• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Optimal design of nanofiltration system for surface water treatment☆

    2016-06-12 03:47:56FeiBiHaiyangZhaoZhijunZhouLinZhangHuanlinChenCongjieGao
    Chinese Journal of Chemical Engineering 2016年12期

    Fei Bi,Haiyang Zhao ,Zhijun Zhou ,Lin Zhang ,*,Huanlin Chen ,Congjie Gao ,3

    1 Key Laboratory of Biomass Chemical Engineering of MOE,College of Chemical and Biological Engineering,Zhejiang University,Hangzhou 310027,China

    2 96657 Unit of the Armed Forces,Beijing 100011,China

    3 Ocean College,Zhejiang University of Technology,Hangzhou 310014,China

    1.Introduction

    Membrane-based processes,such as reverse osmosis(RO)and nanofiltration(NF),seem to be one of the most promising strategies for water treatment to relieve the urgency of water shortages worldwide[1,2].Previous researches suggested that the NF process is more suitable for surface water treatment than the RO process because it can guarantee the retention of trace minerals and requires lower energy consumption[3–6].

    Salt rejection,water yield,water recovery,and energy efficiency are the most important indexes to evaluate the performance and reason ability of the membrane systems in the process design.These indexes have a close relationship with the operation parameters and the membrane element arrangement.On the one hand,the operation parameters can affect system performance by changing the concentration polarization,which may worsen the membrane flux and salt rejection and intensify the membrane fouling if the upper boundary is reached(Table S1)[7,8].On the other hand,the element arrangement also has a significant impact on the performance of the membrane system;for example,the cascade arrangement provides a higher water recovery while the parallel arrangement can support a larger water yield[9,10].

    Currently,design ideas for the NF process mainly follow the service experience of the RO system.However,the separation mechanism of NF membranes differs from that of RO membranes[11],which results in a big difference in the salt rejection between NF and RO membranes[12].Furthermore,this difference can cause a distinction between NF and RO systems.The salt rejection of the NF system is quite different from that of an NF element because the salt rejection of the NF element is far from satisfactory and is sensitive to the ion concentration,ion types,and ion charges in the feed solution[13],while the salt rejection of the RO system is quite close to that of a single RO element owing to its almost total rejection of all ions.Therefore,the design of an NF system cannot totally depend on experience of RO systems due to the difference in the separation performance between NF and RO membranes.In our previous work[14],the maximum water recovery in the NF system was found to be quite different from that in the RO system.If the performance relationship between the NF system and a single NF element can be clarified,it will be helpful for the element screen and the element arrangement in real applications.

    In this work,the effect of operation parameters,such as water flow(Qf),operation pressure(P),and ratio of concentrate flow(Qc)to permeate flow(Qp),on the membrane performance will be discussed firstly.Then,based on the stable salt rejection(ro)and maximum water recovery(Rmax)of the NF system,the optimal design of the element arrangement in the NF system will be investigated in detail.

    2.Theoretical Background

    In the steady state of a membrane system,there is mass balance Eq.(1)and mass conservation Eq.(2):

    whereQf,Qp,andQcdenote the flows of feed water,permeate water,and concentrate water,respectively,andCf,Cp,andCcdenote the salt concentrations in feed water,permeate water,and concentrate water,respectively.

    Water recovery(R),the observed rejection(ro),and permeation flux(Jw)are described as Eqs.(3),(4),and(5),respectively:

    whereV,A,and Δtare the volume of permeated water,the membrane area,and the permeation time,respectively.

    In the RO system,the concentration polarization degree(CPD)is usually used to characterize the dynamic state near to the membrane surface,and is defined as:

    whereCmis the solute concentration near the membrane surface.CPD is difficult to measure in real experiments but can be calculated by available physical models[15].

    3.Experimental

    3.1.Materials

    Spiral NF membrane(NF1-2540 type,see Supporting Information)was purchased from Vontron,Beijing.Hollow fiber polysulfone(PSF)ultra filtration(UF)membrane was used at pretreatment with a molecular weight cutoff(MWCO)of 45000 and pure water yield of 2.0–3.5 m3·h-1.Sodium chloride and magnesium chloride(analytical grade)were purchased from Sinopharm Chemical Reagent Co.,China.

    3.2.Performance test of NF membrane for the simulated salty water

    Membrane performance was tested in a cross flow system similar to ourprevious work[14].The aqueous saltsolution was prepared as listed in Table 1 and used in the performance test in different conditions.The flow can be directly read from the flow gauge,and the salt rejection(namely observed rejection,ro)can be calculated by Eq.(4)[16].All data were collected at least in triplicate,and the results were averaged.

    Table 1Range of salt concentrations and test parameters

    3.3.Performance test of NF membrane for the real surface water

    Surface water was taken from the Qiantang River(Hangzhou,China),which is a freshwater river from inland to the East China Sea.The original water was filtrated by the sand leach and UF membrane in sequence and then went into the NF membrane module.In this work,the natural organic matters(NOMs)is characterized as UV254 and total organic carbon(TOC)[17].UV254 was measured by using a visible light-ultraviolet spectrophotometer(Spectrumlab 54,Lengguang Tech,China).TOC was measured by Liqui TOCII(Elementar Analysensystine,Germany).

    3.4.Performance calculation of RO membrane by Simulation software

    Simulation software(IMS design 2010,provided by Hydranautics)was used to simulate the separation performance of the RO membrane in the saltsolution(200 mg·L-1)[18].ESPA2–8040 membrane was used to calculate the water recovery in the RO system with different element arrangements.The temperature and pH were set at 25°C and 7,respectively.By regulating the feed flow and permeate flow,the RO system was equilibrated with a maximum CPD of1.2,and then the water recovery was recorded as the maximum recovery(Rmax).In all the tests,at least five readings were recorded and the averaged results plotted.

    4.Results and Discussion

    4.1.Effect of concentrate fl ow,pressure,and Q c/Q p on the observed rejection

    In a single NF element,the observed rejection(ro)is usually affected by the operation pressure(P),concentrate flow(Qc),and the ratio ofQctoQp(Qc/Qp).Performance tests of the NF element in NaCl and MgSO4solutions under the same pressure showed that the observed rejection(ro)had a close relationship with the concentrate flow(Qc):the observed rejection(ro)of the NF element obviously improved when the concentrate flow(Qc)increased from 0 to 5 L·min-1and reached a plateau once the concentrate flow(Qc)was bigger than 5 L·min-1(Fig.1A and C).This is because as concentrate flow(Qc)increased,the permeate flow(Qp)decreased and the CPD became smaller.As a result,the observed rejection(ro)became higher.When the concentrate flow(Qc)became greater than 5 L·min-1(the cross- flow velocity and Reynolds number are 0.354 m·s-1and 7030.7,respectively),the concentration polarization almost disappeared and the observed rejection(ro)was close to the real rejection.However,an experimental test under different pressures suggested that the observed rejection(ro)may be barely affected by the pressure(P).It should be noted that the observed rejection(ro)was zero when the concentrate flow(Qc)was reduced,which means that the NF membrane was tested by dead-end rather than cross- flow filtration.In the dead-end filtration,the observed rejection(ro)of the NF membrane decreased rapidly and soon became zero.

    On the other hand,by regulating the feed flow(Qf)and operation pressure(P),the NF system can maintain a constant concentrate flow(Qc).The results showed that the observed rejection(ro)was independent ofQc/Qpand showed a very small improvement as the concentrate flow(Qc)was increased from 5 to 7 L·min-1(Fig.1B and D).This may be due to the fact that the CPD became insensitive toQc/Qponce the concentrate flow(Qc)exceeded 5 L·min-1.Here it can be concluded that the observed rejection(ro)was mainly affected by the concentrate flow(Qc)and approached a plateau after the concentrate flow(Qc)exceeded 5 L·min-1.This finding is very useful to simplify the process design of the NF system in real applications.

    Finally,observed rejections(ro)in the salt solution mixture showed a similar relationship with concentrate flow(Qc),operation pressure(P),and Qc/Qpcompared with the single salt solution(Fig.1E and F).It was found that observed rejection(ro)in the mixed solution was quite close to that in NaCl solution and different from that in MgSO4solution(Fig.S1),which indicated that the observed rejection(ro)in the mixed solution was mainly affected by the existence of the monovalent salt,namely NaCl.Therefore,in NF system design,the system rejection should be referred to the element rejection of monovalent salts if they exist.

    Fig.1.Effect of concentrate flow(A,C,and E)and Q c/Q p(B,D,and F)on the observed rejection in NaCl solution(A),(B);MgSO4 solution(C),(D);and mixed solution(E),(F),respectively(1 psi=6894.76 Pa).

    The permeate water from the UF system was used as the feed in the NF system in this work.The effect of the concentrate flow(Qc)on the observed rejection(ro)of inorganic salt was similar to that in the above simulated system(Fig.2A),and the observed rejection(ro)was approximately 40%,which was lower than that in the single salt solution and can be attributed to the easy permeation of NO3-in the real water.The observed rejection(ro)became constant when the concentrate flow(Qc)was greater than 5 L·min-1.Additionally,the observed rejection(ro)of NOMs was also tested in the form of TOC and UV254 as shown in Fig.2B and presented a similar profile to that shown in Fig.2A.The observed rejection(ro)for organics became stable at around 50%when the concentrate flow(Qc)was greater than 5 L·min-1.

    Fig.2.Effect of concentrate flow on the observed rejection of salt(A),UV254,and TOC(B)for real river water.

    4.2.Effect of concentrate flow,pressure,and Qc/Qp on the permeation flux

    The effects of concentrate flow(Qc),pressure(P),andQc/Qpon the permeation flux(Jw)have also been investigated,as shown in Fig.3.In all test solutions,by adjusting the flow(Qf)across the NF membrane and the operation pressure(P),it was found that the permeation flux(Jw)was barely changed under a specific pressure but increased slightly with decreases in concentrate flow(Figs.3A,C,and E).Although the concentrate flow(Qc)approached zero(dead-end filtration),the permeation flux(Jw)remained stable and did not vary with time.Since the concentrate flow(Qc)cannot affect the membrane flux(Jw),Qc/Qpis expected to have an irrelevant relationship with permeation flux(Jw).As shown in Figs.3B,D,and F,Qc/Qpshowed a negligible effect on the permeation flux(Jw)even thoughQc/Qpwas zero.

    In an NF single element,as discussed above,salt rejection(ro)will become stable if concentration flow(Qc)is greater than 5 L·min-1while permeation flux(Jw)remains constant under certain pressure.Additionally,the observed rejection(ro)in the mixed solution was mainly determined by the monovalent salt.In a large NF system(several membrane elements),the water recovery and membrane arrangement should be adjusted to guarantee stable rejection(ro)and flux(Jw)in each element.The maximum water recovery(Rmax)in the NF system has been analyzed systematically in our previous work[14],and the optimal membrane arrangement will be discussed as follows.

    4.3.Optimal arrangement of membrane elements in NF system

    In the RO system,the element arrangement was mainly determined by the water recovery(R)in the RO system and number of elements in each module[9,10].To avoid a high concentration polarization near the membrane surface,the water recovery(R)for each RO element should not be greater than 15%.The water recovery(R)for an RO system with different elements can be estimated by the simulation software[18].According to our previous report[14],the water recovery(R)for the NF element can exceed 25%with a ratio ofQc/Qpof 3:1 to maintain stable salt rejection(CPD<1.2).In the NF system,as mentioned above,the concentrate flow(Qc)should be greater than 5 L·min-1to support stable salt rejection for each element.By calculating the concentrate flow(Qc)from the last element of the NF system with a Qc/Qpratio of 3:1,the water recovery(R)for the NF system with different elements can also be estimated(Supporting Information).Since the observed rejection(ro)was mainly determined by the monovalent salt,NaCl solution was used as the representative substitute for CPD calculation.The comparison of the maximum water recovery values(Rmax)for the NF and RO systems with different elements is shown in Table 2.

    Fig.3.Effect of concentrate flow(A,C,and E)and Q c/Q p(B,D,and F)on the permeation flux in NaCl solution(A),(B);MgSO4 solution(C),(D);and mixed solution(E),(F),respectively(1 psi=6894.76 Pa).

    Table 2Comparison of maximum water recovery values in one-stage NF and RO systems

    Obviously,the water recovery(R)in the NF system is higher than that in the RO system with fixed path length.The water recoveries(R)in the NF system with path lengths of 2,3,and 4 m are close to those in the RO system with path lengths of 3,4,and 5 m,respectively.This means that the NF system can support a higher water recovery(R)than the RO system with the same length of water passageway.

    Generally,water recovery(R)in membrane systems should be higher than 75%when used in the treatment of river water with low salinity(100–500 mg·L-1),which requires RO and NF systems to have more than six elements.For the same water recovery,the NF system needs a shorter passageway length than the RO system,which leads to big differences in the pressure consumption and the system design between the RO and NF systems.

    Taking the simple element arrangement of one stage as an example,the feed pressures(P)in the NF and RO systems with six elements are 280 kPa and 640 kPa,respectively.These two systems have a similar pressure drop(ΔP)due to the production of the permeate water.This pressure drop(ΔP)accounts for less than 20.3%of the pressure in the RO system but more than 42.9%in the NF system.This indicates that NF will waste more energy if the NF system is designed directly based on the design principal of the RO system,which is not reasonable.

    The difference in the separation mechanism between the NF and RO membranes results in different constraint conditions in the design of these two systems.This means that the design of the NF system can refer to that of RO system but cannot be totally derived from the experience of the RO system.

    In the design of the RO system,there are two general important rules that should be noted and adapted to the design of the NF system[9,10]:one is that the membrane elements should be arranged in wedge shaped style(Fig.S3)and the other is that the number of the elements should be the same in each vessel.In a two-stage process,the arrangement of 2/5+1/6 can also meet the recovery requirement of 80%,but the designer usually chooses to use the arrangement of 2/6+1/6.In the three-stage process,element arrangements of 3/4+2/5+1/5,5/3+2/4+1/5,and 5/3+2/4+1/4 can support a water recovery(R)of 85%as well,while the arrangement of 3/5+2/5+1/5 was considered the best.According to the general design rules described above,the element arrangements in the RO and NF systems with high water recovery values are listed in Table 3.

    When the target recovery is lower than 80%,a two-stage arrangement is enough for both systems in spite of the difference in the number of elements and passageway length.However,the RO system needs a three-stage arrangement to meet the higher recovery requirement(≥85%),which is still within the capacity of the NF system with a two stage arrangement.Obviously,if the design of the NF system entirely follows that of the RO system,the NF system will be more complicated and will waste lots of assembly parts.

    Table 3Comparison of element arrangements in NF and RO syste ms

    5.Conclusions

    Salt rejection of NF membrane is quite different from that of RO membrane,which leads to a big difference between the performance of the NF and RO systems.In our previous report,the maximum water recovery(Rmax)in the NF system was found to be quite different from that in the RO system.In this work,the separation performances and optimal arrangement of the NF system have been investigated.The observed rejection(ro)of the NF membrane was hardly affected by the pressure but was greatly affected by the concentrate flow(Qc).When the concentrate flow(Qc)was greater than 5 L·min-1,the observed rejection(ro)became nearly constant.At the same time,the membrane flux of the NF element is quite stable regardless of the water flow across the membrane surface.These findings are useful to guide the process design of the NF system.The two-stage arrangement is sufficient for the NF system to reach a water recovery of more than 85%,but a three-stage arrangement is required for the RO system to reach the same water recovery.

    Nomenclature

    A effective area of membrane,m2

    Ccsalt concentrations in concentrate water,mg·L-1

    Cfsalt concentrations in feed water,mg·L-1

    Cmsolute concentration near the membrane surface,mg·L-1

    Cpsalt concentrations in permeate water,mg·L-1

    Jwpermeation flux,L·m-2·h-1

    Poperation pressure,Pa

    Qcconcentrate flow,L·min-1

    Qc/Qpratio ofQctoQp

    Qffeed flow,L·min-1

    Qppermeate flow,L·min-1

    Rwater recovery,%

    Rmaxmaximum water recovery,%

    roobserved rejection,%

    Vvolume of permeated water,L

    Ywater yield,%

    ΔPpressure drop,Pa

    Δtpermeation time,h

    Supplementary Material

    Supplementary data to this article can be found online at http://dx.doi.org/10.1016/j.cjche.2016.05.012.

    [1]M.A.Shannon,P.W.Bohn,M.Elimelech,J.G.Georgiadis,B.J.Marinas,A.M.Mayes,Science and technology for water purification in the coming decades,Nature452(2008)301–310.

    [2]A.Pérez-González,A.M.Urtiaga,R.Ortiz,I.Ibá?ez,State of the art and review on the treatment technologies of water reverse osmosis concentrates,Water Res.46(2012)267–283.

    [3]A.de la Rubia,M.Rodrigues,V.M.Leon,D.Prats,Removal of natural organic matter and THM formation potential by ultra-and nanofiltration of surface water,Water Res.42(2008)714–722.

    [4]A.Orecki,M.Tomaszewska,K.Karakulski,A.W.Morawski,Surface water treatment by the nanofiltration method,Desalination162(2004)47–54.

    [5]M.F.Abid,S.K.Al-Naseri,Q.F.Al-Sallehy,S.N.Abdulla,K.T.Rashid,Desalination of Iraqi surface water using nanofiltration membranes,Desalin.Water Treat.29(2011)174–180.

    [6]J.R.Petersen,Composite reverse osmosis and nanofiltration membranes,J.Membr.Sci.83(1993)81–150.

    [7]J.W.Nam,J.Y.Park,J.H.Kim,S.Kwon,K.Chon,E.J.Lee,H.S.Kim,A.Jang,The evaluation on concentration polarization for effective monitoring of membrane fouling in seawater reverse osmosis membrane system,J.Ind.Eng.Chem.20(2014)2354–2358.

    [8]M.S.H.Bader,Nanofiltration for oil- fields water injection operations:Analysis of concentration polarization,Desalination201(2006)106–113.

    [9]Hydranautics Company,RO and NF membrane product and technology manual,2008.

    [10]Dow Chemical Company,FLIMTECTM RO and NF membrane elements product and technology manual,2008.

    [11]K.Doederer,M.J.Farre,M.Pidou,H.S.Weinberg,W.Gernjak,Rejection of disinfection by-products by RO and NF membranes:Influence of solute properties and operational parameters,J.Membr.Sci.467(2014)195–205.

    [12]J.W.Wang,D.S.Dlamini,A.K.Mishra,M.T.M.Pendergast,M.C.Y.Wong,B.B.Mamba,V.Freger,A.R.D.Verliefde,E.M.V.Hoek,A critical review of transport through osmotic membranes,J.Membr.Sci.454(2014)516–537.

    [13]J.Luo,Y.Wan,Effects of pH and salt on nanofiltration—A critical review,J.Membr.Sci.438(2013)18–28.

    [14]F.Bi,H.Zhao,L.Zhang,Q.Ye,H.Chen,C.Gao,Discussion on calculation of maximum water recovery in nanofiltration system,Desalination332(2014)142–146.

    [15]I.Sutzkover,D.Hasson,R.Semiat,Simple technique for measuring the concentration polarization level in a reverse osmosis system,Desalination131(2000)117–127.

    [16]H.Zhao,S.Qiu,L.Wu,L.Zhang,H.Chen,C.Gao,Improving the performance of polyamide reverse osmosis membrane by incorporation of modified multi-walled carbon nanotubes,J.Membr.Sci.450(2014)249–256.

    [17]A.Matilainen,E.T.Gjessing,T.Lahtinen,L.Hed,A.Bhatnagar,M.Sillanp??,An overview of the methods used in the characterisation of natural organic matter(NOM)in relation to drinking water treatment,Chemosphere83(2011)1431–1442.

    [18]Hydranautics Company,RODESIGN help manual,2007.

    交换朋友夫妻互换小说| 两人在一起打扑克的视频| 亚洲中文av在线| h视频一区二区三区| 自线自在国产av| 999久久久国产精品视频| 国产在视频线精品| 女人爽到高潮嗷嗷叫在线视频| 欧美人与性动交α欧美软件| 在线 av 中文字幕| 久久久久网色| 久久久精品区二区三区| 伊人久久大香线蕉亚洲五| 国产成人系列免费观看| 日韩欧美一区二区三区在线观看 | 亚洲中文日韩欧美视频| 在线十欧美十亚洲十日本专区| 亚洲午夜精品一区,二区,三区| 国产亚洲精品第一综合不卡| 18禁美女被吸乳视频| 国产精品秋霞免费鲁丝片| 脱女人内裤的视频| 嫩草影视91久久| 国产一区二区三区综合在线观看| 嫁个100分男人电影在线观看| 午夜成年电影在线免费观看| 麻豆乱淫一区二区| 国产在线视频一区二区| 一进一出抽搐动态| 99九九在线精品视频| 好男人电影高清在线观看| 欧美日本中文国产一区发布| 久久这里只有精品19| 国产av国产精品国产| 动漫黄色视频在线观看| 欧美日本中文国产一区发布| 人人妻人人澡人人看| 精品国内亚洲2022精品成人 | 嫩草影视91久久| 成年人免费黄色播放视频| 日韩免费高清中文字幕av| 国产精品99久久99久久久不卡| 日韩成人在线观看一区二区三区| 久久中文字幕人妻熟女| 日韩中文字幕视频在线看片| 手机成人av网站| 亚洲欧美色中文字幕在线| 午夜福利在线免费观看网站| 99久久精品国产亚洲精品| 免费一级毛片在线播放高清视频 | 狂野欧美激情性xxxx| 王馨瑶露胸无遮挡在线观看| 亚洲美女黄片视频| 国产福利在线免费观看视频| 2018国产大陆天天弄谢| 成年版毛片免费区| 18禁国产床啪视频网站| 国产成人影院久久av| www.精华液| 老熟妇乱子伦视频在线观看| 成年动漫av网址| 日本a在线网址| 亚洲精品乱久久久久久| a级毛片黄视频| 啦啦啦免费观看视频1| 免费观看人在逋| 日韩大片免费观看网站| 美女国产高潮福利片在线看| 两个人免费观看高清视频| 精品福利永久在线观看| 欧美久久黑人一区二区| 久久人人97超碰香蕉20202| 黄色视频不卡| 久9热在线精品视频| 午夜免费鲁丝| 亚洲国产欧美日韩在线播放| 女人久久www免费人成看片| 国产极品粉嫩免费观看在线| 亚洲欧美一区二区三区久久| 丁香欧美五月| 色精品久久人妻99蜜桃| 久久久久久久久免费视频了| 欧美+亚洲+日韩+国产| 国产精品一区二区在线观看99| 视频区图区小说| 少妇猛男粗大的猛烈进出视频| 亚洲全国av大片| 一个人免费在线观看的高清视频| 精品欧美一区二区三区在线| 麻豆成人av在线观看| 黄片小视频在线播放| 香蕉国产在线看| 色视频在线一区二区三区| 不卡一级毛片| 国产精品自产拍在线观看55亚洲 | 热99国产精品久久久久久7| 色在线成人网| 免费看十八禁软件| 搡老乐熟女国产| 在线观看www视频免费| 99国产精品免费福利视频| 中文字幕人妻熟女乱码| 高清欧美精品videossex| 久久国产精品男人的天堂亚洲| 人成视频在线观看免费观看| 午夜免费鲁丝| 精品亚洲成a人片在线观看| 国产亚洲精品久久久久5区| av又黄又爽大尺度在线免费看| 757午夜福利合集在线观看| 久久久精品免费免费高清| 欧美亚洲 丝袜 人妻 在线| 久久影院123| 亚洲精品中文字幕在线视频| 黑丝袜美女国产一区| 日韩一卡2卡3卡4卡2021年| 久久精品亚洲精品国产色婷小说| 精品人妻在线不人妻| 高清毛片免费观看视频网站 | a在线观看视频网站| 国产日韩一区二区三区精品不卡| 日韩制服丝袜自拍偷拍| 久久亚洲真实| 高清在线国产一区| 天天躁夜夜躁狠狠躁躁| 欧美精品人与动牲交sv欧美| 怎么达到女性高潮| 国产一区有黄有色的免费视频| 交换朋友夫妻互换小说| 久久人妻av系列| 悠悠久久av| 女人久久www免费人成看片| 久久久久久亚洲精品国产蜜桃av| 亚洲成人免费电影在线观看| 亚洲av电影在线进入| 婷婷丁香在线五月| 国产精品久久久久久精品古装| 国产在线免费精品| 大片电影免费在线观看免费| 一区二区三区激情视频| 成人免费观看视频高清| 多毛熟女@视频| 999久久久精品免费观看国产| 岛国毛片在线播放| 最新在线观看一区二区三区| 亚洲成人免费电影在线观看| 日韩欧美免费精品| 丰满迷人的少妇在线观看| 国产高清视频在线播放一区| 在线看a的网站| av一本久久久久| 国产亚洲av高清不卡| 国产在线免费精品| 国产精品 欧美亚洲| 悠悠久久av| 精品国产乱码久久久久久男人| 婷婷丁香在线五月| 三上悠亚av全集在线观看| 久久人妻福利社区极品人妻图片| 中文字幕最新亚洲高清| 国产精品影院久久| a在线观看视频网站| 午夜福利视频精品| 久久久精品免费免费高清| 久9热在线精品视频| 中文字幕精品免费在线观看视频| 欧美黑人欧美精品刺激| 久久久久视频综合| 亚洲精品国产区一区二| 亚洲黑人精品在线| 99精品在免费线老司机午夜| 一个人免费看片子| 69精品国产乱码久久久| av免费在线观看网站| www.999成人在线观看| 精品久久久久久电影网| 亚洲专区国产一区二区| 午夜福利免费观看在线| 欧美久久黑人一区二区| 欧美日韩中文字幕国产精品一区二区三区 | 亚洲第一欧美日韩一区二区三区 | 亚洲av欧美aⅴ国产| 久久国产精品人妻蜜桃| 亚洲精品在线观看二区| 久久天躁狠狠躁夜夜2o2o| 怎么达到女性高潮| 日本欧美视频一区| 一进一出抽搐动态| 美女国产高潮福利片在线看| 亚洲av电影在线进入| 欧美国产精品一级二级三级| videos熟女内射| 久久精品91无色码中文字幕| 成人永久免费在线观看视频 | 我的亚洲天堂| avwww免费| 桃红色精品国产亚洲av| 色播在线永久视频| 亚洲av美国av| 亚洲精品国产一区二区精华液| 超碰97精品在线观看| 极品教师在线免费播放| 人人妻人人添人人爽欧美一区卜| h视频一区二区三区| 99热国产这里只有精品6| 欧美日韩国产mv在线观看视频| 精品人妻在线不人妻| 国产成人av教育| 曰老女人黄片| 一个人免费在线观看的高清视频| 91老司机精品| 女人被躁到高潮嗷嗷叫费观| 18在线观看网站| 久久久久久久久免费视频了| 人妻 亚洲 视频| 国产精品秋霞免费鲁丝片| 变态另类成人亚洲欧美熟女 | 一边摸一边抽搐一进一出视频| 午夜福利,免费看| 国产成人欧美在线观看 | 日韩欧美一区二区三区在线观看 | 国产精品免费大片| 97在线人人人人妻| 麻豆国产av国片精品| 女性被躁到高潮视频| 捣出白浆h1v1| 男女高潮啪啪啪动态图| 国产亚洲精品第一综合不卡| 国产精品久久久久久人妻精品电影 | av线在线观看网站| 香蕉国产在线看| 五月天丁香电影| 99在线人妻在线中文字幕 | 久热爱精品视频在线9| 午夜福利在线免费观看网站| 啦啦啦中文免费视频观看日本| av欧美777| 亚洲国产av新网站| 国产亚洲av高清不卡| 国产有黄有色有爽视频| 亚洲成人手机| 91精品三级在线观看| 亚洲国产欧美在线一区| 日韩制服丝袜自拍偷拍| 69精品国产乱码久久久| 欧美日韩精品网址| 久久久国产精品麻豆| 夫妻午夜视频| 亚洲国产毛片av蜜桃av| 精品一区二区三区四区五区乱码| 日韩欧美免费精品| 国产欧美日韩一区二区精品| 国产亚洲av高清不卡| 日韩欧美免费精品| 99九九在线精品视频| 高清视频免费观看一区二区| 欧美日韩亚洲国产一区二区在线观看 | 一边摸一边抽搐一进一出视频| 视频区欧美日本亚洲| 久久ye,这里只有精品| tube8黄色片| 嫁个100分男人电影在线观看| 超碰成人久久| 亚洲九九香蕉| 99久久99久久久精品蜜桃| 男女床上黄色一级片免费看| 久久午夜综合久久蜜桃| 国产日韩欧美在线精品| 成人国语在线视频| 新久久久久国产一级毛片| 国产欧美日韩一区二区精品| 动漫黄色视频在线观看| 日韩大码丰满熟妇| 在线观看66精品国产| 成人亚洲精品一区在线观看| 黄色毛片三级朝国网站| 深夜精品福利| 9色porny在线观看| 亚洲第一青青草原| 成人国产av品久久久| 国产免费福利视频在线观看| 真人做人爱边吃奶动态| 啦啦啦 在线观看视频| 搡老乐熟女国产| tube8黄色片| 18禁黄网站禁片午夜丰满| 丰满饥渴人妻一区二区三| 最近最新中文字幕大全免费视频| 美国免费a级毛片| 久久久久精品人妻al黑| 丰满迷人的少妇在线观看| 一个人免费看片子| 99久久精品国产亚洲精品| 每晚都被弄得嗷嗷叫到高潮| 老鸭窝网址在线观看| 超碰成人久久| 亚洲精品中文字幕一二三四区 | 国产成人精品无人区| 亚洲午夜理论影院| 成人亚洲精品一区在线观看| 国精品久久久久久国模美| 国产伦理片在线播放av一区| 国产日韩一区二区三区精品不卡| 91麻豆精品激情在线观看国产 | 国产成人免费观看mmmm| 亚洲少妇的诱惑av| 99久久精品国产亚洲精品| 狠狠精品人妻久久久久久综合| 桃红色精品国产亚洲av| 建设人人有责人人尽责人人享有的| 69av精品久久久久久 | 亚洲国产精品一区二区三区在线| 精品国产国语对白av| 国产精品国产av在线观看| 亚洲国产欧美在线一区| 久久国产精品男人的天堂亚洲| 亚洲人成伊人成综合网2020| 亚洲 国产 在线| 汤姆久久久久久久影院中文字幕| 国产精品一区二区精品视频观看| 久久人妻福利社区极品人妻图片| 国产成+人综合+亚洲专区| 色94色欧美一区二区| 我的亚洲天堂| 日本精品一区二区三区蜜桃| 日本av手机在线免费观看| av视频免费观看在线观看| 欧美日韩亚洲国产一区二区在线观看 | 男女床上黄色一级片免费看| 成人18禁高潮啪啪吃奶动态图| 久久国产精品男人的天堂亚洲| 国产成人一区二区三区免费视频网站| 狠狠精品人妻久久久久久综合| 亚洲天堂av无毛| 精品国产亚洲在线| 在线观看免费日韩欧美大片| 在线 av 中文字幕| 满18在线观看网站| 高清欧美精品videossex| 国产精品一区二区在线观看99| 丁香六月欧美| 人人妻人人澡人人爽人人夜夜| 免费在线观看日本一区| 日本精品一区二区三区蜜桃| 看免费av毛片| 成人免费观看视频高清| 9191精品国产免费久久| 久久中文字幕一级| 亚洲va日本ⅴa欧美va伊人久久| 黑丝袜美女国产一区| 精品少妇内射三级| 日韩视频一区二区在线观看| 午夜福利影视在线免费观看| 日韩欧美免费精品| 五月天丁香电影| 国产免费福利视频在线观看| 9热在线视频观看99| 最近最新中文字幕大全免费视频| 日韩免费高清中文字幕av| 精品国产一区二区三区久久久樱花| 啦啦啦视频在线资源免费观看| 国产欧美亚洲国产| 久久 成人 亚洲| 岛国毛片在线播放| 色播在线永久视频| 免费观看人在逋| 又黄又粗又硬又大视频| 亚洲av日韩在线播放| 一本大道久久a久久精品| 亚洲九九香蕉| 女性被躁到高潮视频| 久久99一区二区三区| 久久久久网色| 一边摸一边抽搐一进一小说 | 蜜桃在线观看..| 高清在线国产一区| 99精品欧美一区二区三区四区| 最近最新中文字幕大全电影3 | 国产有黄有色有爽视频| 国产在视频线精品| 男女下面插进去视频免费观看| 亚洲午夜精品一区,二区,三区| 亚洲av欧美aⅴ国产| 国产精品一区二区精品视频观看| 嫁个100分男人电影在线观看| 国产亚洲一区二区精品| 最黄视频免费看| 午夜精品国产一区二区电影| 亚洲国产av影院在线观看| 日本五十路高清| 成人国语在线视频| av欧美777| av一本久久久久| a级片在线免费高清观看视频| 久久国产精品人妻蜜桃| 黄色视频不卡| 搡老熟女国产l中国老女人| 免费观看人在逋| 五月天丁香电影| 母亲3免费完整高清在线观看| 两性午夜刺激爽爽歪歪视频在线观看 | 国产精品香港三级国产av潘金莲| 免费av中文字幕在线| 亚洲视频免费观看视频| 黄片播放在线免费| 亚洲av日韩精品久久久久久密| 亚洲国产欧美网| 日韩欧美免费精品| 9热在线视频观看99| 1024视频免费在线观看| 999精品在线视频| 99热国产这里只有精品6| 亚洲av成人不卡在线观看播放网| 中文字幕色久视频| 国产精品久久久人人做人人爽| 欧美精品av麻豆av| 99re6热这里在线精品视频| 久久青草综合色| 午夜福利免费观看在线| av不卡在线播放| 亚洲国产欧美一区二区综合| 在线观看www视频免费| 别揉我奶头~嗯~啊~动态视频| 18禁观看日本| 可以免费在线观看a视频的电影网站| 国产不卡一卡二| 欧美精品av麻豆av| 黄色视频不卡| 一本大道久久a久久精品| 69av精品久久久久久 | 亚洲国产av影院在线观看| 一个人免费看片子| 高清在线国产一区| 久久久水蜜桃国产精品网| 91精品国产国语对白视频| 99国产综合亚洲精品| 女性被躁到高潮视频| 1024视频免费在线观看| 每晚都被弄得嗷嗷叫到高潮| 亚洲免费av在线视频| 男女无遮挡免费网站观看| 久久ye,这里只有精品| 捣出白浆h1v1| 国产成+人综合+亚洲专区| 99久久人妻综合| 黄片大片在线免费观看| 久热爱精品视频在线9| 成人免费观看视频高清| 天天操日日干夜夜撸| 免费一级毛片在线播放高清视频 | 亚洲一区中文字幕在线| 久久精品人人爽人人爽视色| 国精品久久久久久国模美| 久久中文看片网| 久久人妻av系列| 亚洲男人天堂网一区| 国产男女内射视频| 国产欧美日韩一区二区三区在线| 99精国产麻豆久久婷婷| svipshipincom国产片| 97在线人人人人妻| 欧美日韩成人在线一区二区| 九色亚洲精品在线播放| 香蕉丝袜av| 看免费av毛片| 亚洲av美国av| 色综合欧美亚洲国产小说| 亚洲少妇的诱惑av| 精品熟女少妇八av免费久了| 少妇 在线观看| 欧美日韩亚洲综合一区二区三区_| 国产成人av激情在线播放| 免费少妇av软件| 久久性视频一级片| 我要看黄色一级片免费的| 高清视频免费观看一区二区| 一级片'在线观看视频| 狠狠精品人妻久久久久久综合| 天天操日日干夜夜撸| xxxhd国产人妻xxx| 色在线成人网| 国产黄频视频在线观看| 午夜激情av网站| 国产欧美日韩精品亚洲av| 久久精品国产99精品国产亚洲性色 | 青青草视频在线视频观看| 午夜精品国产一区二区电影| 99国产精品一区二区蜜桃av | 丁香欧美五月| 欧美激情高清一区二区三区| 久久人妻av系列| 欧美精品高潮呻吟av久久| 三级毛片av免费| 女同久久另类99精品国产91| 性色av乱码一区二区三区2| 窝窝影院91人妻| 日本欧美视频一区| 中国美女看黄片| 老司机深夜福利视频在线观看| 国产在线免费精品| 久久热在线av| 久久狼人影院| 99久久国产精品久久久| 每晚都被弄得嗷嗷叫到高潮| 欧美日韩成人在线一区二区| 一二三四在线观看免费中文在| 丝袜美腿诱惑在线| 国产1区2区3区精品| 国产伦理片在线播放av一区| 老司机福利观看| 精品亚洲乱码少妇综合久久| 精品熟女少妇八av免费久了| 侵犯人妻中文字幕一二三四区| 天天操日日干夜夜撸| 香蕉久久夜色| 狠狠狠狠99中文字幕| 色老头精品视频在线观看| 夜夜爽天天搞| 国产亚洲一区二区精品| 18在线观看网站| 久久婷婷成人综合色麻豆| 亚洲国产欧美一区二区综合| 久久国产精品影院| 桃红色精品国产亚洲av| 成人特级黄色片久久久久久久 | 欧美中文综合在线视频| tube8黄色片| 无人区码免费观看不卡 | 99久久国产精品久久久| 久久久久久人人人人人| 美女主播在线视频| 另类精品久久| 国产av又大| 天天躁日日躁夜夜躁夜夜| 中文字幕另类日韩欧美亚洲嫩草| 色播在线永久视频| www.999成人在线观看| 国产免费视频播放在线视频| 啪啪无遮挡十八禁网站| 亚洲国产成人一精品久久久| 欧美另类亚洲清纯唯美| 成人免费观看视频高清| 少妇 在线观看| 性少妇av在线| 亚洲第一青青草原| 我要看黄色一级片免费的| 香蕉国产在线看| 巨乳人妻的诱惑在线观看| 免费在线观看日本一区| 欧美在线一区亚洲| 久久久久久人人人人人| 久久久久久亚洲精品国产蜜桃av| a级片在线免费高清观看视频| 一本久久精品| 超色免费av| 丝袜喷水一区| 脱女人内裤的视频| 夜夜爽天天搞| 亚洲伊人色综图| 国产精品一区二区在线不卡| 视频区欧美日本亚洲| 国产精品99久久99久久久不卡| 久久香蕉激情| 成年动漫av网址| 日本vs欧美在线观看视频| 99re在线观看精品视频| 啦啦啦视频在线资源免费观看| av超薄肉色丝袜交足视频| 国产精品影院久久| 两个人看的免费小视频| 亚洲国产精品一区二区三区在线| 国产欧美日韩一区二区三区在线| 一级毛片电影观看| 丝袜美腿诱惑在线| 美女视频免费永久观看网站| 法律面前人人平等表现在哪些方面| 午夜福利在线免费观看网站| 国产亚洲一区二区精品| 欧美成人免费av一区二区三区 | 国产精品自产拍在线观看55亚洲 | 久久狼人影院| 久久久久精品国产欧美久久久| 精品人妻熟女毛片av久久网站| 少妇猛男粗大的猛烈进出视频| 国产av精品麻豆| 无限看片的www在线观看| 老司机影院毛片| 国产成+人综合+亚洲专区| 90打野战视频偷拍视频| 精品国产乱子伦一区二区三区| 一本一本久久a久久精品综合妖精| www.熟女人妻精品国产| 欧美在线黄色| 大码成人一级视频| 国产亚洲精品第一综合不卡| 最黄视频免费看| 国产亚洲一区二区精品| 午夜福利在线免费观看网站| 老司机深夜福利视频在线观看| 久久中文字幕人妻熟女| 亚洲精品一卡2卡三卡4卡5卡| 国产色视频综合| 日韩免费av在线播放| 亚洲熟女精品中文字幕| 国产高清视频在线播放一区| 成人国语在线视频| 国产不卡av网站在线观看| 99国产精品99久久久久| 久久人妻福利社区极品人妻图片| 在线十欧美十亚洲十日本专区| 男女下面插进去视频免费观看| 久久精品亚洲熟妇少妇任你| 午夜福利在线观看吧| 女人被躁到高潮嗷嗷叫费观| 一本—道久久a久久精品蜜桃钙片|