• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Effect of the shaft eccentricity and rotational direction on the mixing characteristics in cylindrical tank reactors

    2016-06-12 03:47:40HouariAmeur
    Chinese Journal of Chemical Engineering 2016年12期

    Houari Ameur

    Institute of Science and Technology,University Center Ahmed Salhi,Ctr Univ Naama,45000,Algeria

    1.Introduction

    Mixing is widely used in several industrial processes and it is generally performed in stirred tanks.Baffling of the stirred tank is an effective strategy to enhance the scale mixing by breaking the primary vortex[1–3].However,there are processes where unbaffled tanks are preferred,as for mixing rheologically complex fluids[4]or in pharmaceutical and food industries where the cleaning is a great issue[5].

    Mixing of highly shear thinning fluids results in the formation of pseudo-caverns in the impeller vicinity and stagnant or slow moving fluids elsewhere.It is recommended to eliminate the stagnant regions since their presence yields poor heat and mass transfer rates,and high temperature gradients.The mixing quality may be improved by the turbulence invoked by the increase of the impeller rotational speed.However,there are instances where high values of the impeller speed are not applied,especially for highly viscous non-Newtonian fluids such as encountered in food,paint,petroleum,polymer industries.For these fluids,the effective mixing is prohibited in the laminar regime,by the presence of Isolated Mixing Regions(IMR)[6,7].Therefore,strategies such as the shaft eccentricity have been introduced in order to reduce the mixing time[8,9],particularly for unbaffled vessels which are preferred in industrial processes because of the easiness of the cleaning operation inside the vessel[10,11].

    Alvarez[12]discussed interesting aspects on the mixing by an eccentric impeller in the laminar regime.Ng and Ng[13]investigated the laminar mixing characteristics of Newtonian fluids in a cylindrical vessel stirred by a plate impeller.The radial mixing is found to be poor in an unbaffled vessel stirred by a concentric impeller;however,baffles enhance marginally the radial exchange between the vessel walls and inner fluid particles.This issue may be overcome by using the shaft eccentricity.

    The eccentricity can provide a great enhancement in the axial circulation of fluid particles[14]and yields similar effects as the baffles,where the tangential fluid flows are impeded in both cases[9].The shaft eccentricity generates a vortex-shedding phenomenon from the flow–shaft interactions[10]and the flow instabilities caused by the upper vortex decrease with increasing impeller blade thickness or with increasing eccentricity ratio[16].

    For an eccentrically located Rushton turbine,Galletti and Brunazzi[15]found that the lower vortex is inclined by 20°and the upper vortex is inclined by 15°justabove the impeller,and 8°near the free liquid surface.However,Montanteet al.[17]found an inclination by 10°for the lower vortex and 30°for the upper vortex,with respect to the vertical plane.These discrepancies are due to the difference in mixing system geometries,increasing the impeller clearance from the vessel base and its eccentricity leads to a widening inclination of the uppervortex,as reported by Galletti and Brunazzi[15].

    For a propeller and a Newtonian fluid,Karczet al.[18]reported that the mixing time decreases as the shaft eccentricity increases,but with additional energy costs.Gogate and Pandit[19]showed that the experiment procedure affects the measurement of mixing times for eccentrically located impellers.Karczet al.[18]confirmed this finding for propeller of HE3 turbine and reported that the values of the measured mixing time depend on the measuring point inside the tank.

    For multiple impeller systems,the eccentricity may cause a stronger compartmentalization effect,as reported by Woziwodzki and Jedrzejczak[20].Yanget al.[21]studied the mixing of two stratified miscible liquids in a vessel stirred by a four pitched-blade impeller.They reported that the eccentric location of the impeller is not suitable to blend the low-viscosity miscible liquids starting from a stratified state,especially when the values of the Richardson number(Ri)are low.However,this position may reduce the mixing time for higherRi[21–23].We note that the Reynolds numberReis proportional to impeller rotational speedN,and the Richardson numberRidecreases with increasingN.

    Several types of eccentrically located impellers were investigated by some researchers,the Rushton turbine was studied by Montante et al.[17],HE3 impeller by Cudak and Karcz[24],propeller by Szoplik and Karcz[25,26],propeller and HE3 turbine by Karcz and Cudak[27],and Scaba 6SRGT impeller by Ameur et al.[28].The combinations of two eccentric impellers were studied by Ascanio and Tanguy[29]for singlephase,by Cabaret et al.[30]for two-phase gas–liquid systems with the Newtonian and non-Newtonian fluids.For Newtonian and two-stage impellers(Rushton turbine,six-pitched-blade turbine and six- flat blade turbine),Woziwodzkiet al.[31]were interested in the transitional regime and Woziwodzki and Jedrzejczak[20]studied the flows within the laminar regime.

    Knowledge about the impact of the impeller eccentricity on the mixing characteristics for highly viscous non-Newtonian fluids is limited,especially for retreat-blade impellers.Therefore,in the present paper an attempt is made to explore the effect of eccentricity on the 3D fluid flows and power requirements for mixing shear thinning fluids by six-retreat-blade impellers.Effects of the rotational direction are also studied.

    2.Mixing System

    The mixing system under study(Fig.1a)is a cylindrical unbaffled tank with a flat bottom(diameterD=400 mm and heightH/D=1),equipped by an impeller having six-curved blades(diameterd/D=0.4,heighth/D=0.1 and curvaturebc/D=0.06)and placed at a clearance from the vessel base c/D=0.5.The ratio ds/D(diameter shaft)is set to 0.03.

    Fig.1.Mixing system.

    The effect of impeller eccentricity is investigated by realizing three configurationse/D=0(i.e.concentric position),0.12 and 0.24.Each blade is given a number in order to ease the discussion of results(Fig.1b).The origin of the angular coordinate θ =0°is taken at the prolongation of blade No.1(Fig.1b).

    3.Theoretical Background

    Three fluids are used in this study;it concerns the emulsions named E1,E2 and E3 which are models of food emulsions.The rheological properties of the three fluids are summarized on Table 1,based on measurements achieved by Thakuret al.[32].

    Table 1Rheological properties of the fluids simulated

    The three solutions simulated have a shear thinning behavior modeled by the power-law(Oswald law).In this situation,the shear stress is related to the shear strain rate by the following equation:

    wheremis the consistency factor.

    The working fluid is modeled by the Ostwald–de Waele law,as:

    The generalized Reynolds number for a shear thinning fluid(following the Ostwald model)is:

    whereρis the density,N is the impeller rotational speed and ksis a weak function of the stirrer type and it is taken equal to 11.5.The power consumption is calculatedviathe following equation:

    where Qvis the viscous dissipation.

    The elementdvis written as:

    In the dimensionless form,we define the power number as:

    4.Numerical Method

    The Reynolds number is changed from 0.1 to 1000,covering the laminar and transitional regimes.Based on several studies and confirmed by different authors[33–37].Pakzadet al.[38]reported that the macro-instabilities happening in the transitional flow regime close to the laminar regime can be neglected.Therefore,in the transitional regime,the lower part can be modeled as laminar and the upper part as turbulent.

    In steady-state and for incompressible fluids,the three-dimensional fluid flows inside the vessel were predicted by solving the governing equations of mass and momentum conservation using ANSYS CFX.The mixing system geometry was created by ANSYS ICEM CFD and then divided into tetrahedral meshes(Fig.2).In order to capture details of the flow boundary layer,an advanced size function was utilized during the meshing operation near the walls of the mixing system.Since the impeller has curved blades,the mesh density around the impeller was increased to accurately capture the blade design.

    Fig.2.Tetrahedral meshes.

    Grid in dependency was verified by comparing the converged results of power consumption and velocities around the impeller.During the refinement process,the size function is kept and the size of elements near the walls of the mixing system is reduced.With the computational mesh of about 1253897 elements,the obtained results of the selected variables(NpandVmax)did not change by more than 2%.Therefore,this was adopted for further simulations.

    Since the tank is unbaffled,the stirrer rotation was modeled by using the Rotating Reference Frame(RRF)method.This technique was used by several authors for the same mixing system and satisfactory results were found[39,40].Further details are provided in our previous paper[41].

    The second order upwind scheme was used for the convection terms.To perform pressure–velocity coupling,a pressure-correction method of the type Semi-Implicit Method for Pressure Linked Equations Consistent(SIMPLEC)is used.Solutions were converged when normalized residuals for pressure and velocity drop below 10-7.Most calculations required 1000–1500 iterations and about 4–5 h.

    5.Results and Discussion

    5.1.Validation

    As a first step,it is necessary to check the reliability of the computer code and the numerical method performed.For this purpose,we referred to the experimental work of Vennekeret al.[42].With exactly the same geometry and the same fluid(shear thinning fluid,n=0.85)as those undertaken by these researchers,we predicted the variation of tangential velocity along the vessel radius(Fig.3).As remarked on this figure,the comparison shows a satisfactory agreement.

    Fig.3.Tangential velocity along the vessel radius,n=0.85,Re g=22200.

    5.2.Effect of the impeller eccentricity

    Generally,the mixing systems are designed basing on the symmetric characteristics due to the easiness of implementation.However,when the fluid flow is laminar,a strong degradation of the mixture quality is observed due to the presence of isolated mixing regions caused by the symmetric conditions[13].Alvarez et al.[14]reported that the drop in mixing performance is due to the structure of the global unstable manifolds which will never fill the entire flow domain for concentric impeller configurations.

    In the current work,the impeller eccentricity is implemented to produce globally chaotic flows throughout the unbaffled cylindrical tank.We interest to an impeller with six curved blades.For such impellers,two vortices are observed(Fig.4a),one departing from below the impeller to the vessel base,and other originating from the above the impeller towards the liquid free surface.This vortex dominates all vessel motions and yields strong circumferential flows around it.The resulted toroidal structure moves slightly and in a periodic manner,generating thus flow instabilities.The same finding was observed by Gallettiet al.[16]with the Rushton turbine.For the symmetric rotation condition,the particles outside the region swept by the impellers are well-known to have minimal interaction with the inner particles[13].

    When the impeller is placed at an eccentric position(Fig.4b,c),the interaction between the shaft and the circumferential flow dominating the tank motion generates vortex shedding phenomena[15].The symmetric axial circulation of fluid flows is lost with the eccentric configuration,the axial and radial velocity components give rise to a circumferential motion,resulting thus in the destruction of double loops formed in the centric condition.Galletti and Brunazzi[15]argued that both vortices are not steady but moves slightly,generating periodic instabilities in the fluid flows.

    Fig.4.Streamlines for the clockwise rotational direction(+ω),Re g=100,solution E1.

    We remind that three geometries are realized to explore the effect of impeller eccentricity and these are:e/D=0,0.12 and 0.24 which corresponds to 0%,24%and 48%of the vessel diameter,respectively.

    If the agitator is positioned at a small eccentricity(24%),the flow symmetry will be lost,the blade close to the vessel wall(blade No.1)generates two small eddies.However,blade No.4 generates two large whirlpools of a high axial circulation.For a large amount of eccentricity(48%),the vortex generated at blade No.1 grows intensively,which will give a very strong chaotic movement of fluid particles below the stirrer.In the area swept by blade No.4,there will be only one vortex that goes to the vessel bottom and which was formed because of the interaction of fluid particles with the wall of the vessel base.The increase in eccentricity generates a high shear in the area swept by blade No.1(as shown in Fig.5).

    Fig.5.Shear strain rates at the wall near the impeller(R*=1,θ =0°)for Re g=100,solution E1,+ω.

    The velocity distribution for the three geometries is brought in the form of contours on a horizontal plane at a height ofZ*=0.5(Fig.6).The maximum value of velocity is reached at the tip of each blade when the agitator is concentric.As soon as the eccentricity begins(e/D=0.12),a dead zone is formed between blade Nos.3 and 4.For a large amount of eccentricity(e/D=0.24,i.e.48%),the dead zone between blade Nos.3 and 4 becomes wider.Fig.7 illustrates this phenomenon.

    On a horizontal plane passing through the agitator(Z*=0.5),the structure of the flow generated is shown in Fig.7.The vortex formed at the end of blade No.4(i.e.near the vessel center)is due to the interaction with the vessel wall(Fig.7b,c).The fluid particle thrust by blade No.4 hits the back of blade No.3 and then it changes its direction for forming a vortex,it is a dead zone where the mixture is very poor.

    Fig.8 illustrates the flow mechanism for promoting mixing in eccentric configurations.The interaction with the vertical walls of vessel will generate two small eddies(nos.1 and 2)after blade No.1(Fig.8a).The fluid particle of the vortex(no.1)generated at the tip of blade No.1 goes below the agitator and enters the vortex(no.3)generated by blade No.4(Fig.8b),which will increase the axial movement of vortex no.3.The geometrical shape of the blade has also a very significant effect on the size of all these vortices.

    Table 2 presents the power consumption forReg=100 in the clockwise rotational direction.The impeller eccentricity was found to be equivalent to the baffles,since it maximizes the power consumption[43].

    The two values of impeller eccentricitye/D=0.12 and 0.24(i.e.24%and 48%of the vessel diameter)yielded an increase in the power consumption by about 50%and 186%compared to the concentric case(e/D=0).And this is due to the increase of the interaction forces in the impeller-vessel region.

    5.3.Effect of the impeller rotational direction

    The effect of impeller rotational direction is investigated in this section.We note:(+ω)the clockwise rotational direction and(-ω)the opposite direction.

    The 3D flow fields generated for the two rotational directions are shown in Fig.9.In the case of(-ω),a large amount of the energy of vortex no.2 will be transmitted to swirl no.3 and the chaotic movement below the agitator is intense compared to the case(+ω).Consequently,the opposite rotational direction(-ω)provides further axial movement of vortex no.3.

    On a height ofZ*=0.5(i.e.at the stirrer level),the size of the mixing zone is well illustrated in Fig.10.Comparison of the two slices permits drawing the following conclusions:

    ·The vortex generated near blade No.4 is larger in the case(+ω)than

    that for the case(-ω).

    ·The case(-ω)provides high axial circulation(vortex no.3 is longer than that for the case(+ω)).However,the case(+ω)gives more radial and tangential flows.

    Fig.6.Well-stirred region size for Re g=100,solution E1,+ω.

    Fig.7.Flow fields for e/D=0.24,Re g=100,solution E1,+ω,Z*=0.5.

    Fig.8.3D fluid flows for the opposite clockwise rotational direction(-ω),solution E1,Re g=0.1,e/D=0.12.

    5.4.Effect of Reynolds number

    In this section,the influence of the impeller rotational speed expressed in the Reynolds number is highlighted for the case(+ω).If the Reynolds number is small,a dead zone develops between blade Nos.3 and 4 and the size of the good mixing zone is limited in the area swept by the mixer(Fig.11).If the Reynolds number increases,the dead zone dissipates and almost two thirds of the vessel volumes are well mixed.Then,the eccentricity condition seems a good technique to increase the size of the well-mixed region in an unbaffled tank.However,when the agitator is placed at the vertical middle of the tank(i.e.Z*=0.5),the region close to the vessel base is not stirred for this flow regime and such stirrer.So,it is advisable to place the mixer at 1/3 of the vessel height and an eccentricity between 24%and 48%of the vessel diameter.The impeller type affects also the critical value ofe/D,since flow instabilities are observed in the impeller-wall region.

    Table 2Power number for Re g=100,+ω

    Karcz et al.[18],Cabaret et al.[30]and Woziwodzki et al.[31]found a reduction in the mixing time(tm)when the shaft eccentricity is increased.Ng and Ng[13]found marginal enhancement in the mixing performance when the shaft eccentricity is increased from 40%to 48%,and no enhancement for further eccentricity(until 56%).This finding is consistent with that of Cabaretet al.[30]for their laminar work whereby they revealed that beyond a critical value of the shaft eccentricity,there is further discernible difference in the mixing efficiency.This critical value is dependent on the measuring point oftm,since Karczet al.[18]observed that the reduction of tmis still 57%of eccentricity.

    Fig.9.3D fluid flow for different rotational directions,solution E1,Re g=0.1,e/D=0.24.

    Fig.10.Well-stirred region size for Re g=100,solution E1.

    Fig.11.Well-stirred region size for the clockwise rotational direction(+ω),solution E1,e/D=0.12.

    Another important point can be emphasized in Fig.12 where the velocity contours are presented for two situations:(+ω)and(-ω).For the same value of the Reynolds numberReg=200,the dead zone between blade Nos.3 and 4 is dissipated in the case(-ω),contrary to the case(+ω)where this dead zone is still present.This is due to the geometrical shape of the blade.

    Fig.12.Well-stirred region size for Re g=200,solution E1,e/D=0.12.

    Alvarez et al.[14]reported that the mixer eccentricity influences strongly the manifold structure of the liquid flow,resulting thus in destroyed segregated regions and increased axial circulation of the liquid.

    The impeller rotational direction(-ω)seems beneficial as it helps eliminate and/or reduce the size of the dead zones for low values of the Reynolds number.But the energy cost is relatively high compared with the case(+ω),as shown in Fig.13.

    Fig.13.Power number for e/D=0.24.

    5.5.Effect of the fl uid properties

    Three emulsion solutions(called E1,E2 and E3)were used in this study and that are found in the food industry.The rheological properties of each solution are summarized in Table 1.This type of fluid has a shear thinning behavior modeled by the Ostwald law.Fig.14 shows the variation of the shear strain rates as a function of the vessel height for the three solutions.This figure is presented at a radial position R*=0.99(i.e.very close to the tank wall)and an angular position θ =0°(i.e.on the extension of blade No.1).Increasing the fluid behavior index gives more shears of the fluid layers.Consequently,the well-mixed zone will be wider(Fig.15).However,the increase in viscous forces requires more energy to complete the stirring operation(Table 3).

    Fig.14.Shear strain rates for the rotational direction(-ω),R*=0.99,Re g=100,θ=0°.

    Fig.15.Well-stirred region size for the rotational direction(-ω),Re g=100.

    Table 3Power number for e/D=0.12,-ω

    6.Conclusions

    Results of the numerical investigation of mixing by eccentrically located curved-blade impellers inside an unbaffled cylindrical tank,obtained for food emulsions(shear thinning fluids)within the laminar regime,can be summarized as follows:

    ·Two vortices are observed for all cases(centric and eccentric configurations),one above the impeller and other below it.The upper vortex is the stronger and dominates the whole motion in the vessel.Flow instabilities are generated in the impeller-wall region because of the circumferential motion around the upper vortex.

    ·The angular uniformity of the flow discharged from the impeller blades is lost in eccentric configurations.

    ·The tendency for the destruction of segregated regions was remarked with the increase of the eccentricity.

    ·The opposite rotational direction(-ω)may reduce the power consumption compared with clockwise rotational direction(+ω).

    ·The(-ω)case gives a better axial circulation than the(+ω)case.

    ·The strategy of eccentric shaft reduces the segregated regions in the whole vessel.However,the increase of the impeller eccentricity from 24%to 48%of the vessel diameter generates an additional energetic cost from 50%to 186%,compared to the concentric condition.Also,the lower part of the vessel is not disturbed when the impeller is placed at the mid-height.So,it is advisable to place the mixer at 1/3 of the vessel height and an eccentricity(e/D)between 24%and 48%of the vessel diameter.The critical value ofe/Dis affected by the impeller type,since flow instabilities are observed in the impeller wall region.

    Nomenclature

    bcblade curvature,m

    c impeller clearance from the tank bottom,m

    Dtank diameter,m

    dbblade diameter,m

    dddisk diameter,m

    dsshaft diameter,m

    dtdisk thickness,m

    eimpeller eccentricity,m

    hliquid height,m

    mconsistency index,Pa·sn

    Nimpeller rotational speed,s-1

    Nppower number,Np=P∕ ρN3D5

    nflow behavior index

    P power,W

    Qvviscous dissipation function,s-2

    Rradial coordinate,m

    R* dimensionless radial coordinate,R*=2R∕D

    RegReynolds number for a shear thinning fluid,Reg=(ρN2-n·d2) ∕ (m·ks n-1)

    Vz,Vθ,Vraxial,tangential and radial velocities,m·s-1

    V* dimensionless velocity,V*=V∕ πND

    Zaxial coordinate,m

    Z* dimensionless vertical coordinate,Z*=Z∕D

    α angle of the blade curvature,(°)

    shear rate,s-1

    θ angular coordinate,(°)

    ρ fluid density,kg·m-3

    τ shear stress,Pa

    ω angular velocity,rad·s-1

    [1]M.Basavarajappa,T.Draper,P.Toth,T.A.Ring,S.Miskovic,Numerical and experimental investigation of single phase flow characteristics in stirred tanks using Rushton turbine and flotation impeller,Min.Eng.83(2015)156–167.

    [2]A.Busciglio,G.Montante,A.Paglianti,Flow field and homogenization time assessment in continuously-fed stirred tanks,Chem.Eng.Res.Des.102(2015)42–56.

    [3]J.P.Torré,D.F.Fletcher,T.Lasuye,C.Xuereb,Single and multiphase CFD approaches for modelling partially baffled stirred vessels:comparison of experimental data with numerical predictions,Chem.Eng.Sci.62(2007)6246–6262.

    [4]J.Sossa-Echeverria,F.Taghipour,Computational simulation of mixing flow of shear thinning non-Newtonian fluids with various impellers in a stirred tank,Chem.Eng.Process.93(2015)66–78.

    [5]M.Assirelli,W.Bujalski,A.Eaglesham,A.W.Nienow,Macro and micromixing studies in an unbaffled vessel agitated by a Rushton turbine,Chem.Eng.Sci.63(2008)35–46.

    [6]B.Wang,J.Zhang,H.E.Youduo,A.N.Shengli,Investigation on eccentric agitation in the stirred vessel using 3D-laser Doppler velocimeter,Chin.J.Chem.Eng.14(2006)618–625.

    [7]W.G.Yao,H.Sato,K.Takahashi,K.Koyama,Mixing performance experiments in impeller stirred tanks subjected to unsteady rotational speeds,Chem.Eng.Sci.53(1998)3031–3040.

    [8]J.F.Hall,M.Barigou,M.J.H.Simmons,E.H.Stitt,Mixing in unbaffled high-throughput experimentation reactors,Ind.Eng.Chem.Res.43(2004)4149–4158.

    [9]J.Karcz,J.Szoplik,An effect of the eccentric position of the propeller agitator,Chem.Pap.58(2004)9–14.

    [10]M.Yoshida,Y.Wakura,K.Yamagiwa,A.Ohkawa,S.Tezura,Liquid flow circulating within an unbaffled vessel agitated with an unsteady forward–reverse rotating impeller,J.Chem.Technol.Biotechnol.85(2010)1017–1022.

    [11]S.Woziwodzki,Unsteady mixing characteristics in a vessel with forward–reverse rotating impeller,Chem.Eng.Technol.34(2011)767–774.

    [12]M.Alvarez,Using Spatio-temporal Asymmetry to Enhance Mixing in Chaotic Flows:From Maps to Stirred Tanks(Ph.D.Thesis)Rutgers University,Piscataway,NJ,2000.

    [13]K.C.Ng,E.Y.K.Ng,Laminar mixing performances of baffling,shaft eccentricity and unsteady mixing in a cylindrical vessel,Chem.Eng.Sci.104(2013)960–974.

    [14]M.Alvarez,J.Zalc,T.Shinbort,P.Arratia,F.Muzzio,Mechanisms of mixing and creation of structure in laminar stirred tanks,AICHE J.48(2002)2135–2148.

    [15]C.Galletti,E.Brunazzi,On the main flow features and instabilities in an unbaffled vessel agitated with an eccentrically located impeller,Chem.Eng.Sci.63(2008)4494–4505.

    [16]C.Galletti,S.Pintus,E.Brunazzi,Effect of shaft eccentricity and impeller blade thickness on the vortices features in an unbaffled vessel,Chem.Eng.Res.Des.87(2009)391–400.

    [17]G.Montante,A.Bakker,A.Paglianti,F.Magelli,Effect of shaft eccentricity on the hydrodynamics of unbaffled stirred tanks,Chem.Eng.Sci.61(2006)2807–2814.

    [18]J.Karcz,M.Cudak,J.Szoplik,Stirring of a liquid in a stirred tank with an eccentrically located impeller,Chem.Eng.Sci.60(2005)2369–2380.

    [19]P.R.Gogate,A.B.Pandit,Mixing of miscible liquid with density differences.Effect of volume and density of the tracer fluid,Can.J.Chem.Eng.77(1999)988–996.

    [20]S.Woziwodzki,L.Jedrzejczak,Effect of eccentricity on laminar mixing in vessel stirred by double turbine impellers,Chem.Eng.Res.Des.89(2011)2268–2278.

    [21]F.L.Yang,S.J.Zhou,C.X.Zhang,G.C.Wang,Mixing of initially stratified miscible fluids in an eccentric stirred tank:detached eddy simulation and volume of fluid study,Korean J.Chem.Eng.30(2013)1843–1854.

    [22]J.J.Derksen,Blending of miscible liquids with different densities starting from a stratified state,Comput.Fluids50(2011)35–45.

    [23]J.J.Derksen,Direct simulations of mixing of liquids with density and viscosity differences,Ind.Eng.Chem.Res.51(2012)6948–6957.

    [24]M.Cudak,J.Karcz,Momentum transfer in an agitated vessel equipped with an eccentrically located HE 3 impeller,Chem.Process.Eng.29(2008)1071–1082.

    [25]J.Szoplik,J.Karcz,Mixing time of a non-Newtonian liquid in an unbaffled agitated vessel with an eccentric propeller,Chem.Pap.62(2008)70–77.

    [26]J.Szoplik,J.Karcz,The efficiency of the homogenization of non-Newtonian liquid in an agitated vessel with an eccentric propeller,Chem.Process.Eng.30(2009)125–138.

    [27]J.Karcz,M.Cudak,Local momentum and heat transfer in a liquid and gas–solid–liquid systems mechanically stirred in a jacketed vessel,Eleventh Eur Conf Mixing.Bamberg,Germany,proceeding,paper P24 2003,pp.447–454.

    [28]H.Ameur,M.Bouzit,A.Ghenaim,Numerical study of the performance of multistage Scaba 6SRGT impellers for the agitation of yield stress fluids in cylindrical tanks,J.Hydrodyn.27(2015)436–442.

    [29]G.Ascanio,F.A.Tanguy,Mixing of shear-thinning fluids with dual off-centered impellers,Can.J.Chem.Eng.83(2005)393–400.

    [30]F.Cabaret,L.Fradette,P.A.Tanguy,Gas–liquid mass transfer in unbaffled dual–impeller mixers,Chem.Eng.Sci.63(2008)1636–1647.

    [31]S.Woziwodzki,L.Broniarz-Press,M.Ochowiak,Effect of eccentricity on transitional mixing in vessel equipped with turbine impellers,Chem.Eng.Res.Des.88(2010)1607–1614.

    [32]R.K.Thakur,C.Vial,G.Djelveh,M.Labbafi,Mixing of complex fluids with flat-bladed impellers:effect of impeller geometry and highly shear-thinning behavior,Chem.Eng.Process.43(2004)1211–1222.

    [33]M.Alliet-Gaubert,R.Sardeing,C.Xuereb,P.Hobbes,B.Letellier,P.Swaels,CFD analysis of industrial multi-staged stirred vessels,Chem.Eng.Process.45(2006)415–427.

    [34]M.Alvarez,P.E.Arratia,F.J.Muzzio,Laminar mixing in eccentric stirred tank systems,Can.J.Chem.Eng.80(2002)546–557.

    [35]C.Ford,F.Ein-Mozaffari,C.P.J.Bennington,F.Taghipour,Simulation of mixing dynamics in agitated pulp stock chests using CFD,AIChE J.52(2006)3562–3569.

    [36]W.Kelly,B.Gigas,Using CFD to predict the behaviour of power law fluids near axial flow impellers operating in the transitional flow regime,Chem.Eng.Sci.58(2003)2141–2152.

    [37]C.Rivera,S.Foucault,M.Heniche,T.Espinsoa-Slares,P.A.Tanguy,Finite element modelling of the laminar and transition flow of the Superblend dual shaft coaxial mixer on parallel computers,Chem.Eng.Sci.64(2009)4442–4456.

    [38]L.Pakzad,F.Ein-Mozaffari,S.R.Upreti,A.Lohi,Characterisation of the mixing of non-Newtonian fluids with a scaba 6SRGT impeller through ERT and CFD,Can.J.Chem.Eng.91(2013)90–100.

    [39]J.Aubin,I.Naude,C.Xuereb,J.Bertrand,Blending of Newtonian and shear-thinning fluids in a tank stirred with a helical screw agitator,Chem.Eng.Res.Des.78(2000)1105–1114.

    [40]I.Naude,Direct Simulations of Impellers in a Stirred Tank.Contribution to the Optimization of the Choice of an Agitator(Ph.D.thesis)INPT,France,1998.

    [41]H.Ameur,M.Bouzit,M.Helmaoui,Hydrodynamic study involving a maxblend impeller with yield stress fluids,J.Mech.Sci.Technol.26(2012)1523–1530.

    [42]B.C.H.Venneker,J.J.Derksen,H.E.A.Van den Akker,Turbulent flow of shear-thinning liquids in stirred tanks—the effects of Reynolds number and flow index,Chem.Eng.Res.Des.88(2010)827–843.

    [43]G.B.Tatterson,Fluid Mixing and Gas Dispersion in Agitated Tanks,McGraw-Hill,New York,1991 221.

    午夜成年电影在线免费观看| 少妇被粗大的猛进出69影院| 最近中文字幕2019免费版| 大香蕉久久成人网| 久久午夜综合久久蜜桃| 日韩一区二区三区影片| 美女中出高潮动态图| 在线精品无人区一区二区三| 如日韩欧美国产精品一区二区三区| 法律面前人人平等表现在哪些方面 | 欧美日韩国产mv在线观看视频| 我的亚洲天堂| 国产av精品麻豆| 午夜福利免费观看在线| 日韩欧美一区二区三区在线观看 | 国产97色在线日韩免费| 欧美日韩一级在线毛片| 久久精品亚洲av国产电影网| 制服诱惑二区| 99久久国产精品久久久| 成人国产av品久久久| 下体分泌物呈黄色| 在线观看www视频免费| 欧美 日韩 精品 国产| 精品人妻一区二区三区麻豆| 精品一区二区三卡| 免费在线观看完整版高清| 在线天堂中文资源库| 午夜福利,免费看| 视频区欧美日本亚洲| kizo精华| 精品久久久久久久毛片微露脸 | 欧美日韩福利视频一区二区| 性色av乱码一区二区三区2| 国产伦理片在线播放av一区| av视频免费观看在线观看| 美女午夜性视频免费| www.自偷自拍.com| 午夜免费成人在线视频| 午夜免费观看性视频| 日本黄色日本黄色录像| 亚洲av电影在线进入| 亚洲人成77777在线视频| 久久精品国产亚洲av高清一级| 国产成人精品无人区| 又大又爽又粗| 如日韩欧美国产精品一区二区三区| 国产欧美日韩综合在线一区二区| 首页视频小说图片口味搜索| 亚洲伊人久久精品综合| www.熟女人妻精品国产| 日日爽夜夜爽网站| 精品久久久精品久久久| 免费在线观看视频国产中文字幕亚洲 | 韩国高清视频一区二区三区| 亚洲精品中文字幕在线视频| 欧美 日韩 精品 国产| 国产深夜福利视频在线观看| 日本91视频免费播放| 美女高潮喷水抽搐中文字幕| 狠狠婷婷综合久久久久久88av| 免费女性裸体啪啪无遮挡网站| 丝袜美腿诱惑在线| 男女之事视频高清在线观看| av超薄肉色丝袜交足视频| 欧美精品一区二区大全| 18在线观看网站| 中文字幕色久视频| 国产精品免费大片| xxxhd国产人妻xxx| 亚洲精品成人av观看孕妇| 成人国产一区最新在线观看| 另类亚洲欧美激情| 19禁男女啪啪无遮挡网站| 在线精品无人区一区二区三| 纵有疾风起免费观看全集完整版| 欧美亚洲 丝袜 人妻 在线| 久久精品亚洲av国产电影网| 国产一区二区在线观看av| 人妻久久中文字幕网| av网站在线播放免费| 免费久久久久久久精品成人欧美视频| 免费久久久久久久精品成人欧美视频| 免费久久久久久久精品成人欧美视频| 色视频在线一区二区三区| 久久精品亚洲熟妇少妇任你| 国产精品一区二区精品视频观看| 亚洲精品国产av蜜桃| 老熟妇仑乱视频hdxx| tube8黄色片| 欧美黑人欧美精品刺激| 亚洲欧美一区二区三区黑人| 亚洲国产欧美一区二区综合| 亚洲一区二区三区欧美精品| 各种免费的搞黄视频| 亚洲 欧美一区二区三区| 久久 成人 亚洲| 9191精品国产免费久久| 女性被躁到高潮视频| 一级a爱视频在线免费观看| 久久国产精品影院| 亚洲国产欧美日韩在线播放| 久久精品国产a三级三级三级| 精品人妻熟女毛片av久久网站| 久久99一区二区三区| 69精品国产乱码久久久| 国产日韩一区二区三区精品不卡| 真人做人爱边吃奶动态| 超碰成人久久| 亚洲精品一卡2卡三卡4卡5卡 | 日本欧美视频一区| 99国产精品免费福利视频| 国产一区二区激情短视频 | 少妇猛男粗大的猛烈进出视频| 黄色视频在线播放观看不卡| 日韩一区二区三区影片| 建设人人有责人人尽责人人享有的| 侵犯人妻中文字幕一二三四区| 国产亚洲av高清不卡| 极品少妇高潮喷水抽搐| 80岁老熟妇乱子伦牲交| 深夜精品福利| 汤姆久久久久久久影院中文字幕| 久久久久视频综合| 夫妻午夜视频| 人人澡人人妻人| 中文字幕av电影在线播放| 9热在线视频观看99| 婷婷成人精品国产| 男人添女人高潮全过程视频| 80岁老熟妇乱子伦牲交| 90打野战视频偷拍视频| 一级片免费观看大全| 日本撒尿小便嘘嘘汇集6| 国产亚洲午夜精品一区二区久久| 脱女人内裤的视频| 一区二区三区乱码不卡18| 免费在线观看影片大全网站| 国产又爽黄色视频| 欧美老熟妇乱子伦牲交| 视频区欧美日本亚洲| 美女大奶头黄色视频| a在线观看视频网站| 午夜精品久久久久久毛片777| 一级毛片精品| 两个人免费观看高清视频| 黄片大片在线免费观看| 夜夜骑夜夜射夜夜干| 午夜免费观看性视频| 如日韩欧美国产精品一区二区三区| 99久久综合免费| 搡老岳熟女国产| 亚洲精品日韩在线中文字幕| 黑人操中国人逼视频| avwww免费| 久久性视频一级片| 又黄又粗又硬又大视频| 中文字幕人妻丝袜一区二区| 成年女人毛片免费观看观看9 | 男女高潮啪啪啪动态图| 婷婷色av中文字幕| 亚洲精品中文字幕一二三四区 | 亚洲三区欧美一区| 免费观看人在逋| www.熟女人妻精品国产| videos熟女内射| 欧美精品人与动牲交sv欧美| 精品高清国产在线一区| 国产精品久久久人人做人人爽| 香蕉国产在线看| 亚洲av成人一区二区三| 久久毛片免费看一区二区三区| 国产欧美日韩一区二区精品| 美女国产高潮福利片在线看| 午夜福利免费观看在线| 国产日韩一区二区三区精品不卡| 天天影视国产精品| 91国产中文字幕| 精品少妇内射三级| 亚洲国产精品999| 久久这里只有精品19| 黄色视频在线播放观看不卡| 午夜福利在线免费观看网站| 亚洲av电影在线观看一区二区三区| 中文字幕制服av| 国产成人精品久久二区二区91| 久久国产精品人妻蜜桃| 亚洲欧美色中文字幕在线| 一区二区三区精品91| 黑人操中国人逼视频| av视频免费观看在线观看| 久久精品久久久久久噜噜老黄| 色婷婷久久久亚洲欧美| 女人久久www免费人成看片| 日韩大片免费观看网站| 国产高清视频在线播放一区 | 国产精品国产三级国产专区5o| 日韩熟女老妇一区二区性免费视频| 老司机福利观看| 欧美日韩黄片免| 老司机影院毛片| 多毛熟女@视频| 老熟妇仑乱视频hdxx| 国产成人精品久久二区二区91| 我的亚洲天堂| 两个人免费观看高清视频| 视频区图区小说| 曰老女人黄片| 国产精品自产拍在线观看55亚洲 | 自拍欧美九色日韩亚洲蝌蚪91| 国产日韩欧美视频二区| 日本a在线网址| 日本av手机在线免费观看| av在线老鸭窝| 一区在线观看完整版| 在线十欧美十亚洲十日本专区| 久久中文看片网| 日韩大片免费观看网站| 男人舔女人的私密视频| 亚洲一区二区三区欧美精品| 亚洲精品国产av成人精品| 91麻豆精品激情在线观看国产 | 亚洲视频免费观看视频| 老司机福利观看| 国产高清视频在线播放一区 | 看免费av毛片| xxxhd国产人妻xxx| 一进一出抽搐动态| 伦理电影免费视频| 一二三四在线观看免费中文在| 成年av动漫网址| 大香蕉久久网| 黄色片一级片一级黄色片| 久久国产亚洲av麻豆专区| 欧美日韩黄片免| 免费在线观看完整版高清| 日韩人妻精品一区2区三区| 亚洲色图综合在线观看| 国产又色又爽无遮挡免| 高清av免费在线| 国产欧美日韩一区二区三区在线| 国产精品偷伦视频观看了| 夜夜骑夜夜射夜夜干| 十八禁网站网址无遮挡| 亚洲av电影在线观看一区二区三区| 国产一区有黄有色的免费视频| 69精品国产乱码久久久| 国产1区2区3区精品| 王馨瑶露胸无遮挡在线观看| av又黄又爽大尺度在线免费看| 亚洲中文日韩欧美视频| 飞空精品影院首页| 99国产综合亚洲精品| 欧美中文综合在线视频| 欧美日韩亚洲高清精品| 91成年电影在线观看| www.精华液| a级毛片黄视频| 日韩精品免费视频一区二区三区| 日韩人妻精品一区2区三区| 欧美少妇被猛烈插入视频| 侵犯人妻中文字幕一二三四区| 国产不卡av网站在线观看| 午夜精品久久久久久毛片777| 亚洲av成人一区二区三| 极品少妇高潮喷水抽搐| 一级片免费观看大全| 窝窝影院91人妻| 涩涩av久久男人的天堂| 欧美精品人与动牲交sv欧美| 久久国产精品人妻蜜桃| 国产亚洲精品第一综合不卡| 十八禁人妻一区二区| 99久久99久久久精品蜜桃| 国产av一区二区精品久久| 后天国语完整版免费观看| 国产精品久久久久成人av| 深夜精品福利| 三级毛片av免费| 亚洲午夜精品一区,二区,三区| 亚洲男人天堂网一区| 日本wwww免费看| 欧美精品亚洲一区二区| 一本一本久久a久久精品综合妖精| 亚洲av男天堂| 在线 av 中文字幕| a级片在线免费高清观看视频| 国产精品秋霞免费鲁丝片| 成年人午夜在线观看视频| 久久久久精品人妻al黑| 两人在一起打扑克的视频| 国产精品免费视频内射| 亚洲av电影在线进入| 精品一区在线观看国产| 伊人久久大香线蕉亚洲五| 国产精品av久久久久免费| 欧美日韩亚洲国产一区二区在线观看 | 亚洲五月色婷婷综合| 日本黄色日本黄色录像| 成人国产av品久久久| 一区二区三区乱码不卡18| 国产淫语在线视频| 母亲3免费完整高清在线观看| 欧美少妇被猛烈插入视频| 亚洲五月色婷婷综合| 亚洲av电影在线进入| 男女国产视频网站| 亚洲国产精品成人久久小说| www.av在线官网国产| 性少妇av在线| a级毛片黄视频| 一区福利在线观看| 免费人妻精品一区二区三区视频| 亚洲中文日韩欧美视频| 成年动漫av网址| 亚洲天堂av无毛| 久久国产亚洲av麻豆专区| 成人国产一区最新在线观看| 久久女婷五月综合色啪小说| 国产精品秋霞免费鲁丝片| 黑人操中国人逼视频| 91成人精品电影| 51午夜福利影视在线观看| 一级片'在线观看视频| 亚洲国产精品成人久久小说| 午夜免费观看性视频| 一区在线观看完整版| 超碰成人久久| 在线天堂中文资源库| 2018国产大陆天天弄谢| 曰老女人黄片| 午夜免费成人在线视频| 一级片免费观看大全| 国产男人的电影天堂91| 国产精品久久久久久精品电影小说| 在线永久观看黄色视频| 国产熟女午夜一区二区三区| 免费一级毛片在线播放高清视频 | 精品一区在线观看国产| 性色av一级| 亚洲国产欧美一区二区综合| 狂野欧美激情性bbbbbb| 又大又爽又粗| 激情视频va一区二区三区| av超薄肉色丝袜交足视频| 美女国产高潮福利片在线看| av超薄肉色丝袜交足视频| 亚洲国产精品成人久久小说| 电影成人av| 手机成人av网站| 国产免费福利视频在线观看| 亚洲va日本ⅴa欧美va伊人久久 | 亚洲中文日韩欧美视频| 国产精品自产拍在线观看55亚洲 | 一级毛片女人18水好多| 日韩三级视频一区二区三区| 久久 成人 亚洲| 岛国毛片在线播放| 在线观看免费高清a一片| 国产一区二区三区综合在线观看| 91老司机精品| 久久久久精品人妻al黑| 午夜福利视频精品| 午夜福利在线免费观看网站| 日韩免费高清中文字幕av| 丝袜美腿诱惑在线| 色婷婷久久久亚洲欧美| 亚洲国产欧美一区二区综合| 一边摸一边做爽爽视频免费| 欧美成狂野欧美在线观看| 亚洲精品在线美女| av福利片在线| 人人妻,人人澡人人爽秒播| 菩萨蛮人人尽说江南好唐韦庄| 成年av动漫网址| 亚洲欧美成人综合另类久久久| 三上悠亚av全集在线观看| 女警被强在线播放| 亚洲少妇的诱惑av| 亚洲第一欧美日韩一区二区三区 | 欧美老熟妇乱子伦牲交| 午夜免费鲁丝| 国产在线免费精品| 久久精品国产综合久久久| 精品久久久久久久毛片微露脸 | 在线天堂中文资源库| 啦啦啦在线免费观看视频4| 成年人免费黄色播放视频| 中文字幕av电影在线播放| 国产亚洲欧美在线一区二区| 搡老熟女国产l中国老女人| 国内毛片毛片毛片毛片毛片| 不卡av一区二区三区| 日本a在线网址| 男人爽女人下面视频在线观看| 欧美在线一区亚洲| 亚洲欧美激情在线| 亚洲色图 男人天堂 中文字幕| 久久久久久免费高清国产稀缺| 香蕉国产在线看| 欧美 日韩 精品 国产| 99热国产这里只有精品6| 91字幕亚洲| 精品国产一区二区久久| tube8黄色片| 亚洲综合色网址| 一区二区日韩欧美中文字幕| 两个人看的免费小视频| 亚洲精品美女久久av网站| 国产1区2区3区精品| 国产精品自产拍在线观看55亚洲 | 热re99久久国产66热| 大陆偷拍与自拍| 午夜福利影视在线免费观看| 欧美精品一区二区大全| 久久久水蜜桃国产精品网| 高潮久久久久久久久久久不卡| 亚洲成av片中文字幕在线观看| 高潮久久久久久久久久久不卡| 国产三级黄色录像| 亚洲精品国产av成人精品| 亚洲一码二码三码区别大吗| 一级a爱视频在线免费观看| 免费人妻精品一区二区三区视频| 三上悠亚av全集在线观看| 少妇人妻久久综合中文| 男女无遮挡免费网站观看| √禁漫天堂资源中文www| 免费在线观看视频国产中文字幕亚洲 | 黑人欧美特级aaaaaa片| 捣出白浆h1v1| 99久久综合免费| 免费女性裸体啪啪无遮挡网站| 曰老女人黄片| 香蕉国产在线看| 91字幕亚洲| 成人国产av品久久久| 一个人免费在线观看的高清视频 | 色94色欧美一区二区| 亚洲欧美清纯卡通| 老鸭窝网址在线观看| 侵犯人妻中文字幕一二三四区| 欧美精品一区二区免费开放| 亚洲全国av大片| 99久久精品国产亚洲精品| 日本91视频免费播放| 免费久久久久久久精品成人欧美视频| 人妻一区二区av| 少妇猛男粗大的猛烈进出视频| 欧美日韩亚洲综合一区二区三区_| 欧美激情久久久久久爽电影 | 黄片播放在线免费| 亚洲国产日韩一区二区| 一本大道久久a久久精品| 电影成人av| 国产无遮挡羞羞视频在线观看| 视频区图区小说| 国产成人系列免费观看| 男女国产视频网站| 国产一区二区激情短视频 | 免费人妻精品一区二区三区视频| 国产高清视频在线播放一区 | 91麻豆精品激情在线观看国产 | 男女下面插进去视频免费观看| 又紧又爽又黄一区二区| 国产熟女午夜一区二区三区| 无遮挡黄片免费观看| 免费av中文字幕在线| 99re6热这里在线精品视频| 在线观看免费高清a一片| 天堂中文最新版在线下载| 久久久久国产精品人妻一区二区| 在线观看免费午夜福利视频| 无遮挡黄片免费观看| 一级毛片电影观看| 亚洲国产日韩一区二区| 亚洲va日本ⅴa欧美va伊人久久 | 国产精品一区二区精品视频观看| 波多野结衣一区麻豆| 精品亚洲成a人片在线观看| 欧美另类亚洲清纯唯美| 国产欧美日韩精品亚洲av| 一区二区三区乱码不卡18| 久久免费观看电影| 999久久久国产精品视频| av又黄又爽大尺度在线免费看| a级片在线免费高清观看视频| 午夜福利视频精品| 欧美在线一区亚洲| 老司机靠b影院| 一本—道久久a久久精品蜜桃钙片| 另类亚洲欧美激情| 亚洲中文日韩欧美视频| 美女大奶头黄色视频| 美女视频免费永久观看网站| 中文字幕色久视频| 亚洲男人天堂网一区| 精品国产国语对白av| 69av精品久久久久久 | www.av在线官网国产| 免费在线观看视频国产中文字幕亚洲 | 一本大道久久a久久精品| 久久久久国内视频| 国产深夜福利视频在线观看| 欧美国产精品一级二级三级| 国产精品.久久久| 在线 av 中文字幕| 久久香蕉激情| 日本91视频免费播放| 91大片在线观看| 国产一区二区三区在线臀色熟女 | 久久性视频一级片| 亚洲成人免费av在线播放| 中文字幕最新亚洲高清| 国产一区二区三区在线臀色熟女 | 精品一区二区三区四区五区乱码| 两个人免费观看高清视频| 日日摸夜夜添夜夜添小说| 天堂中文最新版在线下载| 动漫黄色视频在线观看| 一本色道久久久久久精品综合| 黄片小视频在线播放| 99九九在线精品视频| 视频在线观看一区二区三区| www.自偷自拍.com| 精品一区在线观看国产| 天天添夜夜摸| 国产日韩欧美视频二区| 亚洲av男天堂| 午夜福利,免费看| 亚洲精品国产av成人精品| 国产精品偷伦视频观看了| 精品亚洲成a人片在线观看| 91大片在线观看| 叶爱在线成人免费视频播放| 秋霞在线观看毛片| e午夜精品久久久久久久| a级片在线免费高清观看视频| 搡老熟女国产l中国老女人| 亚洲人成电影观看| 久久久国产欧美日韩av| 欧美久久黑人一区二区| 国产精品av久久久久免费| 亚洲三区欧美一区| 一本—道久久a久久精品蜜桃钙片| 亚洲av美国av| 两性午夜刺激爽爽歪歪视频在线观看 | 亚洲午夜精品一区,二区,三区| 美女主播在线视频| 午夜福利乱码中文字幕| 午夜日韩欧美国产| 午夜福利在线观看吧| 国产在线一区二区三区精| 国产人伦9x9x在线观看| 久久中文字幕一级| 超碰97精品在线观看| 中文精品一卡2卡3卡4更新| 啦啦啦 在线观看视频| 下体分泌物呈黄色| 国产精品秋霞免费鲁丝片| 亚洲视频免费观看视频| 日韩免费高清中文字幕av| 欧美成狂野欧美在线观看| 国产xxxxx性猛交| 啦啦啦视频在线资源免费观看| 亚洲精华国产精华精| 午夜视频精品福利| 欧美另类一区| 叶爱在线成人免费视频播放| 亚洲精品国产区一区二| 婷婷丁香在线五月| 女人久久www免费人成看片| 狂野欧美激情性bbbbbb| e午夜精品久久久久久久| 欧美黑人欧美精品刺激| 亚洲一区中文字幕在线| 久久久精品国产亚洲av高清涩受| 亚洲成人国产一区在线观看| 免费在线观看视频国产中文字幕亚洲 | 777久久人妻少妇嫩草av网站| 18禁黄网站禁片午夜丰满| 久久精品国产亚洲av香蕉五月 | 免费在线观看日本一区| 欧美精品人与动牲交sv欧美| 午夜免费成人在线视频| 我的亚洲天堂| av网站免费在线观看视频| 人人妻,人人澡人人爽秒播| 久久久久久久久免费视频了| 69av精品久久久久久 | 国产有黄有色有爽视频| 飞空精品影院首页| 欧美少妇被猛烈插入视频| 日韩欧美免费精品| 美女视频免费永久观看网站| 亚洲欧洲日产国产| 亚洲性夜色夜夜综合| 美女视频免费永久观看网站| 夫妻午夜视频| 久久人妻福利社区极品人妻图片| 每晚都被弄得嗷嗷叫到高潮| av一本久久久久| 肉色欧美久久久久久久蜜桃| 国产欧美日韩一区二区三区在线| 正在播放国产对白刺激| 亚洲欧美精品自产自拍| 三上悠亚av全集在线观看| 久久午夜综合久久蜜桃| 满18在线观看网站| 黑人巨大精品欧美一区二区蜜桃| 久久人人爽av亚洲精品天堂| 国产成人精品久久二区二区91| 精品亚洲乱码少妇综合久久| xxxhd国产人妻xxx| 亚洲精品日韩在线中文字幕|