• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Catalytic kinetics of dimethyl ether one-step synthesis over CeO2–CaO–Pd/HZSM-5 catalyst in sulfur-containing syngas process☆

    2016-06-12 03:48:18RuizhiChuWenxinHouXianliangMengTingtingXuZhenyongMiaoGuoguangWuLeiBai
    Chinese Journal of Chemical Engineering 2016年12期

    Ruizhi Chu ,Wenxin Hou ,Xianliang Meng ,*,Tingting Xu ,Zhenyong Miao ,Guoguang Wu ,Lei Bai

    1 School of Chemical Engineering and Technology,China University of Mining&Technology,Xuzhou 221116,China

    2 High-Tech Research Institute of China University of Mining and Technology,Lianyungang 222000,China

    3 Department of Chemical and Biomedical Engineering,West Virginia University,Morgantown 26506,USA

    1.Introduction

    Interest in hydrogen production for fuel cell applications is steadily increasing due to environmental concerns[1,2].Among the various feed gases,DME proved to be a good alternative fuel to minimize the emissions of global warming gases and hazardous components such as SOx,NOxand particulate matter,because DME is similar in nature to liquefied petroleum gas(LPG)[3–5].

    Until now,two synthesis methods of DME have been reported:approach one is the traditional methanol synthesis followed by a dehydration step[6];approach two is DME one-step synthesis fromsyngas under hybrid catalysts in the same reactor[7–10].DME one-step synthesis from sulfur-containing syngas attains more and more attention recently due to higher conversion and lower cost in comparison to methanol dehydration[11].The key issue of DME one-step synthesis from coal-derived syngas is catalytic stability of sulfur-tolerant[12].At present,the research work is focused on the sulfur-tolerant catalyst screening according to the DEM selection,activity or carrier effect[13,14].Although there are some researches on kinetics of DME one step synthesis from sulfur-containing syngas,most researchers tend to study on the kinetics of methanol synthesis or methanol dehydration individually.Such as,Popet al.[15]studied the intrinsic kinetics of methanol dehydration to DME in fixed bed reactor over H-SAPO-34 catalyst,and the experimental data were in good agreement with hyperbolic kinetic equation derived by Lu[16].Zhang[17]studied the intrinsic kinetics of methanol dehydration to DME and the effect of operation conditions on the conversion of methanol in fixed bed reactor over catalyst MD-2.The results indicate that the intrinsic kinetic equation based on the mechanism of Langmuir–Hinshelwood dissociation adsorption was reliable.However the pre-existing single reaction kinetic model could not be fully applicable in DME one-step synthesis from the reaction system,and different forms of kinetic equations or different parameter values could be obtained under different catalysts and different operating conditions.

    Taking into account these results,the main objective of our study was to develop a sulfur-tolerant catalyst for DME one-step synthesis.After years of efforts,we have gained notable achievement in the preparation methods,modification technologies and sulfur-tolerant mechanism involving sulfur-tolerant Pd-based catalysts[14,18–20].The comparison of the stability of the synthetic catalyst and other common catalysts also has been presented in the previous literature[21].And the catalyst has good sulfur tolerance and catalytic activity.In this paper,we focused on the catalytic kinetics of DME one-step synthesis over the hybrid catalyst of CeO2–CaO–Pd/HZSM-5,and its macrokinetics model has been founded.Kinetic model for the methanol synthesis reaction and the dehydration of methanol were obtained separately according to reaction mechanism and Langmuir–Hinshelwood mechanism.Regression parameters were investigated by the method combining the simplex method and Runge–Kutta method.

    2.Experimental

    2.1.Catalyst preparation

    5 g of HZSM-5(particle size 0.6–0.9 mm)was firstly impregnated into nitrate aqueous mixture solution of Ce3+and Ca2+in a 150 ml of flask at 50 °C for 2 h,the suspension was heated to 80 °C and vigorously stirred at the temperature until most of water was removed by evaporation followed by calcination in microwave oven with an indicated power 420 W for 1 h,then a series of CeO2–CaO/HZSM-5 carrier materials were obtained.Following the same process to supporting metal Pd on CeO2–CaO/HZSM-5 and then,nano-sized CeO2–CaO–Pd/HZSM-5 catalyst was obtained.

    2.2.Catalytic test

    Catalytic activity and sulfur tolerance of CeO2–CaO–Pd/HZSM-5 and kinetic experiments were carried out in gas phase in a fixed-bed microreactor,using a reaction tube with 5 mm of inner diameter.CeO2–CaO–Pd/HZSM-5 catalyst particles were loaded into the tube and the ratio of the total height of the catalyst bed with the upper and lower silica cotton and the catalyst particle size was greater than 50.The gas in the catalyst bed layer could be regarded as a flat pushing flow.The blank experiment results show that the reaction material and the silica filler have no effect on the catalytic reaction.The catalyst was heated to 220 °C under hydrogen flow at 1 °C·min-1and maintained the temperature for 2 h.Then H2+CO,N2,and H2S(volume ratio(H2+CO):N2:H2S=75:24.5:0.5)were introduced through a mass flow controller,slow step-up to desired pressure and temperature,to initiate the reaction.Reaction products exhaust through the valve after decompression,which leads to chromatographic analysis,or shorting.CO conversion(XCO,%)and product DME selectivity(SDME,%)were calculated by normalization.Specific calculation formula is as follows:

    The content of each component was expressed in mole percent.

    3.Results and Discussion

    3.1.Catalytic activity and sulfur tolerance of CeO2-CaO-Pd/HZSM-5

    As shown in Fig.1,an induction period exists at the initial stage of reaction over CeO2–CaO–Pd/HZSM-5 catalyst from sulfur-containing syngas.DME selectivity increases in the induction period and then reached to stable(after 10 h),which is consistent with the results of Ma et al.[22].Ma et al.explain that it is because of the elimination of the thin layers of reduced ceria covered on the Pd(1 1 1)active sites.It is well accepted that Pd(1 1 1)plane adjacent to ceria is the efficient active sites for methanol formation.Xue et al.[23]found the addition of Ca reduced the number of strong acid sites and enhanced the metal support interaction and increased the electronic surroundings of Pd sites,which maintained Pd in a partly oxidized(Pdδ+)state and consequently increased the activity for methanol.Naitoet al.[24]found that thin layers of additive component ceria covered on(1 1 1)plane of Pd particles could be removed by formed H2O during reaction,which was responsible for the increment of DME selectivity in the induction period.

    Fig.1.CO conversion(black)and DME selectivity(red)over CeO2–CaO–Pd/HZSM-5 for DME one-step synthesis from sulfur-containing syngas.

    It could be concluded that the CeO2–CaO–Pd/HZSM-5 catalyst is very active and stable in sulfur-containing syngas and exhibited excellent catalytic performance for DME synthesis.In order to ensure that the kinetics experimental results are not significantly influenced by induction period and catalyst deactivation,the experimental data should be read after 10 h in the catalytic reaction.

    3.2.Synthesis conditions of DME over CeO2-CaO-Pd/HZSM-5

    3.2.1.Temperature

    Fig.2 shows that CO conversion rate and DME selectivity increase with the rise of temperature,while DME selectivity decreases when the temperature is over 300°C.Conversely,methanol selectivity decreases significantly when the temperature is lower than 280°C and then stabilizes at 3%,and slight increases could be seen over 340°C.The selectivity of CO2presents no regular change under 300 °C,while it rises regularly above 300 °C.The data lead us to the conclusion that the optimal reaction temperature is 300°C.

    Fig.2.Effect of temperature on CeO2–CaO–Pd/HZSM-5 catalytic properties.Reaction condition:p=3.0 MPa,GHSV=1600 L·kg-1·h-1,n H2/n CO=2.0.

    Methanol synthesis reaction,methanol dehydration reaction and water–gas shift reaction are carried out simultaneously on the catalyst during DME one-step synthesis from syngas.In terms of thermodynamics,STD total reaction is a reversible exothermic,the equilibrium conversion should be reduced when the reaction temperature rises.However,the experimental results show that the increase of temperature is favorable to the reaction conversion rate,which contradicts thermodynamics.Since the different characteristics of three reactions,we think bifunctional catalyst which has one active center for methanol synthesis and water–gas shift reaction and the other for methanol dehydration is required for STD reaction.The spatial arrangement of the two kinds of active centers on the catalyst surface and the porous structure of the catalyst support make the reaction always kinetically controlled.Elevating temperature accelerates the movement of molecules,increases the number of activated molecules,and accelerates the reaction to direction of the DME.Thus,higher reaction temperature would improve the yield of DME in suitable temperature range.Nevertheless,the total reaction is close to thermodynamic equilibrium values[25]and DME is easy to be decomposed at high temperature.Therefore,the reaction temperature should not be higher than 300°C.

    3.2.2.Pressure

    Fig.3 indicates that CO conversion rises rapidly and reaches a maximum at 4 MPa then subsequently declines sharply with increasing pressure.The stoichiometric coefficient of direct synthesis of DME from CO and H2is reduced,consequently,elevating pressure facilitates CO conversion.However,since the number of molecules for methanol synthesis reaction reduces,quantity of generated methanol increases and excess methanol could not promptly dehydrate with the increase of pressure,which leads to reverse inhibited methanol synthesis reaction,so CO conversion reduces at high pressure.In addition,the number of molecules remains the same pre/post methanol dehydration reaction so that pressure has little effect on the reaction.DME selectivity slightly changes and reaches a higher level at 3–4 MPa just because of the effect of synergy.

    Fig.3.Effect of pressure on CeO2–CaO–Pd/HZSM-5 catalytic properties.Reaction condition:T=300 °C,GHSV=2000 L·kg-1·h-1,n H2/n CO=2.0.

    3.2.3.H2/CO mole ratio

    Fig.4.Effect of H2/CO on CeO2–CaO–Pd/HZSM-5 catalytic properties.Reaction condition:T=300 °C,p=3.0 MPa,GHSV=2000 L·kg-1·h-1.

    As exhibited in Fig.4,it can be seen that CO conversion on the catalyst improves as the H2/CO mole ratio increases.Especially,CO conversion rises up fastest when the H2/CO in 1–2 and then tends to slow.Methanol selectivity increases with the increase of H2/CO,while CO2conversion decreases.DME selectivity reaches the maximum when the H2/COis 2 and then decreases obviously.Keeping the pressure constant and increasing H2/CO are detrimental to water gas shift reaction.When the accumulated water vapor too late to translate,it is inevitable to restrain methanol synthesis reaction and the growth of CO conversion slow down.Indeed,superfluous water vapor would also inhibit the methanol dehydration reaction,which leads to reduction of DME and CO2selectivity.3.2.4.GHSV

    The reaction contact time of syngas and catalyst is shortened due to the increasing space velocity with the increase of space velocity,which reduces the selectivity of DME and CO2and the CO conversion,and increases the selectivity of methanol(Fig.5).The increasing selectivity of methanol owes to the untimely completion of methanol dehydration.From the thermodynamic point of view,increasing space velocity has little influence on water–gas shift reaction[26],and the methanol dehydration reaction and the water–gas shift reaction always maintain equilibrium.As a consequence,both the selectivity of DME and CO2fell off in the same range.

    Fig.5.Effect of GHSV on CeO2–CaO–Pd/HZSM-5 catalytic properties.Reaction condition:T=300°C,p=3.0 MPa,n H2/n CO=2.0.

    3.3.Kinetic mechanism and model

    Kinetic model of bifunctional catalyst particles CeO2–CaO–Pd/HZSM-5 is established under the conditon(240–300 °C,3–4 MPa,nH2/nCO=2:1 and space velocity 2000–6000 L·kg-1·h-1)based on the above experimental results of technological conditions.

    3.3.1.Kinetics experimental conditions

    As exhibited in Fig.6(a),CO conversion remains stable when the particle size of the catalyst is less than 0.6 mm,which implies that the effect of internal diffusion has been excluded.Fig.6(b)demonstrates the effect of external diffusion on CO conversion by changing space velocity under the loading of 0.5 g and 0.7 g,respectively.When the space velocity is less than 6 × 10-4kg·h·L-1,namely more than 1600 L·kg-1·h-1,CO conversion of the two kinds of catalysts loading are basically the same,indicating the influence of external diffusion has been eliminated.

    3.3.2.Kinetics reaction model building

    According to the actual situation,some assumptions made as follows in order to simplify the reaction kinetic equation:

    1.CO is the main raw material for the production of methanol,methanol synthesis from CO2and other side effects are ignored.Thus,the reaction system contains three reactions[27]:

    Methanol synthesis from syngas:

    2.Metal Pd is the active center of methanol synthesis and water gas shift reaction.By contrast,HZSM-5 surface is the active center of the methanol dehydration reaction.

    3.The water gas shift reaction is rapid equilibriumprocess,the reaction is always in an equilibrium state.

    4.The surface reaction of the adsorbed species is identified as the controlling step of the reaction,and the adsorption and desorption are in an equilibrium state.

    3.3.2.1.Surface reaction mechanism and rate equation of methanol synthesis.Methanol synthesis and water gas shift reaction occur mainly on Pd surface.There are chiefly two active centers on the catalyst,C1is adsorption center of CO,CO2,CHO,CH2O,CH3O and CH4O,C2is the adsorption center of H2,H and H2O.The possible mechanisms of the reaction are as follows:

    In the above process,the adsorptions are all weak adsorption except for CO,CO2,H2and H2O.Taking Formula(e)as rate controlling step for the synthesis of methanol and water gas shift reaction,the other steps are considered as equilibrium.The rate equation for the methanol synthesis reaction can be deduced.

    3.3.2.2.Surface reaction mechanism and rate equation of methanol dehydration.Methanol dehydration reaction occurs mainly on HZSM-5 surface,and primary adsorption species on the adsorption center(HX)are CH3OH,CH3+and CH3OHCH3+.The reaction mechanism proceeds according to the Langmuir–Hinshelwood type of molecules adsorption[28].

    Fig.6.Effect of(a)catalyst particle size and(b)space–time on CO transforming-rate.Reaction condition:T=300 °C,p=3.0 MPa,n H2/n CO=2:1.

    The rate controlling step for the dehydration reaction of methanol is described by Formula(k),the other steps are considered as equilibrium.The following expression is used to derive the rate equation for the dehydration of methanol based on Langmuir–Hinshelwood mechanism[28,29]:.

    Herek11andk21in Formulas(4)and(5)are reaction rate constant to be solved.Equilibrium constantsKeqm1andKeqm2are the function of temperature as follows:

    The model contains two rate constants and eight adsorption constants,and each constant could be expressed by the Arrhenius equation and the Van't Hoff equation.Twenty parameters contained in the model are to be confirmed.

    3.3.3.Kinetics experiment data

    The data in Table 1 are used to calculate partial pressure.

    Table 1Results of kinetics experiment

    3.3.4.Parameter estimation

    According to the assumption,the two independent reactions of Formulas(4)and(5)exist in the system.Taking M and DME as the key components,CO conversion is labeled asXCO.The mole fractions of Mand DME are expressed in terms ofYMandYDME,respectively.Material balance calculation of reaction layer volume element is conducted.

    Plug Eqs.(22)and(23)into Eq.(20)and Eq.(21)respectively:

    Numerical integration of the Formulas(24)and(25)are calculated by using Runge–Kutta method[30,31],which obtains the reaction rate of outlet key component.And then the parameter estimation of the model is performed with the simplex method[32].The model parameters obtained are shown in Table 2.

    Table 2Kinetic parameters for dimethyl ether synthesis

    3.3.5.Model validation

    In order to investigate the fitting ability of the model,the relative error of outlet key component concentration CO,CH3OH and DME between the experimental and calculated date is plotted in Fig.7.It could be clearly seen that the relative errors of CO and DME are all less than 5%while the relative error of methanol is less than 11%except for a few points.According to the information gathered above,we may reach the conclusion that the kinetic model could be well correlated with experimental data for DME one-step synthesis catalyzed by CeO2–CaO–Pd/HZSM-5.

    Fig.7.Mole fraction ofCO,CH3OH(M)and DME between the experimental and calculated date.

    4.Conclusions

    In the present work,the nano-sized CeO2–CaO–Pd/HZSM-5 catalyst exhibits excellent catalytic stability for the reaction of sulfur-containing syngas to dimethyl ether.The optimal technological conditions for DME one-step synthesis reaction are 240–300 °C for temperature,3–4 MPa for pressure,2000–3000 L·kg-1·h-1for space velocity and 2–3 for H2/CO mole ratio.Noble metal Pd is the active center of methanol synthesis and water gas shift reaction,while the HZSM-5 surface is the active center of the methanol dehydration reaction that has been assumed.Based on the assumptions,the optimal technological conditions were used to establish kinetic equation of hybrid catalyst of CeO2–CaO–Pd/HZSM-5.By combining the simplex method and Runge–Kutta method to investigate regression parameters,statistical tests show that the model is reliable,and the calculated values are in good agreement with the experimental data.

    Nomenclature

    A pre-exponential factor,mol·(g cat)-1·h-1·MPa-3/2,mol·(g cat)-1·h-1·MPa-1,MPa-1

    B negative value of activation energy,J·mol-1

    Ciadsorption center

    dpcatalyst particle size,mm

    Fimolar flow,mol·h-1

    K adsorption constant

    Keqmequilibrium constants

    kreaction rate constant

    ppressure,MPa

    Rmolar gas constant,J·mol-1·K-1

    Siselectivity of species i,%

    STYDMEDME space–time yield,mmol·g-1·h-1

    Ttemperature,°C

    tspace–time,kg·h·L-1

    wmass of catalyst,g

    XCOCO conversion,%

    Yimole fractions of speciesi yiconstitution of tail gas

    γ reaction rate,mol·g-1·h-1

    standard molar reaction enthalpy,kJ·mol-1

    τ reaction time,h

    Superscripts

    Mmethanol

    [1]A.V.Pattekar,M.V.Kothare,A microreactor for hydrogen production in micro fuel cell applications,J.Microelectromech.Syst.13(2005)7–18.

    [2]R.Retnamma,A.Q.Novais,C.M.Rangel,Kinetics of hydrolysis of sodium borohydride for hydrogen production in fuel cell applications:A review,Int.J.Hydrog.Energy36(2011)9772–9790.

    [3]N.Jamsran,O.Lim,A study on the autoignition characteristics of DME-LPG dual fuel in HCCI engine,Heat Transf.Eng.1–38(2016).

    [4]C.Arcoumanis,C.Bae,R.Crookes,E.Kinoshita,The potential of di-methyl ether(DME)as an alternative fuel for compression–ignition engines:A review,Fuel87(2008)1014–1030.

    [5]K.Sato,Y.Tanaka,A.Negishi,T.Kato,Dual fuel type solid oxide fuel cell using dimethyl ether and liquefied petroleum gas as fuels,J.Power Sources217(2012)37–42.

    [6]Y.Y.Zhu,S.R.Wang,X.L.Ge,Q.Liu,Z.Y.Luo,K.F.Cen,Experimental study of improved two step synthesis for DME production,Fuel Process.Technol.91(2010)424–429.

    [7]Y.Han,H.Zhang,Modeling and simulation of production process on dimethyl ether synthesized from coal-based syngas by one-step method,Chin.J.Chem.Eng.17(2009)108–112.

    [8]F.S.Ramos,A.M.D.D.Farias,L.E.P.Borges,J.L.Monteiro,M.A.Fraga,E.F.Sousa-Aguiar,L.G.Appel,Role of dehydration catalyst acid properties on one-step DME synthesis over physical mixtures,Catal.Today101(2005)39–44.

    [9]A.García-Trenco,A.Martínez,The influence of zeolite surface-aluminum species on the deactivation of CuZnAl/zeolite hybrid catalysts for the direct DME synthesis,Catal.Today227(2014)144–153.

    [10]S.Papari,M.Kazemeini,M.Fattahi,Modelling-based optimisation of the direct synthesis of dimethyl ether from syngas in a commercial slurry reactor,Chin.J.Chem.Eng.21(2013)611–621.

    [11]G.R.Moradi,S.Nosrati,F.Yaripor,Effect of the hybrid catalysts preparation method upon directsynthesis of dimethyl ether from synthesis gas,Catal.Commun.8(2007)598–606.

    [12]J.H.Flores,D.P.B.Peixoto,L.G.Appel,R.R.D.Avillez,M.I.P.D.Silva,The influence of different methanol synthesis catalysts on direct synthesis of DME from syngas,Catal.Today172(2011)218–225.

    [13]D.Feng,Y.Zuo,Steam reforming of dimethyl ether over coupled catalysts of CuO–ZnO–Al2O3–ZrO2and solid-acid catalyst,Chin.J.Chem.Eng.17(2009)64–71.

    [14]R.Z.Chu,Controllable preparation of sulfur-tolerant Pd catalysts under microwave irradiation and application of these catalysts in one-step synthesis of dimethyl ether,J.China Coal Soc.37(2012)711–712(in Chinese).

    [15]G.Pop,G.Bozga,R.Ganea,N.Natu,Methanol conversion to dimethyl ether over H-SAPO-34 catalyst,Ind.Eng.Chem.Res.48(2009)7065–7071.

    [16]W.Z.Lu,L.H.Teng,W.D.Xiao,Simulation and experiment study of dimethylether synthesis from syngas in a fluidized-bed reactor,Chem.Eng.Sci.59(2004)5455–5464.

    [17]L.Zhang,H.Zhang,W.Ying,D.Fang,Dehydration of methanol to dimethyl ether over γ-Al2O3,catalyst:Intrinsic kinetics and effectiveness factor,Can.J.Chem.Eng.91(2013)1538–1546.

    [18]R.Z.Chu,Z.C.Zhang,Y.F.Liu,X.L.Meng,Z.M.Zong,X.Y.Wei,Study on preparation and catalytic properties of Pd/γ-Al2O3catalysts in one-step synthesis of dimethyl ether,Appl.Mech.Mater.66–68(2011)1404–1409.

    [19]X.L.Meng,R.Z.Chu,B.Qin,E.W.Yue,T.T.Chen,X.Y.Wei,Influence of compound additive CeO2–MxOyon catalytic performance of Pd/γ-Al2O3catalyst for one-step synthesis of dimethyl ether,Energy Sources Part A37(2015)870–877.

    [20]R.Z.Chu,X.L.Meng,X.Y.Wei,Z.M.Zong,Z.C.Zhang,Y.F.Liu,Preparation Method of Dual Function Type Palladium Based Catalyst Under Microwave Condition,CN102389793A,2012.

    [21]R.Z.Chu,T.T.Xu,X.L.Meng,G.G.Wu,Mechanism of reaction of CeO2–CaO–Pd/HZSM5 catalyst in the syngas process in the presence of sulfur containing impurities,Prog.React.Kinet.Mech.41(2016)235–244.

    [22]Y.Ma,Q.Ge,W.Li,H.Xu,Methanol synthesis from sulfur-containing syngas over Pd/CeO2catalyst,Appl.Catal.B Environ.90(2009)99–104.

    [23]X.Li,X.W.Wang,M.Zhao,J.Y.Liu,M.C.Gong,Y.Q.Chen,Chin.J.Catal.32(2014)1739–1746.

    [24]S.Naito,T.Kasahara,T.Miyao,Transformation of methane formation sites into methanol formation ones during CORH2,reaction over Pd/CeO2in its SMSI state,Catal.Today74(2002)201–206.

    [25]H.J.Chen,C.W.Fan,C.S.Yu,Analysis,synthesis,and design of a one-step dimethyl ether production via a thermodynamic approach,Appl.Energy101(2013)449–456.

    [26]A.Basile,S.Curcio,G.Bagnato,S.Liguori,S.M.Jokar,A.Lulianelli,Water gas shift reaction in membrane reactors:Theoretical investigation by artificial neural networks model and experimental validation,Int.J.Hydrog.Energy40(2015)5897–5906.

    [27]G.R.Moradi,J.Ahmadpour,F.Yaripour,J.Wang,Equilibrium calculations for direct synthesis of dimethyl ether from syngas,Can.J.Chem.Eng.9999(2011)1–8.

    [28]S.J.Royaee,C.Falamaki,M.Sohrabi,S.S.A.Talesh,A new Langmuir–Hinshelwood mechanism for the methanol to dimethyl ether dehydration reaction over clinoptilolite–zeolite catalyst,Appl.Catal.A Gen.338(2008)114–120.

    [29]L.Tong,L.Chen,Y.Ye,Z.Qi,Kinetic studies on the dimerization of isobutene with Ni/Al2O3as a catalyst for reactive distillation process,Chin.J.Chem.Eng.23(2015)520–527.

    [30]G.Tasi,D.Barna,Analytical and numerical computation of error propagation of model parameters,J.Math.Chem.49(2011)1322–1329.

    [31]M.Poorabdollah,M.H.Beheshty,M.Vafayan,Kinetic modeling of nanoclay reinforced unsaturated polyester resin,Polym.Compos.32(2011)1265–1273.

    [32]G.Dimarco,L.Pareschi,Exponential Runge–Kutta methods for stiff kinetic equations,SIAM J.Numer.Anal.49(2010)2057–2077.

    久久久久久久大尺度免费视频| 欧美成人午夜精品| 国产精品一区二区精品视频观看| 王馨瑶露胸无遮挡在线观看| 美女福利国产在线| 热re99久久国产66热| 搡老熟女国产l中国老女人| 精品久久久精品久久久| 国产精品影院久久| 国产免费av片在线观看野外av| 欧美在线黄色| 另类亚洲欧美激情| 日韩三级视频一区二区三区| 少妇被粗大的猛进出69影院| av线在线观看网站| av免费在线观看网站| 秋霞在线观看毛片| av免费在线观看网站| 曰老女人黄片| 国产精品一区二区精品视频观看| 亚洲精品国产区一区二| 一区二区日韩欧美中文字幕| 天天操日日干夜夜撸| 两人在一起打扑克的视频| 窝窝影院91人妻| 一边摸一边做爽爽视频免费| 亚洲成人国产一区在线观看| 亚洲精品久久久久久婷婷小说| 美女扒开内裤让男人捅视频| 岛国在线观看网站| 久久精品aⅴ一区二区三区四区| 亚洲欧美精品自产自拍| 国产亚洲欧美精品永久| 亚洲va日本ⅴa欧美va伊人久久 | 视频区欧美日本亚洲| 国产欧美日韩一区二区精品| 日日爽夜夜爽网站| 国产高清视频在线播放一区 | 亚洲中文日韩欧美视频| 黄色 视频免费看| 亚洲久久久国产精品| 汤姆久久久久久久影院中文字幕| 久久人人爽av亚洲精品天堂| 飞空精品影院首页| 日本黄色日本黄色录像| 亚洲欧美成人综合另类久久久| 亚洲精品久久午夜乱码| 亚洲全国av大片| 亚洲国产日韩一区二区| 色婷婷av一区二区三区视频| 老司机深夜福利视频在线观看 | 国产片内射在线| 黄色视频在线播放观看不卡| 两个人免费观看高清视频| 纵有疾风起免费观看全集完整版| 亚洲欧洲日产国产| 天堂俺去俺来也www色官网| 亚洲视频免费观看视频| 亚洲色图 男人天堂 中文字幕| 两个人看的免费小视频| 国产高清视频在线播放一区 | 成年人午夜在线观看视频| 欧美精品高潮呻吟av久久| 少妇裸体淫交视频免费看高清 | 欧美日韩精品网址| 亚洲五月色婷婷综合| 黄网站色视频无遮挡免费观看| 一区二区三区激情视频| 亚洲 国产 在线| 女人被躁到高潮嗷嗷叫费观| 久久久久国产精品人妻一区二区| 12—13女人毛片做爰片一| 一级黄色大片毛片| 久久国产精品影院| 日韩 亚洲 欧美在线| 欧美精品啪啪一区二区三区 | 欧美亚洲日本最大视频资源| 国产日韩欧美视频二区| videos熟女内射| 99精品欧美一区二区三区四区| 久久人妻福利社区极品人妻图片| 久久九九热精品免费| 一本—道久久a久久精品蜜桃钙片| 2018国产大陆天天弄谢| 精品高清国产在线一区| a级毛片黄视频| 欧美亚洲日本最大视频资源| 男女无遮挡免费网站观看| 男女之事视频高清在线观看| 操美女的视频在线观看| 91精品伊人久久大香线蕉| 性色av一级| 欧美变态另类bdsm刘玥| 黄频高清免费视频| 日韩制服骚丝袜av| 我的亚洲天堂| 99国产精品一区二区三区| 又黄又粗又硬又大视频| 啦啦啦啦在线视频资源| 国产xxxxx性猛交| 美女大奶头黄色视频| 男女高潮啪啪啪动态图| 免费在线观看影片大全网站| 多毛熟女@视频| 男男h啪啪无遮挡| 人人妻,人人澡人人爽秒播| 日韩欧美免费精品| 黑人猛操日本美女一级片| 亚洲五月色婷婷综合| 高清视频免费观看一区二区| 性少妇av在线| 欧美精品亚洲一区二区| 在线精品无人区一区二区三| 精品熟女少妇八av免费久了| 真人做人爱边吃奶动态| 亚洲av成人不卡在线观看播放网 | 在线 av 中文字幕| 欧美黄色片欧美黄色片| 少妇人妻久久综合中文| 久久人人爽人人片av| 一本一本久久a久久精品综合妖精| 99香蕉大伊视频| 91精品国产国语对白视频| 精品亚洲成国产av| 久久精品成人免费网站| 在线观看免费高清a一片| 午夜免费成人在线视频| 国产成人精品无人区| 国产高清国产精品国产三级| 女人被躁到高潮嗷嗷叫费观| 99国产精品一区二区蜜桃av | 精品欧美一区二区三区在线| 国产精品久久久久久精品电影小说| 国产免费av片在线观看野外av| 超色免费av| 中文字幕最新亚洲高清| 亚洲 欧美一区二区三区| 伊人久久大香线蕉亚洲五| 亚洲成人免费av在线播放| 美女高潮喷水抽搐中文字幕| 亚洲精品美女久久av网站| 久热这里只有精品99| 成年人免费黄色播放视频| 91国产中文字幕| 啦啦啦视频在线资源免费观看| 国产精品影院久久| 男女下面插进去视频免费观看| www.熟女人妻精品国产| 国产老妇伦熟女老妇高清| 久久人人97超碰香蕉20202| 91麻豆精品激情在线观看国产 | 精品国产一区二区久久| 丝袜美足系列| 999久久久国产精品视频| 午夜福利一区二区在线看| 日本a在线网址| 国产黄频视频在线观看| av网站在线播放免费| 中文字幕精品免费在线观看视频| 999精品在线视频| 欧美午夜高清在线| 黄频高清免费视频| 久久这里只有精品19| 精品高清国产在线一区| 久久久欧美国产精品| 如日韩欧美国产精品一区二区三区| 真人做人爱边吃奶动态| 亚洲视频免费观看视频| 日本撒尿小便嘘嘘汇集6| 国产老妇伦熟女老妇高清| 美女高潮喷水抽搐中文字幕| 大片电影免费在线观看免费| 老汉色∧v一级毛片| 久久人妻福利社区极品人妻图片| 高清在线国产一区| 涩涩av久久男人的天堂| 久久天躁狠狠躁夜夜2o2o| 国产av国产精品国产| 国产亚洲精品第一综合不卡| 国产色视频综合| 午夜91福利影院| 成年动漫av网址| 69精品国产乱码久久久| 亚洲一区中文字幕在线| 国产精品.久久久| 大码成人一级视频| 中文字幕制服av| 亚洲七黄色美女视频| 一级毛片电影观看| 精品人妻一区二区三区麻豆| 男女下面插进去视频免费观看| 午夜免费鲁丝| 巨乳人妻的诱惑在线观看| 丝袜人妻中文字幕| 中文字幕精品免费在线观看视频| 一二三四社区在线视频社区8| 欧美黄色淫秽网站| 亚洲va日本ⅴa欧美va伊人久久 | 岛国毛片在线播放| 国产精品麻豆人妻色哟哟久久| 最近中文字幕2019免费版| 亚洲国产av新网站| 91精品国产国语对白视频| 12—13女人毛片做爰片一| 在线天堂中文资源库| 国产精品 国内视频| 国产成人欧美在线观看 | 啦啦啦免费观看视频1| 国产精品.久久久| 亚洲精品国产一区二区精华液| 每晚都被弄得嗷嗷叫到高潮| 亚洲精品日韩在线中文字幕| 夜夜骑夜夜射夜夜干| 蜜桃在线观看..| 夜夜夜夜夜久久久久| 精品少妇一区二区三区视频日本电影| 肉色欧美久久久久久久蜜桃| 美女福利国产在线| 亚洲成人国产一区在线观看| 久久久久国产一级毛片高清牌| 婷婷成人精品国产| 亚洲国产欧美一区二区综合| 精品久久久精品久久久| 亚洲中文av在线| 欧美少妇被猛烈插入视频| 嫩草影视91久久| 国产精品久久久久久人妻精品电影 | 91国产中文字幕| 无限看片的www在线观看| 久久亚洲国产成人精品v| 国产成人欧美在线观看 | 少妇精品久久久久久久| 欧美日韩成人在线一区二区| 久久精品亚洲熟妇少妇任你| 国产精品九九99| 亚洲国产欧美在线一区| 精品人妻1区二区| 男女下面插进去视频免费观看| 久久久久国产一级毛片高清牌| 啦啦啦在线免费观看视频4| 免费高清在线观看视频在线观看| 超色免费av| 中国国产av一级| 亚洲精品在线美女| 十八禁网站网址无遮挡| 亚洲人成电影观看| 伦理电影免费视频| 国产精品一区二区精品视频观看| 少妇被粗大的猛进出69影院| 亚洲精品久久久久久婷婷小说| 9色porny在线观看| 老司机靠b影院| 丝袜美腿诱惑在线| 黑人猛操日本美女一级片| 亚洲精品中文字幕在线视频| 在线看a的网站| 亚洲色图综合在线观看| 国产免费av片在线观看野外av| 99久久精品国产亚洲精品| 久热爱精品视频在线9| 国产精品一区二区在线观看99| 久久久久精品国产欧美久久久 | 性色av乱码一区二区三区2| 人人妻人人添人人爽欧美一区卜| 午夜福利影视在线免费观看| av天堂在线播放| 国产亚洲欧美在线一区二区| 亚洲国产av新网站| 国产老妇伦熟女老妇高清| 国产不卡av网站在线观看| 久久精品国产亚洲av高清一级| 黑人猛操日本美女一级片| 我要看黄色一级片免费的| 国产精品麻豆人妻色哟哟久久| 亚洲九九香蕉| 大码成人一级视频| 老熟妇乱子伦视频在线观看 | 国产黄色免费在线视频| 欧美国产精品va在线观看不卡| 美女高潮到喷水免费观看| 男女国产视频网站| 精品视频人人做人人爽| 亚洲成国产人片在线观看| 女人被躁到高潮嗷嗷叫费观| 成人黄色视频免费在线看| a 毛片基地| 日韩欧美免费精品| 一本久久精品| 国产精品一区二区在线观看99| 淫妇啪啪啪对白视频 | 女人精品久久久久毛片| 亚洲全国av大片| 久久九九热精品免费| 欧美精品亚洲一区二区| 51午夜福利影视在线观看| 午夜日韩欧美国产| 国产精品九九99| 9色porny在线观看| 国产伦理片在线播放av一区| 国产片内射在线| 美女中出高潮动态图| 国产97色在线日韩免费| videos熟女内射| 国产国语露脸激情在线看| 日韩中文字幕欧美一区二区| 国产精品 国内视频| 欧美性长视频在线观看| 少妇裸体淫交视频免费看高清 | 老汉色av国产亚洲站长工具| 制服人妻中文乱码| 日韩欧美一区视频在线观看| 欧美另类亚洲清纯唯美| 国产精品久久久av美女十八| 菩萨蛮人人尽说江南好唐韦庄| 每晚都被弄得嗷嗷叫到高潮| 99精品久久久久人妻精品| 丰满饥渴人妻一区二区三| 伊人亚洲综合成人网| 老司机亚洲免费影院| 久久国产精品大桥未久av| 黄色毛片三级朝国网站| 女性生殖器流出的白浆| 一级毛片精品| 日韩三级视频一区二区三区| 中文字幕av电影在线播放| 精品乱码久久久久久99久播| 青春草亚洲视频在线观看| 成年动漫av网址| 777米奇影视久久| 极品少妇高潮喷水抽搐| 日韩制服骚丝袜av| 新久久久久国产一级毛片| 操出白浆在线播放| 自线自在国产av| 欧美日韩福利视频一区二区| 欧美亚洲日本最大视频资源| 99香蕉大伊视频| 欧美亚洲日本最大视频资源| 午夜精品久久久久久毛片777| 亚洲成人免费电影在线观看| 两性夫妻黄色片| 亚洲中文字幕日韩| 成年人黄色毛片网站| 亚洲中文字幕日韩| 亚洲人成电影观看| 欧美日韩黄片免| a在线观看视频网站| 母亲3免费完整高清在线观看| 国产又色又爽无遮挡免| 精品一区在线观看国产| 亚洲第一青青草原| 黑人欧美特级aaaaaa片| 在线永久观看黄色视频| 国产片内射在线| 欧美变态另类bdsm刘玥| 欧美少妇被猛烈插入视频| 亚洲精品久久成人aⅴ小说| 久久久久久亚洲精品国产蜜桃av| 久久久国产欧美日韩av| 久久久久国产一级毛片高清牌| 丝袜喷水一区| 亚洲免费av在线视频| 日韩欧美国产一区二区入口| 夜夜夜夜夜久久久久| 国产日韩欧美亚洲二区| 精品欧美一区二区三区在线| 亚洲精品久久成人aⅴ小说| 国产激情久久老熟女| h视频一区二区三区| 老司机福利观看| 欧美av亚洲av综合av国产av| 国产亚洲欧美精品永久| 国产精品香港三级国产av潘金莲| 久久久久精品国产欧美久久久 | 黄色片一级片一级黄色片| 12—13女人毛片做爰片一| 国产熟女午夜一区二区三区| 欧美+亚洲+日韩+国产| 在线观看免费午夜福利视频| 久久人人97超碰香蕉20202| 视频区图区小说| 亚洲专区中文字幕在线| 久久这里只有精品19| 国产在线一区二区三区精| 波多野结衣一区麻豆| 建设人人有责人人尽责人人享有的| 视频在线观看一区二区三区| 亚洲三区欧美一区| 免费高清在线观看视频在线观看| 国产一级毛片在线| 一进一出抽搐动态| 99九九在线精品视频| 国产精品九九99| 中文字幕高清在线视频| 99精国产麻豆久久婷婷| 国产精品久久久久成人av| 肉色欧美久久久久久久蜜桃| 老熟妇乱子伦视频在线观看 | 欧美性长视频在线观看| a级毛片在线看网站| 秋霞在线观看毛片| 久久久国产成人免费| 999久久久国产精品视频| 亚洲国产av新网站| 国产日韩欧美在线精品| 高清在线国产一区| av视频免费观看在线观看| 男女高潮啪啪啪动态图| 99re6热这里在线精品视频| av在线播放精品| www.av在线官网国产| 一级毛片精品| 欧美激情高清一区二区三区| av电影中文网址| 少妇裸体淫交视频免费看高清 | 中文字幕人妻丝袜制服| 欧美日韩精品网址| 国产精品成人在线| www.自偷自拍.com| 首页视频小说图片口味搜索| 美女中出高潮动态图| 日本猛色少妇xxxxx猛交久久| 他把我摸到了高潮在线观看 | 国产无遮挡羞羞视频在线观看| 99香蕉大伊视频| 亚洲精品一区蜜桃| 久久久国产一区二区| 国产又色又爽无遮挡免| 亚洲色图综合在线观看| 黄色视频,在线免费观看| 亚洲欧美清纯卡通| 母亲3免费完整高清在线观看| 国产精品国产三级国产专区5o| 中文欧美无线码| 狠狠精品人妻久久久久久综合| 日本vs欧美在线观看视频| 久久国产精品男人的天堂亚洲| 国产麻豆69| 丝瓜视频免费看黄片| 一本色道久久久久久精品综合| 日韩精品免费视频一区二区三区| 91大片在线观看| 国产欧美亚洲国产| 女人爽到高潮嗷嗷叫在线视频| 高清黄色对白视频在线免费看| 亚洲精品成人av观看孕妇| 一区在线观看完整版| 亚洲全国av大片| 在线av久久热| 国产淫语在线视频| 精品第一国产精品| 国产亚洲欧美在线一区二区| 热99国产精品久久久久久7| 伊人亚洲综合成人网| 啦啦啦啦在线视频资源| 性少妇av在线| 午夜免费观看性视频| 91老司机精品| 黄色视频,在线免费观看| a级毛片黄视频| 在线观看免费日韩欧美大片| 黑人巨大精品欧美一区二区蜜桃| av网站在线播放免费| 久久亚洲国产成人精品v| 真人做人爱边吃奶动态| 最近最新中文字幕大全免费视频| 麻豆乱淫一区二区| 热99re8久久精品国产| 国产日韩欧美在线精品| 久久热在线av| 天天添夜夜摸| 丝袜脚勾引网站| 如日韩欧美国产精品一区二区三区| 日韩欧美国产一区二区入口| 日本猛色少妇xxxxx猛交久久| 高清视频免费观看一区二区| 亚洲国产欧美网| 男女之事视频高清在线观看| 一区二区三区激情视频| 热99re8久久精品国产| 久久国产精品男人的天堂亚洲| 国产精品一区二区在线不卡| 90打野战视频偷拍视频| 欧美精品亚洲一区二区| 操出白浆在线播放| 男人添女人高潮全过程视频| 黑人欧美特级aaaaaa片| 美女脱内裤让男人舔精品视频| 97人妻天天添夜夜摸| 国产熟女午夜一区二区三区| 国产成人系列免费观看| 亚洲情色 制服丝袜| 免费高清在线观看日韩| av免费在线观看网站| 后天国语完整版免费观看| 国产日韩欧美亚洲二区| 久久ye,这里只有精品| 欧美日韩中文字幕国产精品一区二区三区 | 国产人伦9x9x在线观看| 亚洲精品国产精品久久久不卡| av不卡在线播放| 免费人妻精品一区二区三区视频| 97在线人人人人妻| av天堂久久9| 亚洲av电影在线进入| 国产精品一区二区精品视频观看| 99热国产这里只有精品6| 国产精品麻豆人妻色哟哟久久| 青春草亚洲视频在线观看| 免费高清在线观看日韩| 亚洲五月色婷婷综合| 欧美日韩福利视频一区二区| 男女无遮挡免费网站观看| xxxhd国产人妻xxx| 国产伦人伦偷精品视频| 秋霞在线观看毛片| 操美女的视频在线观看| 国产一卡二卡三卡精品| 咕卡用的链子| 亚洲一区二区三区欧美精品| 国产精品影院久久| 成人影院久久| 美女脱内裤让男人舔精品视频| 99热全是精品| 日韩制服骚丝袜av| 亚洲视频免费观看视频| 咕卡用的链子| 国产黄频视频在线观看| 亚洲国产毛片av蜜桃av| 日本av手机在线免费观看| 男女之事视频高清在线观看| 999精品在线视频| 亚洲国产欧美在线一区| 亚洲精品美女久久av网站| 色婷婷久久久亚洲欧美| 美女主播在线视频| 在线观看免费视频网站a站| 免费一级毛片在线播放高清视频 | 欧美少妇被猛烈插入视频| 亚洲av日韩精品久久久久久密| 黄色视频在线播放观看不卡| 三级毛片av免费| 在线永久观看黄色视频| 欧美日韩国产mv在线观看视频| 日韩大码丰满熟妇| 久久久国产欧美日韩av| 欧美少妇被猛烈插入视频| 久久中文看片网| 久久99热这里只频精品6学生| 亚洲欧美精品自产自拍| 午夜视频精品福利| 夜夜夜夜夜久久久久| 日韩 欧美 亚洲 中文字幕| 正在播放国产对白刺激| 国产一区二区三区在线臀色熟女 | 少妇人妻久久综合中文| 亚洲,欧美精品.| 精品久久久精品久久久| 日本av免费视频播放| 欧美在线黄色| 免费一级毛片在线播放高清视频 | 国产精品一区二区免费欧美 | 另类精品久久| 人妻久久中文字幕网| 精品乱码久久久久久99久播| 亚洲va日本ⅴa欧美va伊人久久 | 日韩中文字幕欧美一区二区| 爱豆传媒免费全集在线观看| 久久久水蜜桃国产精品网| 精品福利观看| 少妇人妻久久综合中文| 亚洲男人天堂网一区| 色婷婷久久久亚洲欧美| 黄色片一级片一级黄色片| 国产不卡av网站在线观看| 中文字幕精品免费在线观看视频| 久久久国产成人免费| 人妻 亚洲 视频| 午夜日韩欧美国产| 成人手机av| 国产日韩欧美在线精品| 国产1区2区3区精品| 日韩人妻精品一区2区三区| 老熟女久久久| av天堂久久9| 日本a在线网址| 男人舔女人的私密视频| 青春草亚洲视频在线观看| 亚洲欧美一区二区三区黑人| 成年av动漫网址| 青春草亚洲视频在线观看| 亚洲精品中文字幕一二三四区 | 国产男女超爽视频在线观看| 性色av一级| 国产男女内射视频| 亚洲性夜色夜夜综合| 蜜桃国产av成人99| 精品少妇一区二区三区视频日本电影| 后天国语完整版免费观看| 丁香六月天网| 久久久久久久久免费视频了| 人成视频在线观看免费观看| 日本五十路高清| 精品少妇久久久久久888优播| 一级片免费观看大全| 91成人精品电影| 亚洲精品av麻豆狂野| a在线观看视频网站| 国产xxxxx性猛交| 精品卡一卡二卡四卡免费| 国产av又大| 日韩欧美一区二区三区在线观看 | 熟女少妇亚洲综合色aaa.| 亚洲性夜色夜夜综合| 每晚都被弄得嗷嗷叫到高潮|