韩综合在线一区二区| 亚洲精品久久午夜乱码| 久久精品国产亚洲av天美| 日本与韩国留学比较| 晚上一个人看的免费电影| 国产av国产精品国产| av线在线观看网站| 久久免费观看电影| 丝袜脚勾引网站| 成人毛片a级毛片在线播放| 国产精品国产av在线观看| 又大又黄又爽视频免费| 高清毛片免费看| 久久这里只有精品19| 水蜜桃什么品种好| 日韩av不卡免费在线播放| 亚洲国产精品成人久久小说| 国产精品偷伦视频观看了| 欧美3d第一页| 99热网站在线观看| av在线老鸭窝| 99久久中文字幕三级久久日本| 丝袜在线中文字幕| 久久99蜜桃精品久久| 国产精品久久久久久精品古装| 这个男人来自地球电影免费观看 | 色94色欧美一区二区| 国产av国产精品国产| 精品一品国产午夜福利视频| 亚洲情色 制服丝袜| 毛片一级片免费看久久久久| 考比视频在线观看| 男女高潮啪啪啪动态图| 精品午夜福利在线看| 两个人免费观看高清视频| 在线看a的网站| a级毛片黄视频| 久久人妻熟女aⅴ| 99九九在线精品视频| 99国产综合亚洲精品| 亚洲精品国产av成人精品| 久久人妻熟女aⅴ| 99热这里只有是精品在线观看| 免费人妻精品一区二区三区视频| 蜜桃国产av成人99| 精品国产一区二区久久| 久久国产精品男人的天堂亚洲 | xxxhd国产人妻xxx| 日韩在线高清观看一区二区三区| 久久久久视频综合| 男女无遮挡免费网站观看| 成人影院久久| 免费看光身美女| xxxhd国产人妻xxx| 国产欧美亚洲国产| 99热全是精品| 日本猛色少妇xxxxx猛交久久| 午夜福利,免费看| 最近手机中文字幕大全| 国产永久视频网站| 国产爽快片一区二区三区| 高清在线视频一区二区三区| 菩萨蛮人人尽说江南好唐韦庄| 国产又色又爽无遮挡免| 国产探花极品一区二区| 丝袜人妻中文字幕| 日本黄大片高清| 国产午夜精品一二区理论片| 精品酒店卫生间| 中文欧美无线码| 大片电影免费在线观看免费| 视频中文字幕在线观看| 母亲3免费完整高清在线观看 | 人妻一区二区av| 九草在线视频观看| 婷婷色综合大香蕉| 亚洲欧美成人精品一区二区| 看免费av毛片| 久久国产精品大桥未久av| 久久国内精品自在自线图片| 免费观看a级毛片全部| 丝瓜视频免费看黄片| 亚洲国产精品专区欧美| 日韩 亚洲 欧美在线| 男女边吃奶边做爰视频| 精品国产乱码久久久久久小说| 免费不卡的大黄色大毛片视频在线观看| 久久久久久久亚洲中文字幕| 亚洲欧洲精品一区二区精品久久久 | 看十八女毛片水多多多| 咕卡用的链子| 日本午夜av视频| 国产毛片在线视频| 一区二区三区四区激情视频| 肉色欧美久久久久久久蜜桃| 国产片特级美女逼逼视频| 国产精品一国产av| 蜜桃在线观看..| 大香蕉97超碰在线| 久久99蜜桃精品久久| 中文字幕免费在线视频6| 国产亚洲午夜精品一区二区久久| 90打野战视频偷拍视频| 亚洲av免费高清在线观看| 一区在线观看完整版| 丁香六月天网| 一级毛片我不卡| 亚洲天堂av无毛| 国产又爽黄色视频| 国产视频首页在线观看| 国产成人精品福利久久| 国内精品宾馆在线| 免费大片黄手机在线观看| 熟女人妻精品中文字幕| 2018国产大陆天天弄谢| 成人亚洲欧美一区二区av| 女的被弄到高潮叫床怎么办| 免费av中文字幕在线| 国产精品一国产av| 18禁国产床啪视频网站| 视频在线观看一区二区三区| 欧美bdsm另类| 夫妻性生交免费视频一级片| 一级片免费观看大全| 亚洲欧洲国产日韩| 精品一区二区三区四区五区乱码 | 少妇人妻久久综合中文| 欧美+日韩+精品| 少妇人妻久久综合中文| 在线观看国产h片| 久久久久久久久久久久大奶| 日韩视频在线欧美| 9热在线视频观看99| 菩萨蛮人人尽说江南好唐韦庄| 亚洲中文av在线| 国产亚洲精品第一综合不卡 | 18禁动态无遮挡网站| 久久ye,这里只有精品| 制服诱惑二区| 日韩成人伦理影院| 亚洲精品第二区| 一级a做视频免费观看| 在线天堂中文资源库| 成年人午夜在线观看视频| 亚洲精品乱久久久久久| 99精国产麻豆久久婷婷| 久久精品国产鲁丝片午夜精品| av一本久久久久| 丝袜人妻中文字幕| 久久婷婷青草| 内地一区二区视频在线| 一级毛片电影观看| 天天操日日干夜夜撸| 午夜福利视频在线观看免费| 欧美国产精品va在线观看不卡| 国产亚洲午夜精品一区二区久久| 亚洲精品,欧美精品| 久久鲁丝午夜福利片| 三上悠亚av全集在线观看| 99久久综合免费| 七月丁香在线播放| 最近最新中文字幕大全免费视频 | 国产亚洲最大av| 人成视频在线观看免费观看| 国产精品麻豆人妻色哟哟久久| 五月天丁香电影| 一级毛片电影观看| 最新中文字幕久久久久| 欧美日本中文国产一区发布| 久久久久久人妻| 国产日韩一区二区三区精品不卡| 欧美bdsm另类| 捣出白浆h1v1| 老熟女久久久| 丰满少妇做爰视频| 精品第一国产精品| 亚洲欧洲国产日韩| 满18在线观看网站| 久久久久精品人妻al黑| 久热久热在线精品观看| 99久国产av精品国产电影| 一级片'在线观看视频| 亚洲精品乱码久久久久久按摩| 巨乳人妻的诱惑在线观看| 久久 成人 亚洲| 少妇人妻 视频| 大陆偷拍与自拍| 在线观看一区二区三区激情| 亚洲国产色片| 国精品久久久久久国模美| 26uuu在线亚洲综合色| 大话2 男鬼变身卡| 亚洲性久久影院| 亚洲av在线观看美女高潮| 免费黄色在线免费观看| 91在线精品国自产拍蜜月| 国产 一区精品| 岛国毛片在线播放| videos熟女内射| 少妇人妻精品综合一区二区| 国产精品欧美亚洲77777| 国产亚洲精品久久久com| 国产精品国产三级专区第一集| 国产白丝娇喘喷水9色精品| 国产欧美日韩一区二区三区在线| 亚洲国产最新在线播放| 少妇的逼好多水| av卡一久久| av黄色大香蕉| 国产精品一区二区在线观看99| 国产亚洲精品第一综合不卡 | 亚洲少妇的诱惑av| 国产 精品1| 久久久久久久精品精品| 国产精品一区www在线观看| 激情五月婷婷亚洲| 一级片免费观看大全| 日本欧美视频一区| 亚洲欧美日韩另类电影网站| 91久久精品国产一区二区三区| 又大又黄又爽视频免费| 亚洲精品视频女| 欧美最新免费一区二区三区| 男人添女人高潮全过程视频| 超碰97精品在线观看| 一本大道久久a久久精品| 97在线视频观看| 26uuu在线亚洲综合色| 99国产综合亚洲精品| 亚洲性久久影院| 国产色爽女视频免费观看| 999精品在线视频| 午夜老司机福利剧场| 国产高清国产精品国产三级| 免费播放大片免费观看视频在线观看| 亚洲av中文av极速乱| 午夜福利在线观看免费完整高清在| 日韩成人伦理影院| 亚洲精品久久成人aⅴ小说| 十八禁高潮呻吟视频| 欧美丝袜亚洲另类| 国精品久久久久久国模美| 啦啦啦在线观看免费高清www| 日本色播在线视频| 国产熟女欧美一区二区| 国产又色又爽无遮挡免| 国产色爽女视频免费观看| 99久国产av精品国产电影| 免费久久久久久久精品成人欧美视频 | av女优亚洲男人天堂| 日韩欧美精品免费久久| 多毛熟女@视频| 蜜臀久久99精品久久宅男| 免费观看av网站的网址| 成人影院久久| 亚洲美女搞黄在线观看| 久久久久精品性色| 咕卡用的链子| 校园人妻丝袜中文字幕| 桃花免费在线播放| 最黄视频免费看| 亚洲精品久久久久久婷婷小说| 免费观看av网站的网址| 90打野战视频偷拍视频| 欧美人与善性xxx| 美女中出高潮动态图| 国产午夜精品一二区理论片| 国产毛片在线视频| 尾随美女入室| 丝瓜视频免费看黄片| 91成人精品电影| 亚洲精品一区蜜桃| 香蕉精品网在线| 亚洲国产欧美日韩在线播放| 黄网站色视频无遮挡免费观看| 久久久久国产精品人妻一区二区| 亚洲人与动物交配视频| 国产精品久久久久成人av| 男男h啪啪无遮挡| 精品卡一卡二卡四卡免费| 久久99热这里只频精品6学生| 国产亚洲午夜精品一区二区久久| 各种免费的搞黄视频| 超色免费av| 婷婷色麻豆天堂久久| 国产女主播在线喷水免费视频网站| 捣出白浆h1v1| 国产成人精品福利久久| 色5月婷婷丁香| 成人午夜精彩视频在线观看| 天天影视国产精品| 成年人免费黄色播放视频| 人人澡人人妻人| 黑人猛操日本美女一级片| 最近最新中文字幕免费大全7| 2022亚洲国产成人精品| 亚洲精品日韩在线中文字幕| 人成视频在线观看免费观看| 色吧在线观看| 秋霞在线观看毛片| 国产伦理片在线播放av一区| 一本—道久久a久久精品蜜桃钙片| 狠狠精品人妻久久久久久综合| 美女大奶头黄色视频| 久久 成人 亚洲| 午夜老司机福利剧场| 一本久久精品| 亚洲精品日本国产第一区| 王馨瑶露胸无遮挡在线观看| 嫩草影院入口| 99九九在线精品视频| 春色校园在线视频观看| 99久国产av精品国产电影| 国产在视频线精品| 精品一区二区三区视频在线| 日韩一区二区三区影片| 久热久热在线精品观看| 亚洲精品中文字幕在线视频| 超碰97精品在线观看| 国产日韩欧美视频二区| 国产深夜福利视频在线观看| 热re99久久精品国产66热6| 高清毛片免费看| 日韩av在线免费看完整版不卡| av网站免费在线观看视频| 男女免费视频国产| 九九在线视频观看精品| 满18在线观看网站| 一级片免费观看大全| 国产黄色免费在线视频| av免费观看日本| 亚洲av成人精品一二三区| 亚洲国产av新网站| 亚洲av.av天堂| 国产精品国产三级国产av玫瑰| 色婷婷av一区二区三区视频| 精品国产乱码久久久久久小说| 亚洲av男天堂| 精品久久蜜臀av无| 天美传媒精品一区二区| 人妻人人澡人人爽人人| 校园人妻丝袜中文字幕| 高清不卡的av网站| 老司机亚洲免费影院| 亚洲五月色婷婷综合| 精品99又大又爽又粗少妇毛片| 亚洲国产成人一精品久久久| 国产在线一区二区三区精| 久久精品aⅴ一区二区三区四区 | 老司机影院毛片| 亚洲av欧美aⅴ国产| 久久精品久久精品一区二区三区| 国产乱人偷精品视频| 亚洲第一av免费看| 中国美白少妇内射xxxbb| 大香蕉久久网| 91午夜精品亚洲一区二区三区| 国产精品成人在线| 黑人高潮一二区| 一区二区av电影网| xxx大片免费视频| 99热国产这里只有精品6| 大码成人一级视频| 人人澡人人妻人| 又黄又粗又硬又大视频| 曰老女人黄片| 成年av动漫网址| 精品国产一区二区三区四区第35| 亚洲丝袜综合中文字幕| 亚洲人成77777在线视频| 亚洲精品aⅴ在线观看| 91午夜精品亚洲一区二区三区| 午夜福利网站1000一区二区三区| 69精品国产乱码久久久| 精品国产露脸久久av麻豆| 国产男女超爽视频在线观看| 永久免费av网站大全| av福利片在线| 亚洲av福利一区| 亚洲欧美清纯卡通| 9191精品国产免费久久| 丝袜脚勾引网站| 18禁动态无遮挡网站| 亚洲国产看品久久| 精品少妇黑人巨大在线播放| 国产精品久久久久久久电影| 国产精品一国产av| 国产日韩欧美在线精品| 一本一本久久a久久精品综合妖精 国产伦在线观看视频一区 | av网站免费在线观看视频| 精品一区二区免费观看| 久久久久久久精品精品| videossex国产| 亚洲五月色婷婷综合| 久久久久久久亚洲中文字幕| 不卡视频在线观看欧美| 午夜福利网站1000一区二区三区| 少妇人妻久久综合中文| 黄片播放在线免费| 啦啦啦啦在线视频资源| 精品99又大又爽又粗少妇毛片| 成人手机av| 一区二区av电影网| 一边亲一边摸免费视频| 2021少妇久久久久久久久久久| 女人被躁到高潮嗷嗷叫费观| 亚洲,欧美精品.| 永久免费av网站大全| av福利片在线| 欧美国产精品一级二级三级| 在线观看免费高清a一片| 中文乱码字字幕精品一区二区三区| 如何舔出高潮| 午夜视频国产福利| 男女免费视频国产| 人人妻人人澡人人看| √禁漫天堂资源中文www| 一级毛片我不卡| 精品99又大又爽又粗少妇毛片| 午夜福利乱码中文字幕| 伊人亚洲综合成人网| 午夜av观看不卡| av一本久久久久| 51国产日韩欧美| h视频一区二区三区| 99国产综合亚洲精品| 亚洲欧洲国产日韩| 国产1区2区3区精品| a级毛色黄片| 一级爰片在线观看| 久久久久久久久久人人人人人人| 久久精品国产自在天天线| 狂野欧美激情性xxxx在线观看| 亚洲精品国产av成人精品| 午夜精品国产一区二区电影| 欧美激情国产日韩精品一区| 在线观看免费日韩欧美大片| 国产亚洲最大av| 2021少妇久久久久久久久久久| 亚洲图色成人| 亚洲精品美女久久av网站| 免费高清在线观看视频在线观看| 男女高潮啪啪啪动态图| 秋霞在线观看毛片| 91精品三级在线观看| 只有这里有精品99| 欧美另类一区| 欧美精品亚洲一区二区| 蜜桃国产av成人99| 少妇人妻久久综合中文| 王馨瑶露胸无遮挡在线观看| 中文字幕免费在线视频6| 久久久久久久久久久免费av| 最新中文字幕久久久久| 最近中文字幕高清免费大全6| 免费黄色在线免费观看| 国产成人一区二区在线| 日韩一本色道免费dvd| 91久久精品国产一区二区三区| 成人二区视频| 亚洲久久久国产精品| 国产精品无大码| 最近中文字幕高清免费大全6| 欧美亚洲日本最大视频资源| 国产av一区二区精品久久| 久久免费观看电影| 校园人妻丝袜中文字幕| 美女视频免费永久观看网站| 九草在线视频观看| 人人妻人人澡人人看| 午夜91福利影院| 丁香六月天网| 欧美最新免费一区二区三区| 一区二区三区乱码不卡18| 丝瓜视频免费看黄片| 最近中文字幕2019免费版| 国产成人精品婷婷| 久久久久精品性色| 国产一区二区三区综合在线观看 | 日韩成人av中文字幕在线观看| 欧美 日韩 精品 国产| 边亲边吃奶的免费视频| 国产精品99久久99久久久不卡 | 亚洲av欧美aⅴ国产| 制服人妻中文乱码| 亚洲图色成人| 99国产综合亚洲精品| 18禁裸乳无遮挡动漫免费视频| 国产精品嫩草影院av在线观看| 一个人免费看片子| 欧美精品人与动牲交sv欧美| 在线观看国产h片| 精品亚洲乱码少妇综合久久| 男男h啪啪无遮挡| 午夜福利在线观看免费完整高清在| 日本vs欧美在线观看视频| 欧美精品亚洲一区二区| 考比视频在线观看| 中文字幕人妻熟女乱码| 久久精品国产综合久久久 | 日韩熟女老妇一区二区性免费视频| 色婷婷av一区二区三区视频| 精品久久久精品久久久| 99久久人妻综合| 国产黄色免费在线视频| 高清欧美精品videossex| 久久av网站| 亚洲av成人精品一二三区| 国产免费一区二区三区四区乱码| 少妇被粗大的猛进出69影院 | 成人毛片a级毛片在线播放| 久久韩国三级中文字幕| 久久久久久久亚洲中文字幕| 久久久亚洲精品成人影院| 日本av手机在线免费观看| 久久精品国产a三级三级三级| 日韩av在线免费看完整版不卡| 中文字幕av电影在线播放| 男女无遮挡免费网站观看|