• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Adsorption equilibrium for Z-ligustilide on C18-bonded silica from supercritical carbon dioxide

    2016-06-12 03:47:58HuishengShuangyanLiuYonghuiLiFanmeiMengDaweiYaoXufeiMo
    Chinese Journal of Chemical Engineering 2016年12期
    關(guān)鍵詞:阿德福卡韋意義

    Huisheng Lü,Shuangyan Liu,Yonghui Li*,Fanmei Meng,Dawei Yao,Xufei Mo

    Key Laboratory for Green Chemical Technology of Ministry of Education,Tianjin University R&D Center for Petrochemical Technology,Tianjin 300072,China

    1.Introduction

    Z-ligustilide is the main active ingredient in angelica oil,which is a kind of herbal medicine obtained from Radix Angelica[1–3].Z-ligustilide has exhibited various biological activities such as improving cardiovascular system,circulatory system and enhancing immune function[4,5].Also Z-ligustilide is regarded as an active ingredient for the quality evaluation of Angelica and other related herbs,such as the rhizome ofLigusticum chuanxiongand the root of Lovage[6].However,the established separation and purification techniques of Z-ligustilide such as column chromatography and thin layer chromatography technology,suffer from the disadvantages of the complex procedure,low recovery and massive solvent residue[7–9].Therefore,innovative separation technology is urged to provide purified Z-ligustilide economically and technologically.In recent years,supercritical fluid chromatographic(SFC)using supercritical dioxide(SC-CO2)as the mobile phase gains more and more attention in refining processes because of its great economic and ecological advantages.This technique has not only been applied for analytical separations,but has also been used at a preparative scale in a variety of industries,such as pharmaceuticals,foods,cosmetics,agrochemicals,petrochemical and natural product[10].The inherent speed,efficiency,and versatility of SFC have transformed the perceptions of the technology from novelty to integral tool for the modern labs,especially for those expecting to maximize throughput[11].Based on the advantages and wide applications of SFC,it is thought to be an attractive method for separation of Z-ligustilide from the angelica oil.

    Adsorption isotherms and related mathematical models are necessary for the optimization and engineering design of the SFC separation.Especially in the simulated moving bed-supercritical fluid chromatography(SMB-SFC)plant,which combines simulated moving bed(SMB)and SFC in an apparatus with their unique features,the adsorption isotherms measured are needed for separations at higher feed concentrations.In spite of the increasing importance and necessity,the knowledge of adsorption behavior under high pressure is still scarce[12].As a problem of physical chemistry,adsorption of solute from supercritical fluids is of a unique nature in comparison with the adsorption from gas or common liquid solution,so it is hard to theoretically predict adsorption isotherms because of the complex nature of adsorbent–adsorbate interactions.Up to now,the adsorption of only a few solutes from SC-CO2has been reported in publications,such as EPA-EE,DHA-EE[13],toluene[14,15],tocopherol[16,17]and so on.Therefore,it is significant to measure the thermodynamic data and determine adsorption isotherm of Z-ligustilide for the operation and development of the SFC adsorption processes.

    In this study,an enrichment method of Z-ligustilide was developed based on the preparative SFC(pre-SFC)for the firsttime.In ourprevious work[18],we studied the separation of Z-ligustilide from the angelica oil by pre-SFC,and found out the optimum operation conditions.As a continuation of our previous study,the present work is intended to determine the adsorption isotherms of Z-ligustilide from SC-CO2on C18-bonded silica.The Span and Wagner[19]method is used to predict the density of SC-CO2at different temperatures and pressures.The method of elution by characteristic points(ECP)is adopted to determine the adsorption isotherm of Z-ligustilide.The data were fitted into Langmuir and Freundlich isotherm models.Data from this work can be applied for the engineering design and the optimization of separation of Z-ligustilide with pre-SFC.

    2.Experimental

    2.1.Materials and experimental set-up

    Carbon dioxide with purity higher than 99.9%in mass fraction was obtained from the Tianjin Liufang Ind.(Tianjin,China).Z-ligustilide standard was purchased from the Tianjin Marco Co.(Tianjin,China).Ethanol(analysis grade)was provided by the Tianjin Jiangtian Chemical Technology Co.ZorBax SB-C18 column(9.4 mm × 250 mm i.d,5 μm)was purchased from Agilent,USA.SFC-200(Thar Company,USA)was used for the measurements of adsorption isotherms under the specified experimental conditions(see Figs.1 and 2).

    Fig.1.Experimental apparatus of SFC.

    Fig.2.Experimental flow sheet of SFC.1—CO2 cylinder,2—stop valve,3—CO2 condenser,4— flow meter,5—CO2 pump,6—modifier,7—modifier pump,8—preheater,9—sample,10—sample pump,11—injection loop,12—heat exchanger,13—column,14—autopressure regulator,15—pressure regulator,16—collection CS1,CS2,CS3,CS4.

    2.2.Theoretical fundamentals

    2.2.1.Single-component isotherms by ECP method

    For SFC,Martinet al.analyzed the adsorption isotherm data generated by the different methods and validated by comparing computer simulated elution profiles to find that the methods based on elution profiles,i.e.,elution by characteristic points(ECP),the inverse method(IM)and the retention time method(RTM),were able to accurately predict overloaded experimental elution profiles while the perturbation peak(PP)method,based on generating data from concentration plateaus,was not able to do so in these SFC experiments[20].

    ECP method can be used for deriving single-component isotherms from the overloaded elution profile.This method is based on a simple equation using the rear diffusive part of an overloaded elution band.When a large amount of sample is injected into a chromatographic column packed with adsorbent,an unsymmetrical band with a steep front and a diffuse rear profile or a steep rear and a diffuse front profile is obtained by elution[10].The method uses the ideal model of chromatography which is equivalent to assuming that the column efficiency is infinite and that the competitive effect of all other components can be neglected.For a Langmuir model with a homogenous surface the number of theoretical plates should be at least 2000 to reduce the error to less than 3%and at least 5000 to reduce the error to less than 5%for a heterogeneous surface described by the bi-Langmuir model[21–23].

    Assuming that the column efficiency is infinite and the instant adsorption equilibrium is reached between the adsorption phase and the mobile phase,the adsorption capacityqat the concentrationccan be expressed by the equation[22]:

    In the equation,Vais the volume of adsorbentin the column,V is the retention volume of the characteristic point of the diffuse profile at concentrationc,andV0is the hold-up volume.

    2.2.2.Adsorption isotherms

    Adsorption is a process in which molecules from the mobile phase attach themselves on the surface of the stationary phase.During the process,adsorption equilibrium can be reached and the adsorption isotherm is always applied to describe this process[24].The most common theoretical models for modeling adsorption equilibrium data are the Langmuir and Freundlich isotherm models because of the relative simplicity and reasonable accuracy[25,26].Langmuir equation can be used to describe a monolayer adsorption,whereas the Freundlich equation can be used to describe a monolayer adsorption as well as a multilayer adsorption[27,28].

    The Langmuir isotherm is based on a kinetic approach of sorption,assuming that all sorption sites are equivalent from an energetic standpoint.It is a two-parameter model,in whichqmrepresents the maximum adsorbed limit corresponding to a complete monolayer saturation,andKLis the affinity(or Langmuir)constant, figuring the attraction between the surface and the solute molecules.Langmuir equation is as follows:

    The Freundlich isotherm is one of the first empirical equations used for correlating experimental data.In the model KFis the Freundlich constant that indicates the adsorption capacity,andnis an empirical constant related to the magnitude of the adsorption driving force.Freundlich equation is as follows:

    Table 1SC-CO2 density at different temperatures and pressures

    2.3.Experimental procedure

    2.3.1.Calculation of the number of theoretical plates

    According to the plate theory[23,29],a higher column efficiency is required while ECP method was used to determine adsorption isotherm,as compared to the Langmuir case whereN=2000(less than 3%error)is a minimum andN=5000(less than 2%error)is recommended with a good accuracy.The efficiency of the column should be high enough to meet the requirement of the accuracy for using the ECP method to determine the adsorption isotherms.Therefore,the number of theoretical plates under experimental conditions must be measured to ensure the accuracy of ECP method for the determination of adsorption isotherms for Z-ligustilide.The experiments were conducted at 313.15 K with different SC-CO2densities at 0.687 g·cm-3,0.750 g·cm-3,0.792 g·cm-3,0.816 g·cm-3.0.01 ml of Z-ligustilide ethanol solution with a concentration of 2.54 mg·ml-1was injected into the chromatographic system.According to the elution profiles,the calculation of the theoretical plate number was done by2.3.2.Calibration of c vs.S

    The relationship ofS-t(S:the detector signal,t:the retention time)was required to be converted to that ofc-t(c:the mobile phase concentration,t:the retention time)before data processing.The calibration ofS-cwas carried out by the static method described in Tan's work[14].It was found that the detector signal(S)was linear with respect to the mobile phase concentration(c),i.e.,S=k×cin the range of the experimental concentration.The value ofkdepended on the temperature and density of the mobile phase.However,the value ofkcould be treated as a keeping constant when temperature and density of mobile phase changed in a small range,and fitted by the method of least squares.

    Thus,at 313.15 K,14 MPa and 10 g·min-1of CO2flow rate,k was measured by injecting different concentrations(2.54 mg·ml-1,1.83 mg·ml-1,0.98 mg·ml-1)and different volumes(10 μl,20 μl,30 μl)of Z-ligustilide ethanol solution to get a series of elution profile.The wavelength of UV detection was set to 275 nm.As a result,k=243 was calculated with an R2of 0.9990,and thus the relationship ofS=243×ccould be obtained.

    2.3.3.Measurement of adsorption capacity at different conditions

    Experiments were carried out at temperatures of 305.15 K,313.15 K and 323.15 K with different outlet column pressures varying from 12 MPa to 18 MPa.A fixed flow rate of CO2was set to 10 g·min-1.0.01 ml of Z-ligustilide ethanol solution with a concentration of 2.54 mg·ml-1was injected into the chromatographic system.Based on the elution profiles adsorption capacityqwas then calculated according to Eq.(1).In this paper,the Span and Wagner method was adopted to calculate the density of SC-CO2mobile phase.The effect of temperature and density of the mobile phase on the adsorption capacity was investigated.Then,the adsorption equilibrium data were fitted by Langmuir and Freundlich isotherm models,respectively.

    3.Results and Discussion

    3.1.Adsorption tests by ECP method

    Adsorption is a process that is related to the temperature and density of the mobile phase.Before data processing the density of the mobile phase was calculated by the Span and Wagner equation of state[19].The density of SC-CO2at different pressures and temperatures is summarized in Table 1.

    Fig.3 shows the typical diffuse profiles of Z-ligustilide of the chromatogram at 313.15 K at four different densities.It can be seen from the figures that the front of the Z-ligustilide elution peaks is almost vertical to the abscissa,which is a typical result of a favorable adsorption isotherm under the instant equilibrium condition.According to Eq.(4),the number of the theoretical stages of the column was calculated,indicating that the theoretical stages' number for all experiments was higher than 3000,partly higher than 5000.The efficiency of the column was high enough to meet the requirement of the accuracy for using the ECP method to determine the adsorption isotherms of Z-ligustilide from SC-CO2.

    By analyzing the chromatogram,the equilibrium adsorption capacityqat different densities of the mobile phase and the temperatures were calculated according to Eq.(1).All the experiments were repeated for three times,and the average value was taken with the error in 3%.Fig.4 illustrates the adsorption data with different densities at fixed temperatures.The figures showed that the adsorption amount of Z-ligustilide declines when the density of the mobile phase increases.With the density of SC-CO2increasing,there are more CO2molecules surrounding the molecules of Z-ligustilide.The distances between the molecules of CO2and Z-ligustilide are shortened,leading to the enhanced solubility of Z-ligustilide in SC-CO2.Therefore,the eluting power of the mobile phase is intensified,so the adsorption capacityqof Z-ligustilide decreases significantly with the increasing density.

    Fig.5 demonstrates that the adsorption capacityqof Z-ligustilide decreases with the increasing temperature at similar densities(0.816 g·cm-3and 0.818 g·cm-3)of the mobile phase,which could be viewed as constant when studying the effect of temperature on adsorption capacity at 313.15 K and 305.15 K,respectively.It suggests that the adsorption of Z-ligustilide onto C18-bonded silica has an exothermic nature,which also conformed to the basic principle of thermodynamics that low temperature facilitates adsorption[10].In the process of Z-ligustilide adsorbed on the C18 column,there exist several kinds of chemical bonding between Z-ligustilide and C18 silica stationary phase such as the electron donor–acceptor interaction and the hydrogen bond interaction.When the temperature increases,the molecular motion is enhanced,leading to the decrease in the interaction of molecular groups.So the decline in adsorption capacity at constant density with increasing temperature is attributed to the weakening interaction of Z-ligustilide with the adsorbent at a higher temperature.Moreover,the rising temperature accelerates thermal motion of Z-ligustilide and CO2molecules,causing the enhanced eluting power of the mobile phase,which also lead to the decrease of the adsorption capacity of Z-ligustilide with increasing temperature at constant density of the mobile phase.

    Fig.4.Adsorption data at temperatures of(a)305.15 K,(b)313.15 K,(c)323.15 K.

    Fig.5.Adsorption data of Z-ligustilide at similar densities.

    Both Figs.4 and 5 indicate that the adsorption capacityqincreases with the increasing concentration of Z-ligustilide.The increase is more at low concentration than at high one,which might be related to the fact that there are more available adsorption sites.The results obtained here can be used to control the dosage of Z-ligustilide on the carrier.

    3.2.Modeling of the adsorption data

    The adsorption data at 305.15 K,313.15 K and 323.15 K with different densities of SC-CO2are correlated by Langmuir and Freundlich isotherm models(Eqs.(2)and(3)),respectively.The adsorption isotherms are shown in Fig.6.The parameters of the fitted isotherm equation are summarized in Tables 2 and 3.The calculated correlation coefficient of both equations was higher than 0.996,which implied that both models could well illustrate the adsorption behavior.

    From the parameters of Table 2,the range of monolayer adsorption capacity is from 3.0 × 10-4mg·cm-3to 5.5× 10-4mg·cm-3,the calculated averageqmis 4.0×10-4mg·cm-3,with a standard deviation of 0.70 × 10-4mg·cm-3.The theoretical maximum adsorption capacityqmof Z-ligustilide determined from the Langmuir equation is 5.5 × 10-4mg·cm-3under the condition of 323.15 K and 18 MPa.The parameterKL,an indicator of the stability of the combination between adsorbate and adsorbent surfaces,decreases when the temperature or the density of the mobile phase increased,which is consistent with the trend of adsorption capacityqin Figs.4 and 5.

    In Freundlich equation,the adsorption takesplace easily when the 1/n value is between 0.1 and 0.5,and it does not take place easily if 1/nvalue is above 2.0[30].In Table 3,the 1/nvalue was between 0.41 and 0.59,which indicated that C18-bonded silica is favorable for the separation of Z-ligustilide.

    治療3、6、12個(gè)月恩替卡韋組HBeAg轉(zhuǎn)陰率均明顯高于阿德福韋酯組,差異有統(tǒng)計(jì)學(xué)意義(P<0.05)。見表3。

    While in terms of the calculated correlation coefficients R2,the experimental data are in better agreement with the Langmuir isotherm model,in which the correlation coefficients are higher than 0.9992 under all conditions.The Langmuir isotherm can reasonably explain the adsorption process,suggesting the monolayer coverage of Z-ligustilide onto C18-bonded silica.

    Fig.6.Experimental data and fitted by Langmuir isotherms of(a)305.15 K,(b)313.15 K,(c)323.15 K;and Freundlich isotherms of(d)305.15 K,(e)313.15 K,(f)323.15 K at different densities.

    Table 2Parameters of Langmuir model at different pressures and temperatures

    Table 3Parameters of Freundlich model at different pressures and temperatures

    4.Conclusions

    The adsorption of Z-ligustilide on the C18-bonded silica from supercritical CO2was studied experimentally.Adsorption capacityqdecreased with the increasing density of the mobile phase,which was related to the enhanced eluting power of the mobile phase.In addition,adsorption capacityqalso decreased with the increasing temperature,which conformed to the basic principle of thermodynamics that low temperature was favorable for adsorption.The equilibrium data were fitted by the Langmuir and Freundlich isotherm models.The Freundlich isotherm indicated that C18-bonded silica is favorable for the separation of Z-ligustilide.The Langmuir isotherm performed better for describing the whole adsorption process on the column,indicating that the adsorption of Z-ligustilide belonged to the monolayer adsorption.The monolayer saturation adsorption capacity of Z-ligustilide is in the range of 3.0 × 10-4mg·cm-3to 5.5×10-4mg·cm-3with an average value of 4.0 ×10-4mg·cm-3.The adsorption isotherms can be used to control the dosage of Z-ligustilide on the carrier.The obtained model can be applied for the simulation of chromatographic processes to ease the choices of suitable process parameter as well for engineering design and optimization of recovery and purification of Z-ligustilide with pre-SFC.

    Nomenclature

    c the sample concentration,mg·ml-1

    KFthe numerical coefficient

    KLthe numerical coefficient

    Nthe number of theoretical plates

    nthe numerical coefficient

    Q the flow rate of CO2flow rate,ml·min-1

    q(c) the equilibrium capacity when the fluid concentration isc,mg·cm-3

    qmthe monolayer saturation adsorption capacity of the adsorbent,mg·cm-3

    Sthe detector signal

    tRthe retention time,s

    Vthe retention volume of the characteristic point of diffuse profile at concentrationc,cm3

    V0the hold-up volume of the column,cm3

    Vathe volume of adsorbent in the column,cm3

    Y1/2the peak width at half-height,s

    [1]M.Kobayashi,M.Fujita,H.Mitsuhashi,Studies on the constituents of Umbelliferae plants.XV.Constituents ofCnidium officinale:Occurrence of pregnenolone,coniferylferulate and hydroxyphthalides(organic,chemical),Chem.Pharm.Bull.35(4)(1987)1427–1433.

    [2]M.J.M.Gijbels,J.J.C.Scheffer,A.B.Svendsen,Analysis of phthalides from umbelliferae by combined liquid–solid and gas–liquid chromatography,Chromatographia14(8)(1981)452–454.

    [3]Z.B.Feng,Y.P.Lu,X.M.Wu,P.Zhao,J.J.Li,B.Peng,Z.J.Qian,L.Zhu,Ligustilide alleviates brain damage and improves cognitive function in rats of chronic cerebral hypoperfusion,J.Ethnopharmacol.144(2)(2012)313–321.

    [4]X.Kuang,Y.Yao,J.R.Du,Y.X.Liu,C.Y.Wang,Z.M.Qian,Neuroprotective role of Z-ligustilide against forebrain ischemic injury in ICR mice,Brain Res.1102(1)(2006)145–153.

    [5]H.Y.Peng,J.R.Du,G.Y.Zhang,X.Kuang,Y.X.Liu,Z.M.Qian,C.Y.Wang,Neuroprotective effect of Z-ligustilide against permanent focal ischemic damage in rats,Biol.Pharm.Bull.30(2)(2007)309–312.

    [6]A.Kemzūrait?,P.R.Venskutonis,R.Baranauskien?,D.Navikien?,Optimization of supercritical CO2extraction of different anatomical parts of lovage(Levisticum officinaleKoch.)using response surface methodology and evaluation of extracts composition,J.Supercrit.Fluids87(1)(2014)93–103.

    [7]H.Bohrmann,E.Stahl,H.Mitsuhashi,Studies of the constituents of Umbelliferae plants.XIII.Chromatographic studies on the constituents ofCnidium officinaleMAKINO,Chem.Pharm.Bull.15(10)(1967)1606–1608.

    [8]Y.Luo,J.Pan,K.Ding,Anticonvulsive constituents in the essential oil of Chaxiong(Ligusticum sinenseOliv cv.Chaxiong),Chin.Tradit.Herb.Drugs8(1996)456–457.

    [9]M.Qian,L.Shi,L.Gao,J.Hu,Isolation of ligustilide from the essential oil ofLigusticum chuanxiong,Pharm.Care Res.8(2008)355–357.

    [10]H.S.Lü,G.M.Wang,M.H.Zhang,Z.F.Geng,M.Yang,Y.P.Sun,Adsorption equilibrium of citric acid from supercritical carbon dioxide/ethanol on cyano column,Chin.J.Chem.Eng.23(6)(2015)905–911.

    [11]W.P.Farrell,C.M.Aurigemma,D.F.Masters-Moore,Advances in high throughput supercritical fluid chromatography,J.Liq.Chromatogr.Relat.Technol.32(11)(2009)1689–1710.

    [12]M.H.Chuang,M.Johannsen,Solubilities and adsorption equilibria of β-carotene in supercritical and near-critical fluids,J.Chem.Eng.Data56(5)(2011)1770–1777.

    [13]B.G.Su,H.B.Xing,Y.S.Han,Y.W.Yang,Q.L.Ren,P.D.Wu,Adsorption equilibria of cis-5,8,11,14,17-eicosapentaenoic acid ethyl ester andcis-4,7,10,13,16,19-docosahexaenoic acid ethyl ester on C18-bonded silica from supercritical carbon dioxide,J.Chem.Eng.Data54(10)(2009)2906–2913.

    [14]C.S.Tan,D.C.Liou,Adsorption equilibrium of toluene from supercritical carbon dioxide on activated carbon,Ind.Eng.Chem.Res.29(7(7))(1990)1412–1415.

    [15]C.S.Tan,D.C.Liou,Desorption of ethyl acetate from activated carbon by supercritical carbon dioxide,Ind.Eng.Chem.Res.27(6)(1998)988–991.

    [16]D.Bolten,M.Johannsen,Influence of 2-propanol on adsorption equilibria of alpha and sigma-tocopherol from supercritical carbon dioxide on silica gel,J.Chem.Eng.Data51(2006)2132–2137.

    [17]M.Lubbert,G.Brunner,M.Johannsen,Adsorption equilibria of alpha-and deltatocopherol from supercritical mixtures of carbon dioxide and 2-propanol onto silica by means of perturbation chromatography,J.Supercrit.Fluids42(2007)180–188.

    [18]X.F.Mo,H.S.Lü,M.H.Zhang,M.Yang,G.Q.Wang,The study on purification of Z-ligustilide by supercritical fluid chromatography,J.Chem.Eng.Chin.Univ.27(2013)737–742.

    [19]R.Span,W.Wagner,A new equation of state for carbon dioxide covering the fluid region from the triple-point temperature to 1100 K at pressures up to 800 MPa,J.Phys.Chem.Ref.Data25(1996)1509–1596.

    [20]M.Enmark,J.Samuelsson,E.Forss,P.Forssén,T.Fornstedt,Investigation of plateau methods for adsorption isotherm determination in supercritical fluid chromatography,J.Chromatogr.A1354(2014)129–138.

    [21]H.Dave,W.Thomas,S.Stephan,Expanding the elution by characteristic point method to columns with a finite number of theoretical plates,J.Chromatogr.A1413(2015)207–216.

    [22]L.Ravald,T.Fornstedt,Theoretical study of the accuracy of the elution by characteristic points method for bi-Langmuirisotherms,J.Chromatogr.A908(2001)111–130.

    [23]G.Hong,B.J.Stanley,G.Guiochon,Theoretical study of the accuracy and precision of the measurement of single-component isotherms by the elution by characteristic point method,J.Chromatogr.A659(1)(1994)27–41.

    [24]T.Zhu,M.Tian,K.H.Row,Comparison of adsorption equilibrium of glycyrrhizic acid and liquiritin on C 18 column,J.Ind.Eng.Chem.16(6)(2010)929–934.

    [25]X.M.Zhan,X.Zhao,A.Miyazaki,Y.Nakano,Lead removal from aqueous solutions using novel gel adsorbent synthesized from natural condensed tannin,Chin.J.Chem.Eng.4(2003)426–430.

    [26]C.Ma,J.Tang,H.Wang,G.Tao,X.Gu,L.Hu,Preparative purification of salidroside fromRhodiola roseaby two-step adsorption chromatography on resins,J.Sep.Sci.32(2)(2009)185–191.

    [27]X.L.Ren,L.Yang,M.Liu,Kinetic and thermodynamic studies of acid scarlet 3R adsorption onto low-cost adsorbent developed from sludge and straw,Chin.J.Chem.Eng.22(2)(2014)208–213.

    [28]R.Wang,X.G.Peng,L.M.Wang,B.B.Tan,J.Y.Liu,Y.L.Feng,S.L.Yang,Preparative purification of peoniflorin and albiflorin from peony rhizome using macroporous resin and medium-pressure liquid chromatography,J.Sep.Sci.35(15)(2012)1985–1992.

    [29]A.J.P.Martin,R.L.M.Synge,A new form of chromatogram employing two liquid phases:1.A theory of chromatography 2.Application to the micro-determination of the higher monoamino-acids in proteins,Biochem.J.2(N245)(1977).

    [30]L.H.Yin,Y.W.Xu,Y.Qi,X.Han,L.Xu,J.Y.Peng,C.K.Sun,A green and efficient protocol for industrial-scale preparation of dioscin from Dioscorea nipponica Makino by two-step macroporous resin column chromatography,Chem.Eng.J.165(1)(2010)281–289.

    猜你喜歡
    阿德福卡韋意義
    一件有意義的事
    新少年(2022年9期)2022-09-17 07:10:54
    恩替卡韋在阿德福韋單藥治療患者中的應(yīng)用
    肝博士(2021年1期)2021-03-29 02:32:12
    恩替卡韋和替諾福韋酯的患者選擇有何區(qū)別
    肝博士(2020年5期)2021-01-18 02:50:24
    恩替卡韋在阿德福韋酯單藥治療患者中的應(yīng)用
    肝博士(2020年5期)2021-01-18 02:50:22
    有意義的一天
    恩替卡韋聯(lián)合安絡(luò)化纖丸治療慢性乙肝早期肝硬化
    詩里有你
    北極光(2014年8期)2015-03-30 02:50:51
    阿德福韋酯聯(lián)用五酯滴丸治療慢性乙型肝炎31例
    拉米夫定與阿德福韋酯聯(lián)合治療慢性乙型肝炎療效觀察
    璧琮原始意義新考
    古代文明(2012年4期)2012-10-22 00:35:03
    国产野战对白在线观看| 中文字幕色久视频| 另类亚洲欧美激情| 国产亚洲精品第一综合不卡| 久热爱精品视频在线9| 9色porny在线观看| 国产av又大| 亚洲,欧美精品.| 精品国产亚洲在线| 啦啦啦视频在线资源免费观看| 色综合欧美亚洲国产小说| 亚洲av熟女| 午夜影院日韩av| 精品国产超薄肉色丝袜足j| av电影中文网址| 久久人妻av系列| aaaaa片日本免费| a在线观看视频网站| 日本a在线网址| 久久精品国产清高在天天线| 亚洲欧美激情在线| 好看av亚洲va欧美ⅴa在| 精品第一国产精品| 高清av免费在线| 欧美色视频一区免费| 亚洲九九香蕉| 一本一本久久a久久精品综合妖精| 亚洲欧美色中文字幕在线| 老汉色∧v一级毛片| 精品国内亚洲2022精品成人 | 99国产综合亚洲精品| 1024香蕉在线观看| 国产野战对白在线观看| 美女视频免费永久观看网站| 夜夜躁狠狠躁天天躁| 很黄的视频免费| 国产极品粉嫩免费观看在线| 电影成人av| 男女之事视频高清在线观看| videosex国产| 天堂√8在线中文| 99re6热这里在线精品视频| 美女午夜性视频免费| 国产精品久久久av美女十八| 国产精品久久久久久精品古装| 在线观看66精品国产| 国产精品98久久久久久宅男小说| 国产在视频线精品| www.熟女人妻精品国产| 亚洲一区高清亚洲精品| tocl精华| 啪啪无遮挡十八禁网站| 麻豆av在线久日| 香蕉丝袜av| 99精国产麻豆久久婷婷| 亚洲av日韩精品久久久久久密| 亚洲精品粉嫩美女一区| 久久久国产精品麻豆| avwww免费| 国产不卡一卡二| 久久人人97超碰香蕉20202| 一进一出抽搐gif免费好疼 | 精品高清国产在线一区| 亚洲欧洲精品一区二区精品久久久| 国产亚洲欧美精品永久| 久久精品成人免费网站| 满18在线观看网站| 丝袜美腿诱惑在线| 亚洲av日韩精品久久久久久密| avwww免费| 欧美精品高潮呻吟av久久| 男女午夜视频在线观看| ponron亚洲| 亚洲全国av大片| 国产成人欧美| 成人av一区二区三区在线看| 午夜激情av网站| 97人妻天天添夜夜摸| 一本大道久久a久久精品| 无限看片的www在线观看| 国产成人精品久久二区二区免费| 国产精品 欧美亚洲| 国产亚洲欧美精品永久| 国产亚洲欧美精品永久| 国内久久婷婷六月综合欲色啪| 日本撒尿小便嘘嘘汇集6| 亚洲人成电影观看| 国产成人影院久久av| 视频在线观看一区二区三区| 黑丝袜美女国产一区| 国产欧美亚洲国产| 亚洲精品美女久久久久99蜜臀| 80岁老熟妇乱子伦牲交| 日韩 欧美 亚洲 中文字幕| 国产xxxxx性猛交| 国产又爽黄色视频| 啦啦啦免费观看视频1| 久久久国产欧美日韩av| 欧美亚洲日本最大视频资源| 激情在线观看视频在线高清 | 午夜福利在线免费观看网站| 黄色视频不卡| 大香蕉久久网| 久久精品aⅴ一区二区三区四区| 国产一区在线观看成人免费| 午夜影院日韩av| 欧美精品高潮呻吟av久久| av中文乱码字幕在线| ponron亚洲| 999精品在线视频| 久久国产精品影院| 亚洲专区国产一区二区| 黄网站色视频无遮挡免费观看| 国产精品一区二区精品视频观看| 美女国产高潮福利片在线看| 手机成人av网站| 咕卡用的链子| 美女福利国产在线| 伦理电影免费视频| 欧美国产精品一级二级三级| 法律面前人人平等表现在哪些方面| 久久草成人影院| 99香蕉大伊视频| 日本一区二区免费在线视频| 国产区一区二久久| 色婷婷av一区二区三区视频| 久久久久久亚洲精品国产蜜桃av| 亚洲综合色网址| 欧美国产精品一级二级三级| 99国产精品一区二区蜜桃av | 成人18禁高潮啪啪吃奶动态图| 国产在线精品亚洲第一网站| 人妻丰满熟妇av一区二区三区 | 在线观看www视频免费| 国产一区二区三区视频了| 国产在线一区二区三区精| 动漫黄色视频在线观看| 亚洲精品一卡2卡三卡4卡5卡| 亚洲五月色婷婷综合| 国产精品99久久99久久久不卡| 欧美不卡视频在线免费观看 | 欧美成狂野欧美在线观看| 69精品国产乱码久久久| 亚洲欧美激情综合另类| 18禁裸乳无遮挡动漫免费视频| 久久久国产成人精品二区 | 亚洲欧美激情综合另类| 成人国语在线视频| 久久久国产成人精品二区 | 最新在线观看一区二区三区| 亚洲综合色网址| 免费久久久久久久精品成人欧美视频| 亚洲人成伊人成综合网2020| 欧美日韩一级在线毛片| 18禁裸乳无遮挡免费网站照片 | 久久精品aⅴ一区二区三区四区| 亚洲国产精品sss在线观看 | 午夜成年电影在线免费观看| 伦理电影免费视频| 久久青草综合色| 黄色怎么调成土黄色| 国产高清国产精品国产三级| 国产1区2区3区精品| 天天躁日日躁夜夜躁夜夜| 在线国产一区二区在线| 国产精品久久久久成人av| 无限看片的www在线观看| 午夜福利影视在线免费观看| 欧美日韩瑟瑟在线播放| 欧美人与性动交α欧美软件| 中文字幕高清在线视频| 欧美人与性动交α欧美软件| 午夜激情av网站| 精品国产亚洲在线| 国产精品影院久久| 日韩精品免费视频一区二区三区| 午夜福利一区二区在线看| 久久久水蜜桃国产精品网| 19禁男女啪啪无遮挡网站| 90打野战视频偷拍视频| 少妇裸体淫交视频免费看高清 | 国产精品永久免费网站| 日韩欧美在线二视频 | 在线观看免费视频网站a站| 亚洲成人免费av在线播放| 国产免费av片在线观看野外av| 91成年电影在线观看| 交换朋友夫妻互换小说| 男人操女人黄网站| 老司机午夜十八禁免费视频| 久久久精品国产亚洲av高清涩受| 午夜精品久久久久久毛片777| 老司机福利观看| 国产99久久九九免费精品| 不卡av一区二区三区| 欧美精品亚洲一区二区| 动漫黄色视频在线观看| 免费看a级黄色片| 99在线人妻在线中文字幕 | 成人特级黄色片久久久久久久| 在线观看免费视频网站a站| 久久久久国内视频| 91大片在线观看| 国产亚洲av高清不卡| 亚洲伊人色综图| 久久99一区二区三区| 国产激情久久老熟女| www日本在线高清视频| 一级a爱片免费观看的视频| 欧美激情高清一区二区三区| 亚洲一卡2卡3卡4卡5卡精品中文| 精品国内亚洲2022精品成人 | 99国产精品一区二区三区| 变态另类成人亚洲欧美熟女 | tocl精华| 国产单亲对白刺激| 亚洲情色 制服丝袜| 无限看片的www在线观看| 亚洲五月色婷婷综合| 国产av精品麻豆| 在线观看午夜福利视频| 免费在线观看亚洲国产| 精品国产乱子伦一区二区三区| 女人爽到高潮嗷嗷叫在线视频| 777久久人妻少妇嫩草av网站| 飞空精品影院首页| 久久久久久久国产电影| 一a级毛片在线观看| 国产精品.久久久| 1024视频免费在线观看| 久久久国产成人精品二区 | 大码成人一级视频| 人妻丰满熟妇av一区二区三区 | 精品亚洲成a人片在线观看| 亚洲精品美女久久久久99蜜臀| 天堂√8在线中文| 午夜老司机福利片| 人妻久久中文字幕网| 精品国产乱子伦一区二区三区| av电影中文网址| 妹子高潮喷水视频| 天天影视国产精品| 久久久久久久午夜电影 | 亚洲成av片中文字幕在线观看| 老司机影院毛片| 嫁个100分男人电影在线观看| 免费在线观看亚洲国产| 黄色丝袜av网址大全| 精品久久久精品久久久| 国产精品99久久99久久久不卡| 中文字幕制服av| 热99久久久久精品小说推荐| 丝袜美腿诱惑在线| 国产黄色免费在线视频| 亚洲一区高清亚洲精品| 亚洲色图综合在线观看| 欧美人与性动交α欧美软件| 国产精品免费视频内射| 国产亚洲精品第一综合不卡| 美女高潮到喷水免费观看| 国产精品久久视频播放| 黄色片一级片一级黄色片| 精品欧美一区二区三区在线| 王馨瑶露胸无遮挡在线观看| ponron亚洲| av视频免费观看在线观看| 日韩熟女老妇一区二区性免费视频| 99国产精品一区二区蜜桃av | 国产精品一区二区精品视频观看| 亚洲美女黄片视频| 久久久精品免费免费高清| 国产精品自产拍在线观看55亚洲 | 在线十欧美十亚洲十日本专区| av中文乱码字幕在线| 欧美激情极品国产一区二区三区| 欧美在线一区亚洲| 夜夜夜夜夜久久久久| 国产高清videossex| 精品久久久精品久久久| 黄色 视频免费看| 国产野战对白在线观看| 久久久水蜜桃国产精品网| 色精品久久人妻99蜜桃| 一进一出抽搐动态| 精品久久蜜臀av无| 男男h啪啪无遮挡| 美女视频免费永久观看网站| 一区福利在线观看| 免费女性裸体啪啪无遮挡网站| 欧美日韩福利视频一区二区| 在线播放国产精品三级| 久久久久国产精品人妻aⅴ院 | 超色免费av| 国产精品久久电影中文字幕 | 久久久精品区二区三区| 黄色女人牲交| 在线观看午夜福利视频| 制服人妻中文乱码| 午夜两性在线视频| 国产三级黄色录像| 亚洲av熟女| 成人国语在线视频| 色老头精品视频在线观看| 亚洲精品在线观看二区| 国产欧美亚洲国产| 久9热在线精品视频| 午夜免费鲁丝| 美女视频免费永久观看网站| 精品人妻熟女毛片av久久网站| 亚洲一码二码三码区别大吗| 18禁裸乳无遮挡动漫免费视频| 黄色怎么调成土黄色| 窝窝影院91人妻| 成人特级黄色片久久久久久久| 乱人伦中国视频| 女人久久www免费人成看片| 制服诱惑二区| 久久久久精品国产欧美久久久| 不卡av一区二区三区| 亚洲全国av大片| 美女高潮到喷水免费观看| 一级作爱视频免费观看| 久久人人爽av亚洲精品天堂| av免费在线观看网站| 日韩成人在线观看一区二区三区| 国产精品av久久久久免费| aaaaa片日本免费| 91精品国产国语对白视频| 久久婷婷成人综合色麻豆| 免费少妇av软件| 国产精品九九99| 久久久国产成人免费| 丰满迷人的少妇在线观看| 老熟女久久久| 精品乱码久久久久久99久播| 国产男女超爽视频在线观看| 别揉我奶头~嗯~啊~动态视频| 欧美久久黑人一区二区| 麻豆乱淫一区二区| 欧美午夜高清在线| 久久精品91无色码中文字幕| 欧洲精品卡2卡3卡4卡5卡区| 9191精品国产免费久久| 免费在线观看影片大全网站| 18禁国产床啪视频网站| 人成视频在线观看免费观看| 欧美丝袜亚洲另类 | 麻豆成人av在线观看| 午夜福利视频在线观看免费| 亚洲人成77777在线视频| 国产色视频综合| 亚洲欧洲精品一区二区精品久久久| 又紧又爽又黄一区二区| 午夜免费观看网址| 青草久久国产| 91大片在线观看| 女人被躁到高潮嗷嗷叫费观| 日韩视频一区二区在线观看| 校园春色视频在线观看| 又黄又爽又免费观看的视频| 免费少妇av软件| cao死你这个sao货| 熟女少妇亚洲综合色aaa.| 亚洲va日本ⅴa欧美va伊人久久| 婷婷精品国产亚洲av在线 | 校园春色视频在线观看| 午夜91福利影院| 日本五十路高清| 亚洲av成人av| 91国产中文字幕| 精品久久久精品久久久| www.自偷自拍.com| 成年人免费黄色播放视频| 欧美日韩一级在线毛片| 久久精品国产综合久久久| 黑人巨大精品欧美一区二区蜜桃| 午夜福利在线免费观看网站| 日本vs欧美在线观看视频| 美女国产高潮福利片在线看| 久久精品国产清高在天天线| 嫁个100分男人电影在线观看| 国产aⅴ精品一区二区三区波| 精品一区二区三区视频在线观看免费 | 久久中文字幕人妻熟女| 日本一区二区免费在线视频| 久久久久精品国产欧美久久久| 激情视频va一区二区三区| 日韩三级视频一区二区三区| 热99re8久久精品国产| 777久久人妻少妇嫩草av网站| 国产不卡av网站在线观看| 中亚洲国语对白在线视频| 久久精品国产综合久久久| 国产免费av片在线观看野外av| 欧美成狂野欧美在线观看| 久久精品国产综合久久久| 巨乳人妻的诱惑在线观看| 香蕉国产在线看| 老司机亚洲免费影院| 日韩三级视频一区二区三区| 国产精品亚洲av一区麻豆| 91精品国产国语对白视频| 99久久人妻综合| 精品国产一区二区三区久久久樱花| 日本wwww免费看| 91九色精品人成在线观看| 涩涩av久久男人的天堂| 亚洲av日韩在线播放| 色婷婷av一区二区三区视频| 欧美乱码精品一区二区三区| 啦啦啦免费观看视频1| 国产av又大| 久久国产亚洲av麻豆专区| 国产深夜福利视频在线观看| 成人亚洲精品一区在线观看| 欧美黄色淫秽网站| 午夜福利影视在线免费观看| 啦啦啦免费观看视频1| 夜夜爽天天搞| 亚洲成国产人片在线观看| 精品久久久精品久久久| 伊人久久大香线蕉亚洲五| 91成年电影在线观看| 久久久久国产一级毛片高清牌| 国产精品免费视频内射| 一二三四社区在线视频社区8| 一进一出抽搐动态| 精品卡一卡二卡四卡免费| 亚洲美女黄片视频| 亚洲黑人精品在线| av天堂久久9| 老司机靠b影院| 十八禁网站免费在线| 大片电影免费在线观看免费| 一二三四在线观看免费中文在| 午夜福利乱码中文字幕| 亚洲五月天丁香| 怎么达到女性高潮| 婷婷精品国产亚洲av在线 | 午夜免费鲁丝| 人人妻,人人澡人人爽秒播| 夜夜爽天天搞| 窝窝影院91人妻| 免费看a级黄色片| 午夜福利在线观看吧| 丰满迷人的少妇在线观看| 国产精品综合久久久久久久免费 | 国产区一区二久久| 女同久久另类99精品国产91| 女人久久www免费人成看片| 可以免费在线观看a视频的电影网站| 久久香蕉精品热| 国产色视频综合| 欧美大码av| av天堂在线播放| 露出奶头的视频| 两个人看的免费小视频| 日韩 欧美 亚洲 中文字幕| 久久九九热精品免费| 两性午夜刺激爽爽歪歪视频在线观看 | 99香蕉大伊视频| 欧美日韩精品网址| 视频区欧美日本亚洲| 欧美大码av| 午夜福利视频在线观看免费| 久久精品成人免费网站| 精品国内亚洲2022精品成人 | 亚洲七黄色美女视频| 亚洲国产欧美网| 久久精品国产清高在天天线| 在线av久久热| 日韩免费av在线播放| 欧美亚洲 丝袜 人妻 在线| 超碰成人久久| 亚洲av日韩精品久久久久久密| 国产人伦9x9x在线观看| 在线视频色国产色| 日本一区二区免费在线视频| 亚洲国产精品合色在线| 国产欧美亚洲国产| 色尼玛亚洲综合影院| 国产精品久久久av美女十八| 精品国产一区二区久久| 精品国产亚洲在线| 中亚洲国语对白在线视频| 欧美人与性动交α欧美软件| 成人免费观看视频高清| 久久ye,这里只有精品| 村上凉子中文字幕在线| av福利片在线| 亚洲成人免费电影在线观看| 日韩人妻精品一区2区三区| 欧美 亚洲 国产 日韩一| 国产午夜精品久久久久久| 正在播放国产对白刺激| 搡老岳熟女国产| 精品久久久久久电影网| 欧美亚洲日本最大视频资源| 又大又爽又粗| 激情在线观看视频在线高清 | 国产精品电影一区二区三区 | 美女扒开内裤让男人捅视频| av线在线观看网站| 国产精品偷伦视频观看了| a级毛片黄视频| 久久中文字幕人妻熟女| av国产精品久久久久影院| 国产一卡二卡三卡精品| 夫妻午夜视频| avwww免费| 欧美丝袜亚洲另类 | 美女 人体艺术 gogo| 久久久久久免费高清国产稀缺| 久久精品成人免费网站| 色老头精品视频在线观看| 久久中文字幕一级| 在线观看免费高清a一片| 亚洲男人天堂网一区| 丰满人妻熟妇乱又伦精品不卡| av在线播放免费不卡| 成人国语在线视频| av线在线观看网站| 一级作爱视频免费观看| 久久香蕉精品热| 最近最新中文字幕大全免费视频| 少妇的丰满在线观看| 婷婷精品国产亚洲av在线 | 建设人人有责人人尽责人人享有的| 51午夜福利影视在线观看| 美国免费a级毛片| 91成年电影在线观看| 免费观看精品视频网站| 亚洲熟妇中文字幕五十中出 | 99久久精品国产亚洲精品| 日韩免费av在线播放| 青草久久国产| 国产亚洲一区二区精品| 国产成人精品久久二区二区91| 无限看片的www在线观看| 成人免费观看视频高清| 日日夜夜操网爽| 国产午夜精品久久久久久| av国产精品久久久久影院| 国产精品.久久久| av国产精品久久久久影院| 人人妻人人爽人人添夜夜欢视频| 正在播放国产对白刺激| 在线观看免费视频网站a站| 高清av免费在线| 天天影视国产精品| 精品久久蜜臀av无| 精品一区二区三卡| 成年女人毛片免费观看观看9 | 国产一区二区三区在线臀色熟女 | 黄片播放在线免费| 欧美激情 高清一区二区三区| 久久午夜综合久久蜜桃| 精品国产美女av久久久久小说| 国产片内射在线| 精品国产美女av久久久久小说| av一本久久久久| 人妻一区二区av| 18禁裸乳无遮挡动漫免费视频| 免费在线观看影片大全网站| 午夜精品久久久久久毛片777| 亚洲专区国产一区二区| 久久久久久久久久久久大奶| 国产亚洲精品一区二区www | 久久久久久久久免费视频了| 18禁国产床啪视频网站| 国产人伦9x9x在线观看| 久久中文看片网| xxx96com| 国产一区二区激情短视频| 看片在线看免费视频| 亚洲av日韩精品久久久久久密| 9191精品国产免费久久| 亚洲精品国产精品久久久不卡| 脱女人内裤的视频| 亚洲熟妇中文字幕五十中出 | 日日夜夜操网爽| 女人久久www免费人成看片| 少妇猛男粗大的猛烈进出视频| 午夜福利免费观看在线| 精品卡一卡二卡四卡免费| 亚洲成人国产一区在线观看| 黄色丝袜av网址大全| 在线免费观看的www视频| 色尼玛亚洲综合影院| 午夜免费观看网址| 久久国产精品人妻蜜桃| 深夜精品福利| 看片在线看免费视频| 老司机影院毛片| 欧美人与性动交α欧美软件| 黄频高清免费视频| 曰老女人黄片| 国产精品久久视频播放| 欧美日韩av久久| 香蕉丝袜av| 精品福利观看| 高清毛片免费观看视频网站 | 黑人欧美特级aaaaaa片| 美女高潮喷水抽搐中文字幕| 亚洲色图综合在线观看| 国产av精品麻豆| 色婷婷久久久亚洲欧美| 国产黄色免费在线视频| 欧美亚洲日本最大视频资源| 日本wwww免费看| 天天躁狠狠躁夜夜躁狠狠躁| 国产激情久久老熟女| 两个人免费观看高清视频| 国产精品一区二区免费欧美| 久久香蕉国产精品|