• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Degradation of phenol in industrial wastewater over the F–Fe/TiO2 photocatalysts under visible light illumination☆

    2016-06-12 03:48:10YandongLiuShijianZhouFuYangHuaQinYanKong
    Chinese Journal of Chemical Engineering 2016年12期

    Yandong Liu ,Shijian Zhou ,2,*,Fu Yang ,Hua Qin ,Yan Kong ,*

    1 State Key Laboratory of Materials-Oriented Chemical Engineering,College of Chemistry and Chemical Engineering,Nanjing Tech University,Nanjing 210009,China

    2 Jiangsu National Synergetic Innovation Center for Advanced Materials(SICAM),Nanjing Tech University,Nanjing 210009,China

    1.Introduction

    The global environment has been seriously polluted by industrial wastewater with the development of world economy.Phenol,as a pollutant in wastewater with high content,has caused severe environmental problems due to its harmful toxicity,poor biodegradability and long remaining-ability[1–3].Therefore,the degradation of phenol in wastewater has attracted more and more attention.To resolve this problem,many technologies have been proposed involving physical adsorption,chemical coagulation and biological treatment[4–8].However,by these traditional techniques,phenol could not be decomposed completely,and even the secondary pollutants would be generated[9].Hence,it is still urgent for us to develop an advanced technique for the degradation of phenolic wastewater.

    Recently,since it is able to decompose toxic chemicals into unharmful CO2and H2O completely,photocatalytic decomposition of organic contaminants with different semiconductor materials becomes an important technology[10].Among these semiconductor photocatalysts,titanium dioxide(TiO2)has been proved to be the mostpromising material in practical application due to its low-cost,nontoxicity and chemical stability.However,due to the wide band gap(3.0–3.2 eV)in TiO2,only UV portion of the solar spectrum could be absorbed,which leads to a poor solar energy utilization during the reaction process[6,11,12].Moreover,the high recombination efficiency of photogenerated electron–hole pairs is another reason for restricting their practical application in pollutant degradation[13].To overcome these drawbacks and improve the photocatalytic activity of TiO2in the visible light region,many efforts have been attempted.For instance,Chenget al.found that F and N co-doped TiO2(F–N-TiO2)nanoparticles exhibited an enhanced photoactivity with an apparent redshift to the region of visible light[11].Songet al.prepared a highly active g-C3N4/TiO2hybrid photocatalyst by using a simple sonication method.The apparent rate constant k of g-C3N4/TiO2–1.5 was 7.03 times higher than bare TiO2,which was mainly attributed to the extended visible light absorption[14].Agorku and coworkers demonstrated that S/Gd3+-codoping made a red shift in the absorption band of TiO2,resulting in the increase of photocatalytic activity under visible light[15].

    In addition,many promoters have been applied to the further improvement of the photocatalytic activity in TiO2catalyst.Ferric species,as the important component of Fenton reagent,have been reported to be useful for the catalytic oxidation of phenol[16–18].Sun.et al.suggested that surface modified TiO2with iron oxide clusters(Fe/TiO2)through adsorption and decomposition of a large Fe(III)complex exhibiting an enhanced activity for phenol degradation in water under UVlight[19].Also,the surface fluorination of TiO2can lead to the reduction of the recombination of photogenerated electrons and holes by the formation of surface≡Ti--F groups[11,20,21].In this case,more mobile·OH radicals which are favorable to the oxidation reaction will be generated by F modification[21–23].Zhanget al.discovered that the F–Fe codoped TiO2exhibited an enhanced photodegradation rate(76%)at the best doping mass ratio of F:Fe:Ti=0.15:0.15:100,which is due to the large red shift in the light adsorption edge[24].Wang and co-workers also prepared the Fe(III)/F-TiO2photocatalyst by two wet-chemical method including Fe(III)(atomic percent of Fe to Ti=0.8%)ions impregnation and then F-ion(F/Ti=1%)adsorption on the TiO2surface[25].However,further research found that the catalyst with a relatively high iron loading(5%)displays the optimum photocatalytic properties for phenol degradation[26].Since the low iron content in these codoped catalysts,the synthesis of new F and Fe co-modified TiO2catalysts with a superior photoactivity and higher stability for phenoldegradation is still important.

    In this work,we prepared F and Fe co-modified TiO2(F–Fe/TiO2)catalyst with high iron loading(4.5%)via a facile one-step hydrothermal method.The physical and chemical characterizations of F–Fe/TiO2photocatalysts were conducted,and the performance was evaluated in terms of phenol photodegradation under visible light irradiation.Then the simulated conditions of industrial wastewater including initial phenol concentration,visible light intensity,pH and different anions were investigated in the presence of F–Fe/TiO2photocatalyst.This research provides a promising practical approach in the efficient treatment of phenol in industrial wastewater.

    2.Experimental Methods

    2.1.Materials

    Allchemicals except the tetrabutyltitanate(chemicalgrade)used in this study are analytical grade and used without further treatment.Tetrabutyl titanate and iron(III)chioride anhydrous were obtained from Sinopharm Chemical Reagent Co.Ltd.All the other reagents are supplied by Shanghai Jiuyi Chemical Reagent Co.Ltd.

    2.2.Preparation of F-Fe/TiO2,F/TiO2,Fe/TiO2 and pure TiO2 samples

    The F–Fe/TiO2photocatalyst was prepared by hydrothermal method.In a typical procedure,tetrabutyltitanate(20 ml)was added into absolute ethanol(80 ml)under vigorously stirring.After that,a certain amount of hydrofluoric acid solution(40 wt%)and FeCl3was added.The resulting solution was stirred for 30 min,subsequently transferred into a Teflon lined stainless-steel autoclave,which was reacted at 180°C for 24 h.After the reaction,the products were air-cooled to room temperature,then centrifuged,washed with absolute ethanol,and dried at60°C for severalhours.The final resulting samples were labeled as F–Fe/TiO2(atomic percent of F/Ti=0.8%,Fe/Ti=4.5%).The mono-modified F/TiO2or Fe/TiO2catalyst was prepared under the same conditions with only FeCl3or hydrofluoric acid,respectively.The pure TiO2catalyst was prepared by the same method using deionized water instead of hydrofluoric acid solution.

    2.3.Preparation of F0.38-Fe0.13-TiO2 sample

    The material of F and Fe co-doping TiO2(F0.38–Fe0.13–TiO2)was prepared by a stepwise sol–gel reaction and hydrogen peroxide oxidation according to the previous report[24].First of all,0.6 mol·L-1titanium tetrachloride solutions were prepared,and then appropriate amounts of NH4F and FeCl3were added to produce the solutions.The system was statically kept for 24 h,and then an ammonia solution was added slowly to reach pH value of 10.The obtained precipitate was washed with distilled water 6 times to remove impurities.Subsequently,distilled water was used to dilute the slurry to yield a suspension(about 10 g of sediment in 0.1 L of water),and saturated hydrogen peroxide was dropped using a drip funnel until an orange-red transparent solution was formed.The solution was heated to 80°C for 8 h to form the sol and then dried to produce powders of TiO2.The resulting sample is labeled as F0.38–Fe0.13–TiO2(F/Ti=0.38%,Fe/Ti=0.13%).

    2.4.Preparation of Fe(III)/F-TiO2 sample

    As Wanget al.reported[25],the Fe(III)/F-TiO2photocatalysts was prepared with impregnation method as follows.The P25 TiO2powder calcined at550°C for 2 h was used as the TiO2precursor.Firstly,TiO2(0.5 g)was dispersed into 5 ml Fe(NO3)3solution with a pH of 2(adjusted by 1 mol·L-1HCl solution)under stirring.After 15 min,the suspension solution was heated to 60°C and maintained for 2 h.The resultant powders were filtrated,rinsed with distilled water,and dried at 60°C to obtain the Fe(III)/TiO2photocatalysts.And then F ions were impregnated onto the Fe(III)/TiO2sample to form the Fe(III)/F-TiO2(F/Ti=1.0%,Fe/Ti=0.8%)photocatalyst based on above method,wherein,the aforementioned TiO2and Fe(NO3)3were replaced with Fe(III)/TiO2and NH4F,respectively.

    2.5.Characterization

    Powder X-ray diffraction(XRD)patterns were recorded on a Bruker D8 Advance X-ray diffractometer to study the crystal structure and crystallinity,using Ni- filtered CuKαradiation(λ =0.154178 nm)at 40 kV and 40 mA in the 2θ range from 20°to 60°.The elemental composition and electronic structure of the synthesized materials were carried out with an X-ray photoelectron spectroscopy(XPS,PHI 5000 Versa Probe),using AlKαradiation(1486.6 eV)and characteristic C 1s peak centered at 284.6 eV as the standard bond energy of the samples.The UV–visible diffuse reflection spectra were determined by a UV–Vis spectrometer(Perkin–Elmer Lambda 950)with a light path length of 1 cm.

    2.6.Photodegradation of phenol under visible light

    The photocatalytic degradation of phenol was carried out in a quartz column with water circulation jacket at room temperature.The pH of experiments involved was adjusted with NaOH(0.1 mol·L-1)and H2SO4(0.1 mol·L-1).In a typical photocatalytic experiment,a given amount of catalyst was added to the quartz column containing 50 ml aqueous solution of phenol with the desired initial concentration at pH=4.The prepared suspension was stirred in the dark for 1 h to ensure the establishment of an adsorption–desorption equilibrium of phenol on the catalyst.Then,the suspension was irradiated under a 700 W xenon lamp equipped with 400 nm cutoff filters(PCS-400)to remove the UV lights.At given time intervals(every 60 min),4 ml suspensions were sampled and centrifuged to remove catalyst powders,and the filtrates were analyzed by UV–Vis spectrophotometer(BLV-GHX-V,Shanghai Bilang Instrument Co.Ltd.)to determine the photodegradation rate of phenol.The simulated conditions of industrial wastewater including phenol such as initial phenol concentrations(50–400 mg·L-1),visible light intensity(500–900 W),pH(4,7 and 10)and several different sodium salts(NaCl,Na2SO4,NaNO3and Na2CO3)at 0.1 mol·L-1on the degradation reaction were investigated.The photocatalytic stability of catalysts was examined by recycling runs.After the completion of the reaction,the separated photocatalysts were gathered,washed by water and ethanol alternatively,and dried for the subsequent cycling test.

    3.Results and Discussion

    3.1.Catalyst characterization

    Fig.1 demonstrates the XRD patterns of pure TiO2,F/TiO2,Fe/TiO2and F–Fe/TiO2photocatalysts.In Fig.1,only diffraction peaks of anatase TiO2(JCPDS no.21-1272)are observed in all samples,indicating that the introduction of F and Fe species has no effect on the phase of TiO2.Meanwhile,there is no diffraction peak corresponding to Fe-like compounds detected,suggesting that Fe species should be well-dispersed in the prepared samples.Apparently,compared with pure TiO2,the peak intensity of F-TiO2is strengthened,manifesting the addition of F is beneficial for the crystallinity of the catalyst.According to previous reports[27],the good anatase crystallization is beneficial to the promotion of photocatalytic activity TiO2catalysts.

    Fig.1.XRD patterns of different samples.

    The XPS spectra were used to investigate the elemental chemical states of various modified samples.As shown in Fig.2,all the XPS spectra were calibrated with the C1s peak at284.6 eV.In the F 1s spectra of F/TiO2and F–Fe/TiO2,only one peak with binding energy located at about 684.1 eV can be observed,which assigned to the surface fluoride(≡Ti--F)formed by ligand exchange between F-and surface hydroxyl group on TiO2surface[20,28].Furthermore,it can be seen that there is no significant difference between the F/TiO2and F–Fe/TiO2,indicating that the introduction of Fe species almost has no influence on the content and chemical states of F.Based on calculated results from the XPS spectra,the surface content of F in F/TiO2and F–Fe/TiO2is 0.91 and 0.89%,respectively.In the Fe 2p spectra of Fe/TiO2and F–Fe/TiO2,the peaks at around 711.0 and 724.3 eV correspond to the 2p3/2and 2p1/2of Fe3+[29,30].Meanwhile,the satellite ‘shoulder’at 717.6 eV confirms the presence of FeOx[30,31].Comparing the Fe 2p peaks of Fe-TiO2and F–Fe/TiO2,the positions and intensities almost be the same,indicating that F modification does not affect the concentration and states of Fe species in the TiO2catalysts.The XPS spectra reveal that the Fe species are adsorbed on the surface of TiO2in the form of FeOx.As calculated from the XPS spectra,the surface content of Fe accounts for Fe/TiO2and F–Fe/TiO2is 4.38%and 4.42%,respectively,which is close to the theoretical value.

    3.2.Optical property

    The UV–Vis DRS spectra(Fig.3)were recorded to investigate the optical properties of various samples.The bandgaps of samples were determined by a plot(αhυ)1/2vsthe photon energyhυ.The adsorption coefficient α and Eg is related by the following equation:

    Fig.3.UV–Vis DRS spectra of pure TiO2,F/TiO2,Fe/TiO2 and F–Fe/TiO2 catalysts.

    whereEg(eV)is the bandgap,hand υ represent the Planck constant,and frequency,respectively.As shown in the inset of Fig.3,the bandgaps of TiO2,F/TiO2,Fe/TiO2and F–Fe/TiO2were calculated to be 3.08,3.05,2.20 and 1.76 eV,respectively.Compared to the pure TiO2,the F/TiO2catalyst exhibits similar bandgap absorption with a slight decrease of bandgap of 0.03 eV.This observation suggests that the electronic absorption spectroscopy properties between F/TiO2and pure TiO2is similar,which further demonstrates that the F just replaces the--OH on TiO2crystal surface rather than enters into the TiO2crystal lattice to replace the oxygen.Therefore,the UV–Vis DRS results are in good accordance with the XPS results.After introducing Fe species,Fe/TiO2and F–Fe/TiO2show a stronger absorption in the visible light region with a bandgap of 2.20 and 1.76 eV,which is due to the excitation of 3d electrons of Fe3+to TiO2conduction band[29]and the charge transition between interacting iron ions(Fe3++Fe3+→Fe4++Fe2+)[32,33].The red shift of the absorption wavelength indicates that the comodified F–Fe/TiO2catalyst can absorb visible light and be further applied for the visible-light photocatalysis.

    3.3.Photocatalytic performance of catalysts

    The photocatalytic performances of various prepared samples were evaluated by the degradation of phenol under visible light irradiation for 300 min.As shown in Fig.4(a),the F–Fe/TiO2photocatalyst exhibits the highest photocatalytic activity for the degradation of phenol in all samples,while the photocatalytic activities of F/TiO2and Fe/TiO2are higher than pure TiO2.Moreover,it should be noted that,as compared with F0.38–Fe0.13–TiO2and Fe(III)/F-TiO2,the prepared F–Fe/TiO2catalyst from the hydrothermal process in this study exhibit a higher photoactivity.To further investigate the reaction kinetics process,the reaction rate constant of phenol degradation over various samples were measured by the slop of following equation:

    Fig.2.XPS spectra of F 1s and Fe 2p for modified TiO2 catalysts.

    Fig.4.(a)Potodegradation of phenol over various samples and(b)apparent rate constants under visible light irradiation([phenol]=100 mg·L-1,[catalyst]=1 g·L-1,[visible light intensity]=700 W,pH=4).

    wherein,k(min-1)is the apparent reaction rate constant,C0andC(mg·L-1)represent the concentration of phenol at initial and time t(min),respectively.Fig.4(b)shows the reaction rate constant of phenol degradation under visible light irradiation on various TiO2photocatalysts.The reaction rate constant of F–Fe/TiO2is improved to be 0.012 min-1,which is 18.96,3.37 and 2.25 times higher than pure TiO2,F/TiO2and Fe/TiO2,respectively.This observation confirms that the co-modification of F and Fe on TiO2can improve the photodegradation rate of phenol significantly.Also,the reaction rate constant for F–Fe/TiO2is higher than that of F0.38–Fe0.13–TiO2and Fe(III)/F-TiO2.Also,Table 1 lists several reported modified TiO2catalysts,and their photocatalytic results in the degradation of phenol.It is found that,as compared with these studies,the catalysts synthesized in this study not only exhibit superior photoactivity under visible light irradiation,but also could degrade phenol with high concentration completely.

    Table 1Comparison on catalytic activity for phenol degradation over some modified TiO2 catalysts

    To further verify the industrial application value of F–Fe/TiO2catalyst,we simulated the industrial phenolic wastewater to investigate the influence of different initial parameters on photocatalytic degradation of phenol,including initial phenol concentration,visible light intensity,pH and various anions.

    3.3.1.Effect of initial phenol concentration

    It is well known that,the initial concentration has a great influence on photodegradation of organic compounds.The effect of initial phenol concentration(50–400 mg·L-1)on the photodegradation was demonstrated in Fig.5.It is revealed that,with the decreasing initial phenol concentration from 400 to 100 mg·L-1,the degradation rate significantly increases from 35.73%to 100%in 300 min.Moreover,100%phenol is removed within 180 min with the concentration of 50 mg·L-1.Zhanget al.reported that,in a typical photocatalytic reaction,molecular oxygen is activated by photogenerated electrons to produce·O2-or H2O2,while holes are trapped by surface-absorbed hydroxyls(OH-)to generate·OH,which would participate in the subsequent degradation reaction[36].At higher phenol concentration,due to the growth of the equilibrium adsorption of phenol on the active sites,a large amount of phenol molecules get adsorbed.Therefore,competitive adsorption of OH-on the same site decreases,and consequently the amount of·OH and ·O2-on the same site decreases[37].Furthermore,in the different initial phenol concentration,the probability of phenol molecules to react with·OH would be decreased and then the removal efficiency is accordingly dropped[38].In addition,with progress in degradation reaction especially at high initial concentration,some intermediates,such as 2-hydroxy-propaldehyde,hydroxyacetic acid,3-hydroxy-propyl acid,glycerol etc.[39],are formed and competitively adsorbed on the catalyst surface and also competitively react with oxidant species[37].All of these factors finally cause a decrease of the degradation rate of phenol.Since the catalyst dosage is 1 g·L-1for different initial phenol concentration,the present results indicate that photocatalytic degradation is rather promising when the ratio of phenol to catalyst is below 1:10.3.3.2.Effect of visible light intensity

    The effect of visible light intensity(500–900 W)on phenol photodegradation was examined for F–Fe/TiO2photocatalyst.As shown in Fig.6,the degradation rate with a light intensity of 500,600 and 700 W is 71.48%,84.76%and 100%within 300 min,respectively.When the visible light intensity increases from 700 to 900 W,the time required for complete degradation reduces from 300 to 180 min.This can be attributed to the fact that the enhancement of visible light intensity can provide more energy for the production of photogenerated electron–hole pairs and hence,promoting the formation of·OH radicals which are beneficial to the degradation of phenol[40].Therefore,it is suitable for the complete degradation of phenol when the visible light intensity is higher than 700 W.

    Fig.6.Influence of visible light intensity on the photocatalytic degradation of phenol over F–Fe/TiO2 catalyst under visible light irradiation.([catalyst]=1 g·L-1,[phenol concentration]=100 mg·L-1,pH=4).

    3.3.3.Effect of pH

    Due to the complex acid–base properties of industrial wastewater including phenol,the pH effect needs to be investigated.Also,the pH of an aqueous mediumis an important factor that may influence the uptake of the adsorbate on the photocatalyst surface[41].According to previous reports[42],the point of zero charge(pHpzc)of TiO2is about 6.8,thus below this value the TiO2surface is positively charged and above it is negatively charged.The results in Fig.7 indicate that the degradation is favored in an acidic solution,in contrary,it is inhibited in a basic solution as compared with that of in neutral solution.In the acidic solution,phenol is primarily in its nonionic form,water solubility is minimized and the adsorption onto the catalyst is maximized[40].It is supposed that the density of·OH radicals is highest near the surface of F–Fe/TiO2and decreases rapidly with distance from the surface[40].At higher pH,phenol tends to exist as negatively charged phenolate species,which have extremely strong solubility in solution and will not be adsorbed on TiO2surface significantly[42].Also,the coulombic repulsion between the negatively charged surface of particles and the OH-could avoid the formation of·OH radicals,hence reducing the photodegradation rate of phenol.Moreover,high pH favors the formation of carbonate ions which are effective scavengers of OH-ions and can cause the less degradation of phenol[37,42].Through above results,we conclude that the degradation efficiency is favorable in the acidic solution.

    3.3.4.Effect of different anions

    Fig.7.Influence of pH on the photocatalytic degradation of phenolover F–Fe/TiO2 catalyst under visible light irradiation.([catalyst]=1 g·L-1,[phenol concentration]=100 mg·L-1,[visible light intensity]=700 W).

    To further assess the process,the influences of several anions,such as Cl-,andwhich are common in phenolic wastewater,were investigated.In the presence of Cl-,,andthe phenol degradation rate is 74.04%,82.13%,91.76%and 97.07%,respectively within 300 min(Fig.8).Kormann et al.found that the adsorption of organic molecules is poor because the chloride can be easily adsorbed on the positively charged TiO2surface at low pH.Also,chloride is considered to deactivate·OH radicals according to following equations[42]:

    Therefore,the decrease in the phenol degradation rate in the case of chloride is due to the combined effect of both poor adsorption on catalyst surface and lower·OH radical concentration.Carbonate ion has also been reported to scavenge·OH radicals via a mechanism similar to that of Cl-[43].Nitrate and sulfate ions have comparatively weaker effect on adsorption and consequently on the photocatalytic degradation.In conclusion,the adsorbed anions compete with organic molecules for the photo-oxidizing species on the surface of catalyst and inhibit the degradation of phenol with the order of Cl->>>

    Fig.8.Influence of the presence of various anions on photocatalytic degradation of phenol over F–Fe/TiO2 catalyst under visible light irradiation.([catalyst]=1 g·L-1,[phenol concentration]=100 mg·L-1,[visible light intensity]=700 W,pH=4).

    Fig.9.(a)Cycling of phenol degradation over F–Fe/TiO2 under visible light irradiation,(b)XRD patterns and(c)UV–Vis DRS of F–Fe/TiO2 before and after the reaction.

    3.4.Stability of catalysts

    To evaluate the catalytic stability of F–Fe/TiO2catalyst,the recycling of photodegradation of phenol under visible light was conducted,as shown in Fig.9(a).It is found that,after 5 times recycle,the photoactivity of F–Fe/TiO2catalyst still almost be the same,indicating the good performance of reuse during the reaction.In order to well understand the physiochemical properties ofF–Fe/TiO2catalyst before and after reaction,the XRD and UV–Vis DRS experiments have been carried out and the results are shown in Fig.9(b,c).As observed,there is not any obvious change between the F–Fe/TiO2catalyst before and after reaction,demonstrating the high stability of the catalyst.In short,with the high catalytic stability and reuse rate,the catalyst of F–Fe/TiO2has a promising potential industrial application in the treatment of phenolic wastewater.

    4.Conclusions

    Photocatalytic degradation of phenol has been carried out over F–Fe/TiO2(synthesized by hydrothermal method)under visible light irradiation.Results showed that the F–Fe/TiO2(F:0.89%;Fe:4.42%)catalyst possesses a superior photocatalytic activity as compared with pure TiO2,F/TiO2,Fe/TiO2,F0.38–Fe0.13–TiO2and Fe(III)/F-TiO2.The simulated conditions of industrial phenolic wastewater including initial phenol concentration,visible light intensities,pH and anions types were investigated in the presence of F–Fe/TiO2photocatalyst.It is found that,in acidic solution,phenol can be degraded completely when the ratio of phenol to catalyst is below 1:10 and visible light intensity is higher than 700 W.The presence of various anions inhibited the photodegradation efficiency with the order of Cl-Moreover,the F–Fe/TiO2photocatalyst exhibited excellent stability.The involving investigations demonstrated that the as prepared F–Fe/TiO2could act as an efficient potential catalyst for the treatment of phenol in industrial wastewater.

    [1]Q.L.Ge,X.P.Yue,G.Y.Wang,Simultaneous heterotrophic nitrification and aerobic denitrification at high initial phenol concentration by isolated bacterium Diaphorobacter sp PD-7,Chin.J.Chem.Eng.23(5)(2015)835–841.

    [2]F.Shahrezaei,Y.Mansouri,A.A.L.Zinatizadeh,A.Akhbari,Process modeling and kinetic evaluation of petroleum refinery wastewater treatment in a photocatalytic reactor using TiO2nanoparticles,Powder Technol.221(2012)203–212.

    [3]P.Górska,A.Zaleska,J.Hupka,Photodegradation of phenol by UV/TiO2and Vis/N,CTiO2processes:Comparative mechanistic and kinetic studies,Sep.Purif.Technol.68(1)(2009)90–96.

    [4]J.Wang,H.Ruan,W.Li,D.Li,Y.Hu,J.Chen,Y.Shao,Y.Zheng,Highly efficient oxidation of gaseous benzene on novel Ag3VO4/TiO2nanocomposite photocatalysts under visible and simulated solar light irradiation,J.Phys.Chem.C116(26)(2012)13935–13943.

    [5]J.A.O.Méndez,J.A.H.Melián,J.Ara?a,J.M.D.Rodríguez,O.G.Díaz,J.P.Pe?a,Detoxification of waters contaminated with phenol,formaldehyde and phenol–formaldehyde mixtures using a combination of biological treatments and advanced oxidation techniques,Appl.Catal.B Environ.163(2015)63–73.

    [6]J.Lim,D.Monllor-Satoca,J.S.Jang,S.Lee,W.Choi,Visible light photocatalysis of fullerol-complexed TiO2enhanced by Nb doping,Appl.Catal.B Environ.152-153(2014)233–240.

    [7]B.Li,K.Sun,Y.Guo,J.Tian,Y.Xue,D.Sun,Adsorption kinetics of phenol from water on Fe/AC,Fuel110(2013)99–106.

    [8]M.Eiroa,A.Vilar,C.Kennes,M.C.Veiga,Effect of phenol on the biological treatment of waste waters from a resin producing industry,Bioresour.Technol.99(9)(2008)3507–3512.

    [9]H.Ling,K.Kim,Z.Liu,J.Shi,X.Zhu,J.Huang,Photocatalytic degradation of phenol in water on as-prepared and surface modified TiO2nanoparticles,Catal.Today258(2015)96–102.

    [10]F.He,J.Li,T.Li,G.Li,Solvothermal synthesis of mesoporous TiO2:The effect of morphology,size and calcination progress on photocatalytic activity in the degradation of gaseous benzene,Chem.Eng.J.237(2014)312–321.

    [11]J.Cheng,J.Chen,W.Lin,Y.Liu,Y.Kong,Improved visible light photocatalytic activity of fluorine and nitrogen co-doped TiO2with tunable nanoparticle size,Appl.Surf.Sci.332(2015)573–580.

    [12]Y.Fang,D.Cheng,W.Wu,Understanding electronic and optical properties of N–Sn codoped anatase TiO2,Comput.Mater.Sci.85(2014)264–268.

    [13]J.Wang,Q.Meng,J.Huang,Q.Li,J.Yang,Band structure engineering of anatase TiO2by metal-assisted P–O coupling,J.Chem.Phys.140(17)(2014)174705.

    [14]G.Song,Z.Chu,W.Jin,H.Sun,Enhanced performance of g-C3N4/TiO2photocatalysts for degradation of organic pollutants under visible light,Chin.J.Chem.Eng.23(8)(2015)1326–1334.

    [15]E.S.Agorku,B.B.Mamba,A.C.Pandey,A.K.Mishra,Sulfur/gadolinium-codoped TiO2nanoparticles for enhanced visible-light photocatalytic performance,J.Nanomater.(2014).

    [16]H.Q.Wang,X.M.Li,C.R.Xiong,S.Y.Gao,J.Wang,Y.Kong,One-pot synthesis of ironcontaining nanoreactors with controllable catalytic activity based on multichannel mesoporous silica,ChemCatChem7(23)(2015)3855–3864.

    [17]B.Han,X.Shi,Y.Zhang,Q.Kong,Q.Sun,Y.Kong,Influences of pore sizes on the catalytic activity of Fe-MCM-41 in hydroxylation of phenol,Asian J.Chem.25(16)(2013)9087–9091.

    [18]C.Wu,Y.Kong,F.Gao,Y.Wu,Y.Lu,J.Wang,L.Dong,Synthesis,characterization and catalytic performance for phenol hydroxylation of Fe-MCM41 with high iron content,Microporous Mesoporous Mater.113(1–3)(2008)163–170.

    [19]Q.Sun,W.Leng,Z.Li,Y.Xu,Effect of surface Fe2O3clusters on the photocatalytic activity of TiO2for phenol degradation in water,J.Hazard.Mater.229(2012)224–232.

    [20]J.J.Murcia,M.C.Hidalgo,J.A.Navío,J.Ara?a,J.M.Do?a-Rodríguez,Study of the phenol photocatalytic degradation over TiO2modified by sulfation, fluorination,and platinum nanoparticles photodeposition,Appl.Catal.B Environ.179(2015)305–312.

    [21]Y.N.Tan,C.L.Wong,A.R.Mohamed,Hydrothermal treatment of fluorinated titanium dioxide:Photocatalytic degradation of phenol,Asia Pac.J.Chem.Eng.7(6)(2012)877–885.

    [22]J.K.Zhou,L.Lv,J.Q.Yu,H.L.Li,P.Z.Guo,H.Sun,X.S.Zhao,Synthesis of self-organized polycrystalline F-doped TiO2hollow microspheres and their photocatalytic activity under visible light,J.Phys.Chem.C112(14)(2008)5316–5321.

    [23]H.Kim,W.Choi,Effects of surface fluorination of TiO2on photocatalytic oxidation of gaseous acetaldehyde,Appl.Catal.B Environ.69(3–4)(2007)127–132.

    [24]Y.Zhang,F.Lv,T.Wu,L.Yu,R.Zhang,B.Shen,X.Meng,Z.Ye,P.K.Chu,F and Fe codoped TiO2with enhanced visible light photocatalytic activity,J.Sol-Gel Sci.Technol.59(2)(2011)387–391.

    [25]X.Wang,R.Yu,P.Wang,F.Chen,H.Yu,Co-modification of F-and Fe(III)ions as a facile strategy towards effective separation of photogenerated electrons and holes,Appl.Surf.Sci.351(2015)66–73.

    [26]C.Adana,A.Bahamonde,I.Oller,S.Malato,A.Martinez-Arias,Influence of iron leaching and oxidizing agent employed on solar photodegradation of phenol over nanostructured iron-doped titania catalysts,Appl.Catal.B Environ.144(2014)269–276.

    [27]J.Li,J.Xu,W.-L.Dai,H.Li,K.Fan,One-pot synthesis of twist-like helix tungsten–nitrogen-codoped titania photocatalysts with highly improved visible light activity in the abatement of phenol,Appl.Catal.B Environ.82(3–4)(2008)233–243.

    [28]W.Yu,X.Liu,L.Pan,J.Li,J.Liu,J.Zhang,P.Li,C.Chen,Z.Sun,Enhanced visible light photocatalytic degradation of methylene blue by F-doped TiO2,Appl.Surf.Sci.319(2014)107–112.

    [29]N.R.Mathews,M.A.Cortes Jacome,C.Angeles-Chavez,J.A.Toledo Antonio,Fe doped TiO2powder synthesized by sol gel method:Structural and photocatalytic characterization,J.Mater.Sci.Mater.Electron.26(8)(2014)5574–5584.

    [30]T.Yamashita,P.Hayes,Analysis of XPS spectra of Fe2+and Fe3+ions in oxide materials,Appl.Surf.Sci.254(8)(2008)2441–2449.

    [31]Y.Wang,S.Wang,H.Zhang,X.Gao,J.Yang,L.Wang,Brookite TiO2decorated α-Fe2O3nanoheterostructures with rod morphologies for gas sensor application,J.Mater.Chem.A2(21)(2014)7935.

    [32]Y.Niu,M.Xing,J.Zhang,B.Tian,Visible light activated sulfur and iron co-doped TiO2photocatalyst for the photocatalytic degradation of phenol,Catal.Today201(2013)159–166.

    [33]J.-Q.Li,D.-F.Wang,Z.-Y.Guo,Z.-F.Zhu,Preparation,characterization and visible light-driven photocatalytic activity of Fe-incorporated TiO2microspheres photocatalysts,Appl.Surf.Sci.263(2012)382–388.

    [34]X.Xiong,Y.Xu,Synergetic effect of Pt and borate on the TiO2-photocatalyzed degradation of phenol in water,J.Phys.Chem.C120(7)(2016)3906–3912.

    [35]Q.Sun,W.Leng,Z.Li,Y.Xu,Effect of surface Fe2O3clusters on the photocatalytic activity of TiO2for phenol degradation in water,J.Hazard.Mater.229-230(2012)224–232.

    [36]H.Zhang,L.-H.Guo,D.Wang,L.Zhao,B.Wan,Light-induced efficient molecular oxygen activation on a Cu(II)-grafted TiO2/graphene photocatalyst for phenol degradation,ACS Appl.Mater.Interfaces7(3)(2015)1816–1823.

    [37]S.H.Borji,S.Nasseri,A.H.Mahvi,R.Nabizadeh,A.H.Javadi,Investigation of photocatalytic degradation of phenol by Fe(III)-doped TiO2and TiO2nanoparticles,J.Environ.Health Sci.Eng.12(2014).

    [38]Y.Yao,F.Lu,Y.Zhu,F.Wei,X.Liu,C.Lian,S.Wang,Magnetic core-shell CuFe2O4@C3N4hybrids for visible light photocatalysis of Orange II,J.Hazard.Mater.297(2015)224–233.

    [39]Z.Guo,R.Ma,G.Li,Degradation of phenol by nanomaterial TiO2in wastewater,Chem.Eng.J.119(1)(2006)55–59.

    [40]C.-H.Chiou,C.-Y.Wu,R.-S.Juang,Influence of operating parameters on photocatalytic degradation of phenol in UV/TiO2process,Chem.Eng.J.139(2)(2008)322–329.

    [41]A.Adak,A.Pal,M.Bandyopadhyay,Removal of phenol from water environment by surfactant-modified alumina through adsolubilization,Colloids Surf.A Physicochem.Eng.Asp.277(1–3)(2006)63–68.

    [42]N.Kashif,F.Ouyang,Parameters effect on heterogeneous photocatalysed degradation of phenol in aqueous dispersion of TiO2,J.Environ.Sci.21(4)(2009)527–533.

    [43]A.A.Yawalkar,D.S.Bhatkhande,V.G.Pangarkar,A.Beenackers,Solar-assisted photochemical and photocatalytic degradation of phenol,J.Chem.Technol.Biotechnol.76(4)(2001)363–370.

    国产精品av视频在线免费观看| 国产成人freesex在线| 国产精品野战在线观看| 欧美丝袜亚洲另类| 1024手机看黄色片| 亚洲欧美日韩高清专用| 18禁裸乳无遮挡免费网站照片| 在线观看美女被高潮喷水网站| or卡值多少钱| 一区二区三区四区激情视频| 一级毛片电影观看 | 国产av在哪里看| 看非洲黑人一级黄片| 最新中文字幕久久久久| 日韩三级伦理在线观看| 国产亚洲午夜精品一区二区久久 | 男人狂女人下面高潮的视频| 免费看日本二区| 精品人妻一区二区三区麻豆| 国产在线男女| 欧美+日韩+精品| h日本视频在线播放| 日本黄大片高清| 国产精品福利在线免费观看| 日韩中字成人| 美女大奶头视频| 少妇人妻一区二区三区视频| 精品久久久久久久久亚洲| 久久久久久久久大av| 七月丁香在线播放| АⅤ资源中文在线天堂| 男女国产视频网站| 天堂√8在线中文| 国产精品一及| 久久人人爽人人爽人人片va| 精品午夜福利在线看| 国产精品爽爽va在线观看网站| 日韩av在线大香蕉| 天天躁日日操中文字幕| 亚洲四区av| 99在线视频只有这里精品首页| 久久精品国产亚洲网站| 国产一级毛片在线| 国产视频内射| 午夜福利视频1000在线观看| 日本爱情动作片www.在线观看| 国产精品久久久久久av不卡| 2021少妇久久久久久久久久久| 少妇熟女欧美另类| 色视频www国产| a级毛色黄片| 嘟嘟电影网在线观看| 亚洲不卡免费看| 亚洲三级黄色毛片| 麻豆成人av视频| 亚洲国产日韩欧美精品在线观看| 国产成人午夜福利电影在线观看| 看十八女毛片水多多多| 国产爱豆传媒在线观看| 亚洲精品日韩在线中文字幕| 日本wwww免费看| 久久婷婷人人爽人人干人人爱| 欧美一区二区精品小视频在线| 在线观看66精品国产| 欧美日韩国产亚洲二区| 亚洲国产高清在线一区二区三| 日产精品乱码卡一卡2卡三| 2021天堂中文幕一二区在线观| 午夜a级毛片| 欧美一区二区国产精品久久精品| 观看美女的网站| 午夜福利在线观看吧| 国产片特级美女逼逼视频| 99热6这里只有精品| 久久草成人影院| 久久久久久久国产电影| 国产综合懂色| 尾随美女入室| 99久久九九国产精品国产免费| 国产免费一级a男人的天堂| 人人妻人人澡欧美一区二区| 人人妻人人澡欧美一区二区| 久久亚洲精品不卡| 成人特级av手机在线观看| 免费观看性生交大片5| 春色校园在线视频观看| 久久久午夜欧美精品| 欧美日韩精品成人综合77777| 亚洲精品乱久久久久久| 噜噜噜噜噜久久久久久91| av在线播放精品| 男人和女人高潮做爰伦理| 又爽又黄无遮挡网站| 国产又黄又爽又无遮挡在线| 亚洲,欧美,日韩| 色网站视频免费| 只有这里有精品99| 热99在线观看视频| 永久免费av网站大全| 亚洲真实伦在线观看| 亚洲真实伦在线观看| 丰满人妻一区二区三区视频av| 久久精品综合一区二区三区| videossex国产| av女优亚洲男人天堂| 亚洲天堂国产精品一区在线| 日韩国内少妇激情av| 纵有疾风起免费观看全集完整版 | 国产成人一区二区在线| 女人久久www免费人成看片 | 人妻少妇偷人精品九色| 别揉我奶头 嗯啊视频| 两性午夜刺激爽爽歪歪视频在线观看| 国内精品美女久久久久久| 五月伊人婷婷丁香| 狂野欧美激情性xxxx在线观看| 久久99热这里只频精品6学生 | 国产精品永久免费网站| 中国美白少妇内射xxxbb| 精品不卡国产一区二区三区| 亚洲精品乱码久久久久久按摩| 五月伊人婷婷丁香| 日韩制服骚丝袜av| 欧美一区二区国产精品久久精品| 丰满少妇做爰视频| 国产淫片久久久久久久久| 精品久久久久久久久久久久久| 岛国毛片在线播放| 国产av在哪里看| 国产av不卡久久| 成人午夜高清在线视频| 亚洲综合精品二区| 一卡2卡三卡四卡精品乱码亚洲| 可以在线观看毛片的网站| 国产亚洲精品av在线| 看黄色毛片网站| 久久精品国产亚洲av涩爱| 中文资源天堂在线| 精品国产露脸久久av麻豆 | 特级一级黄色大片| 三级经典国产精品| 午夜福利在线观看免费完整高清在| 又粗又爽又猛毛片免费看| 免费电影在线观看免费观看| 日本免费a在线| av女优亚洲男人天堂| 一卡2卡三卡四卡精品乱码亚洲| 国产伦理片在线播放av一区| 欧美三级亚洲精品| 人人妻人人澡欧美一区二区| 色噜噜av男人的天堂激情| 亚洲国产欧美人成| 一本久久精品| 一级黄片播放器| 国产在视频线在精品| 伊人久久精品亚洲午夜| 边亲边吃奶的免费视频| 九九久久精品国产亚洲av麻豆| 国产精品精品国产色婷婷| 99久久精品国产国产毛片| 内地一区二区视频在线| 人人妻人人看人人澡| 亚洲中文字幕日韩| 国产午夜精品久久久久久一区二区三区| 我的女老师完整版在线观看| 免费大片18禁| 国产片特级美女逼逼视频| 久久人妻av系列| 国产精品一区二区在线观看99 | 免费看光身美女| 亚洲欧美精品专区久久| 99久久中文字幕三级久久日本| 久久精品久久精品一区二区三区| 简卡轻食公司| 又黄又爽又刺激的免费视频.| 黄色日韩在线| 国产精品国产三级专区第一集| 爱豆传媒免费全集在线观看| 91在线精品国自产拍蜜月| 亚洲国产最新在线播放| 午夜爱爱视频在线播放| 成人亚洲精品av一区二区| 国产淫语在线视频| 黄色日韩在线| 亚洲成人中文字幕在线播放| a级毛片免费高清观看在线播放| 国产成人a∨麻豆精品| 欧美丝袜亚洲另类| 赤兔流量卡办理| 国产黄片美女视频| 午夜a级毛片| 国产高清有码在线观看视频| 久久人人爽人人片av| 极品教师在线视频| 精品酒店卫生间| 精品久久国产蜜桃| 最近的中文字幕免费完整| 久久久久性生活片| 亚洲欧美中文字幕日韩二区| 亚洲成人久久爱视频| 亚洲不卡免费看| 日本一本二区三区精品| 长腿黑丝高跟| 亚洲精品国产成人久久av| 国产亚洲最大av| 97热精品久久久久久| 99热全是精品| 成人欧美大片| 欧美日韩综合久久久久久| 久久精品久久久久久噜噜老黄 | 久久人妻av系列| 亚洲成人av在线免费| 日本色播在线视频| 最近视频中文字幕2019在线8| 一边摸一边抽搐一进一小说| 中文字幕免费在线视频6| 两性午夜刺激爽爽歪歪视频在线观看| 2021天堂中文幕一二区在线观| 偷拍熟女少妇极品色| 国产精品美女特级片免费视频播放器| 精品99又大又爽又粗少妇毛片| 日韩成人伦理影院| 日韩一本色道免费dvd| 国国产精品蜜臀av免费| 中文乱码字字幕精品一区二区三区 | 夫妻性生交免费视频一级片| 黄片wwwwww| 青青草视频在线视频观看| 人妻系列 视频| 在线播放无遮挡| 自拍偷自拍亚洲精品老妇| 国产视频首页在线观看| 在线免费观看不下载黄p国产| 18+在线观看网站| 男人舔奶头视频| 免费看美女性在线毛片视频| a级毛色黄片| 欧美+日韩+精品| 村上凉子中文字幕在线| 免费观看人在逋| 午夜激情福利司机影院| 国产精品不卡视频一区二区| 天堂中文最新版在线下载 | 性色avwww在线观看| 国产美女午夜福利| 精品国内亚洲2022精品成人| 麻豆久久精品国产亚洲av| 精品国产三级普通话版| 亚洲18禁久久av| 欧美色视频一区免费| 日本黄色片子视频| 亚洲性久久影院| 天天躁夜夜躁狠狠久久av| 视频中文字幕在线观看| 特大巨黑吊av在线直播| 在线a可以看的网站| 日韩三级伦理在线观看| 熟女人妻精品中文字幕| 国产在线男女| 村上凉子中文字幕在线| 六月丁香七月| 一级爰片在线观看| 国产乱人视频| 舔av片在线| 晚上一个人看的免费电影| 在线观看66精品国产| 亚洲av成人av| 国产视频内射| 女人久久www免费人成看片 | 99久久人妻综合| 成人亚洲欧美一区二区av| 免费不卡的大黄色大毛片视频在线观看 | 高清日韩中文字幕在线| 在现免费观看毛片| 国产在线男女| 少妇被粗大猛烈的视频| 日日摸夜夜添夜夜爱| 精品久久久久久久久久久久久| 国产精品久久久久久久电影| 久久久久久久午夜电影| 色视频www国产| 精品酒店卫生间| 国产精品一区二区三区四区久久| 亚洲欧美日韩高清专用| 麻豆一二三区av精品| 美女大奶头视频| videossex国产| 免费人成在线观看视频色| 美女大奶头视频| 亚洲婷婷狠狠爱综合网| 99热这里只有是精品50| 日韩一本色道免费dvd| 一级毛片久久久久久久久女| 欧美另类亚洲清纯唯美| 人人妻人人澡人人爽人人夜夜 | 亚洲激情五月婷婷啪啪| 乱人视频在线观看| 晚上一个人看的免费电影| 亚洲经典国产精华液单| 国产精品国产三级国产av玫瑰| 狂野欧美白嫩少妇大欣赏| 国产免费男女视频| 亚洲怡红院男人天堂| 毛片女人毛片| 麻豆一二三区av精品| 深夜a级毛片| 97热精品久久久久久| 国产在线男女| 国产精品福利在线免费观看| 六月丁香七月| 成人综合一区亚洲| av播播在线观看一区| 欧美成人一区二区免费高清观看| 日本一本二区三区精品| 亚洲av中文av极速乱| 日韩精品青青久久久久久| 69人妻影院| 别揉我奶头 嗯啊视频| 国产精品一区二区性色av| 亚洲av一区综合| 级片在线观看| 91午夜精品亚洲一区二区三区| 视频中文字幕在线观看| 高清在线视频一区二区三区 | 精品一区二区免费观看| 国产精品熟女久久久久浪| 美女被艹到高潮喷水动态| 亚洲精品,欧美精品| 嫩草影院精品99| 国产精华一区二区三区| 成人美女网站在线观看视频| 午夜福利高清视频| 精品免费久久久久久久清纯| 国产高清三级在线| 日韩欧美精品v在线| 亚洲婷婷狠狠爱综合网| 中文字幕久久专区| 国产免费一级a男人的天堂| 国产精品精品国产色婷婷| 又爽又黄a免费视频| 亚洲激情五月婷婷啪啪| 69人妻影院| 国产一区有黄有色的免费视频 | 久久久久久久久久成人| 免费av毛片视频| 国产乱来视频区| 国产老妇女一区| 91久久精品国产一区二区三区| 亚洲久久久久久中文字幕| 日本-黄色视频高清免费观看| 亚洲av一区综合| 老师上课跳d突然被开到最大视频| 日本黄大片高清| 日本爱情动作片www.在线观看| 久久久久久久亚洲中文字幕| 国产精品福利在线免费观看| 最后的刺客免费高清国语| 国产一区有黄有色的免费视频 | 少妇熟女aⅴ在线视频| 久久久久久伊人网av| 亚洲欧美一区二区三区国产| 欧美日韩国产亚洲二区| 免费av毛片视频| 最近2019中文字幕mv第一页| 黄色一级大片看看| 国产精品一区二区三区四区久久| 国产精品伦人一区二区| 国产一级毛片七仙女欲春2| 深爱激情五月婷婷| 久久精品国产亚洲av天美| 亚洲电影在线观看av| 日本爱情动作片www.在线观看| 欧美极品一区二区三区四区| 中文天堂在线官网| 亚洲aⅴ乱码一区二区在线播放| 欧美97在线视频| 久久精品夜夜夜夜夜久久蜜豆| 51国产日韩欧美| 波野结衣二区三区在线| 国产亚洲午夜精品一区二区久久 | 国产成人一区二区在线| 婷婷色麻豆天堂久久 | 国产亚洲精品av在线| 日韩大片免费观看网站 | 女人久久www免费人成看片 | 午夜精品一区二区三区免费看| 国产一区二区三区av在线| 亚洲av免费高清在线观看| 99久久九九国产精品国产免费| 久久精品综合一区二区三区| 内地一区二区视频在线| 神马国产精品三级电影在线观看| 欧美激情在线99| av专区在线播放| 成人国产麻豆网| 麻豆av噜噜一区二区三区| 插逼视频在线观看| 日本免费a在线| 男女那种视频在线观看| 成人三级黄色视频| av女优亚洲男人天堂| h日本视频在线播放| 麻豆国产97在线/欧美| 欧美成人午夜免费资源| 亚洲av中文av极速乱| 亚洲va在线va天堂va国产| 两性午夜刺激爽爽歪歪视频在线观看| 国产精品人妻久久久影院| 内地一区二区视频在线| 国产三级中文精品| 嫩草影院新地址| 天堂av国产一区二区熟女人妻| 日本午夜av视频| 乱系列少妇在线播放| 美女脱内裤让男人舔精品视频| 亚洲av电影在线观看一区二区三区 | 天堂av国产一区二区熟女人妻| 久久人妻av系列| 国产不卡一卡二| 欧美3d第一页| 黄色日韩在线| 亚洲欧美日韩卡通动漫| 成人一区二区视频在线观看| 日本色播在线视频| 日本黄色片子视频| 又粗又爽又猛毛片免费看| 最后的刺客免费高清国语| 少妇熟女aⅴ在线视频| av又黄又爽大尺度在线免费看 | 99热这里只有是精品50| 七月丁香在线播放| 欧美极品一区二区三区四区| av免费观看日本| 一级av片app| 自拍偷自拍亚洲精品老妇| 亚洲欧美一区二区三区国产| 亚洲精品aⅴ在线观看| 超碰av人人做人人爽久久| 国产 一区 欧美 日韩| 97人妻精品一区二区三区麻豆| 少妇猛男粗大的猛烈进出视频 | 午夜久久久久精精品| 日韩人妻高清精品专区| 最后的刺客免费高清国语| 日本熟妇午夜| or卡值多少钱| 欧美97在线视频| 免费观看a级毛片全部| 好男人视频免费观看在线| 日韩精品有码人妻一区| 好男人在线观看高清免费视频| 少妇高潮的动态图| 国产精品精品国产色婷婷| 中文字幕久久专区| 亚洲av.av天堂| 女的被弄到高潮叫床怎么办| 亚洲精品自拍成人| 春色校园在线视频观看| 国产毛片a区久久久久| 中国国产av一级| 国产精品电影一区二区三区| 免费不卡的大黄色大毛片视频在线观看 | 免费播放大片免费观看视频在线观看 | 麻豆av噜噜一区二区三区| 国产爱豆传媒在线观看| 男人和女人高潮做爰伦理| 嘟嘟电影网在线观看| 国产高潮美女av| 春色校园在线视频观看| www.av在线官网国产| 激情 狠狠 欧美| 亚洲三级黄色毛片| 免费电影在线观看免费观看| 久久精品国产亚洲网站| 麻豆久久精品国产亚洲av| 春色校园在线视频观看| 小说图片视频综合网站| 丝袜美腿在线中文| 熟妇人妻久久中文字幕3abv| 欧美性猛交黑人性爽| 免费一级毛片在线播放高清视频| 久久久久久久久久黄片| 99久久成人亚洲精品观看| 男人舔女人下体高潮全视频| 欧美另类亚洲清纯唯美| av国产免费在线观看| 欧美成人精品欧美一级黄| 欧美日韩在线观看h| 免费在线观看成人毛片| 日韩人妻高清精品专区| 久久久久网色| 亚洲中文字幕日韩| av国产久精品久网站免费入址| 久久久久国产网址| 中文字幕熟女人妻在线| 真实男女啪啪啪动态图| 精华霜和精华液先用哪个| 干丝袜人妻中文字幕| 男女啪啪激烈高潮av片| 精品一区二区三区视频在线| 国产一级毛片七仙女欲春2| 国产亚洲精品久久久com| 九九在线视频观看精品| 一边摸一边抽搐一进一小说| 亚洲成色77777| 91精品伊人久久大香线蕉| 成年版毛片免费区| 男女视频在线观看网站免费| 亚洲性久久影院| 一级毛片久久久久久久久女| 国产伦一二天堂av在线观看| 综合色丁香网| 亚洲最大成人中文| 91在线精品国自产拍蜜月| 亚洲最大成人中文| 日本爱情动作片www.在线观看| 伊人久久精品亚洲午夜| 最近中文字幕高清免费大全6| 国产精品99久久久久久久久| 中国国产av一级| 高清视频免费观看一区二区 | 偷拍熟女少妇极品色| 中国美白少妇内射xxxbb| av在线天堂中文字幕| 国产伦精品一区二区三区四那| 麻豆国产97在线/欧美| 天堂av国产一区二区熟女人妻| 色综合站精品国产| 成人午夜精彩视频在线观看| 国产精品三级大全| 中文字幕久久专区| 亚洲av成人av| 联通29元200g的流量卡| 国产精品三级大全| 国产探花在线观看一区二区| 床上黄色一级片| 亚洲人成网站在线观看播放| 日韩强制内射视频| 国产成人一区二区在线| 免费大片18禁| 国内精品一区二区在线观看| 91久久精品国产一区二区成人| 看十八女毛片水多多多| 欧美成人一区二区免费高清观看| 熟女电影av网| 欧美色视频一区免费| 一区二区三区高清视频在线| 国产黄色视频一区二区在线观看 | 秋霞在线观看毛片| 欧美精品一区二区大全| 国产精华一区二区三区| 91久久精品电影网| 狂野欧美白嫩少妇大欣赏| 国产精品一区二区在线观看99 | 国产精品野战在线观看| 国产精品人妻久久久影院| 啦啦啦观看免费观看视频高清| 亚洲国产欧美人成| 国产成人午夜福利电影在线观看| 欧美性猛交╳xxx乱大交人| 国产探花极品一区二区| 日韩av在线大香蕉| 99视频精品全部免费 在线| 亚洲精品国产av成人精品| 亚洲av日韩在线播放| 午夜爱爱视频在线播放| 精品一区二区三区人妻视频| 欧美xxxx性猛交bbbb| 亚洲欧美精品专区久久| 国产91av在线免费观看| 亚洲怡红院男人天堂| 观看免费一级毛片| 亚洲自偷自拍三级| 欧美变态另类bdsm刘玥| 视频中文字幕在线观看| 欧美激情久久久久久爽电影| videossex国产| 我的老师免费观看完整版| 韩国av在线不卡| 亚洲成人中文字幕在线播放| 久久精品国产鲁丝片午夜精品| 久久久久久久久久黄片| 99久久精品一区二区三区| 激情 狠狠 欧美| 国产成人freesex在线| 男女视频在线观看网站免费| av.在线天堂| 亚洲成人久久爱视频| 村上凉子中文字幕在线| 九九爱精品视频在线观看| 日韩三级伦理在线观看| 成人午夜精彩视频在线观看| 少妇裸体淫交视频免费看高清| 黄色配什么色好看| 日韩高清综合在线| 永久免费av网站大全| 午夜激情福利司机影院| 久久国产乱子免费精品| 午夜久久久久精精品| 九色成人免费人妻av| 国产伦在线观看视频一区| 美女内射精品一级片tv| 成人毛片60女人毛片免费| 青春草国产在线视频| 亚洲欧美成人综合另类久久久 | 最近最新中文字幕免费大全7| 天堂av国产一区二区熟女人妻| 视频中文字幕在线观看| 三级男女做爰猛烈吃奶摸视频| 久久久久网色| 欧美日韩在线观看h| 又爽又黄a免费视频| 97在线视频观看| 国内精品一区二区在线观看| 国产在视频线精品|