• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Experimental study of R142b in low-temperature energy conversion system based on Organic Rankine Cycle

    2016-06-01 12:19:22WeiLili
    低溫工程 2016年4期
    關(guān)鍵詞:莉莉低溫有機

    Wei Lili

    (School of Civil and Transportation Engineering,Ningbo University of Technology,Ningbo 315016,China)

    Experimental study of R142b in low-temperature energy conversion system based on Organic Rankine Cycle

    Wei Lili

    (School of Civil and Transportation Engineering,Ningbo University of Technology,Ningbo 315016,China)

    Experimental investigation of a low-temperature energy-to-power conversion system was presented using R142b as the working fluid. Screw compressor worked in the reverse operation as the expander. The heat source in this experiment was lower than 80 ℃. The maximum energy conversion efficiency was 6% with the systematic efficiency up to 5.16%. Due to the high energy consumption in the transmission process,although the expansion efficiency was as high as 97% in maximum,the mechanical efficiency was only 48%-65%,which lead to a low systematic efficiency. The maximum exergy efficiency was 32%. Higher evaporating pressure and lower condensing pressure raised the power output,which followed the theoretical principle. Theoretically,the inlet of liquid had no advantage in the expansion. The qualitative experimental result shows that for R142b,inlet of liquid improves the expansion slightly. But this promotion comes mainly from the reduction of leakage,which means lower outlet temperature and pressure,larger enthalpy difference and higher expansion efficiency. The experiments prove the feasibility of this energy conversion concept. However,the systematic efficiency is still considerably low,and further optimization work is required.

    Organic Rankine Cycle(ORC);low-temperature heat;energy conversion;power;efficiency

    1 Introduction

    Fossil energy has been braced the global development over a long period of time,which is unsustainable. It also brings environmental problems,which is becoming one of the most important social problem in China[1]. The crisis of energy and environment asks for higher energy efficiency and rise of the market share of renewable energy.

    Low-temperature heat-to power conversion system,which makes use of the low-grade waste heat and renewable energy,like solar energy and geothermal energy,has been widely used in metallurgy,cement,petroleum and other fields[2-4]. Rankine Cycle is conventionally used in power plant with water steam as the working fluid. For heat sources at moderate or low temperature,the best efficiency and highest power output is usually obtained by Organic Rankine Cycle(ORC)using a suitable organic working fluid. The use of ORC process for heat recovery has been applied for many years and the appearance is tested out on the market[5].

    There are many efforts in this specific field,since it obviously is an efficient way to make use of low-temperature heat[6]. However,lots of the previous work focuses on the theoretical analysis and computational simulation,and the considered heat sources are generally at moderate temperature higher than 100 ℃. Its performance for heat source lower than 100℃ is still not fully understood in practical level.

    In this study,experiments are carried out to investigate the energy conversion processes with R142b as the working fluid. Through the analysis of each process,the performance of each component is evaluated. The obtained encouraging results prove the feasibility of ORC on low-grade energy conversion. Further optimization is still needed to raise the efficiency.

    2 Methods and materials

    The layout of the system is shown in Fig.1. The working fluid,R142b,is evaporated by the thermal energy in the evaporator. The expander is driven by the vapor,converting thermal energy into mechanical energy,which is converted into electric energy by the generator. The exhaust vapor is directed to the condenser. The liquid-feeding pump compresses the sub-cooled liquid to the evaporator,and the thermodynamic cycle is repeated. InT-SandP-hdiagrams,the ideal cycle isa-b-c-d-e-aas in Fig.2.

    Fig.1 Layout of an energy conversion system based on ORC

    Fig.2 Low-temperature ORC cycle shown in t-S and P-h diagram

    Experiments were carried out to investigate the expansion and operational principles. The energy converted during expansion is the enthalpy difference during expansion. For waste heat sources,the temperature of the organic vapor is strictly constricted,while saturated organic vapor has the highest pressure,and has more power output and higher energy conversion efficiency,as shown in Fig.3. Another reason is that the overheated vapor has lower density and smaller mass flow rate when the volume flow rate is constant. Experimental research also verifies the result. Preliminary experiments were carried out with plate heat exchanger. The overheat degree largely affect the power output,as shown in fig.4. Thus in the experimental device,saturated vapor is preferred. Flooded evaporator is designed accordingly. Since the organic liquid must be heated from the condensing temperature to the evaporating temperature in the evaporator,which is always over 50℃,a tube and shell heat exchanger is adopted to preheat the sub-cooled liquid before it enters the flooded evaporator. The pre-heater provides long flowing path for the liquid,and the large temperature rise can be completed. The superheat can be controlled through adjusting the liquid level and thus the heat exchange area for superheating. The areas of the pre-heater and the flooded evaporator are 4.7 and 11.43 m2respectively[7-8].

    Fig.3 Theoretical association between degree of superheat and ideal converted energy(evaporating pressure and condensing pressure are 0.987 MPa and 0.289 MPa,volume flow rate of organic fluid is 1 m3/s)

    Fig.4 Experimental influence of superheat degree on power output

    During the expansion of saturated organic vapor,part of it can be condensed to liquid,which is strictly forbidden in speed type expander in case of wet stroke and its damage. Thus,a volume type screw expander is used in this experimental device. The expansion is acquired through the meshing of two gears and the speed is far lower compared to the traditional turbine. Liquid is allowed in its expansion process and it has long life.

    The condenser provides low backpressure for the expansion,and condenses the outlet vapor into liquid for the circulating pump. The degree of sub-cooling should not be large incase it adds to the burden of the evaporator. Thus,the heat exchange area was properly designed for proper degree of super-cooling.

    The organic fluid-feeding pump pressurizes the condensed liquid to repeat the thermodynamic cycle. Its selection basis is the pressure head and the volume flow rate.

    Fig.5 presents a view of the energy conversion unit. The experiment is carried out in a national secondary class laboratory bench and the error is less than 3%.

    Fig.5 view of energy conversion device

    3 Thermodynamic analysis of the energy conversion processes

    Through the evaporator,energy is transferred from the heat source to the organic fluid. The generated organic vapor,saturated or superheated,drives the expander,converting the thermal energy into mechanical energy. Part of the generated mechanical energy is consumed as the kinetic energy of the rotating components.

    Accordingly,the efficiency of each step is defined asηh,ηexp,ηmandηgsuccessively. The aforesaid “energy output of the heat source” and the “thermal energy input of the organic fluid” are expressed respectively as equation(1)and equation(2). The efficiency of the heat exchange process isηh.

    (1)

    (2)

    Wherehis henthalpy,kJ/kg;ηis efficiency;subscript o presents organic fluid;subscripts a and e present the status of the organic fluid.

    The ideal energy converted in the expansion process is just the energy output of the organic vapor. It is expressed as

    (3)

    WhereWis power output,kW;subscript“ideal”presents the ideal process;subscript b present the status of the organic fluid.

    However,it is impossible to be converted into mechanical energy 100%. The efficiency is the above-mentionedηexp. Thus,the mechanical energy is

    Wexp=Widealηexp

    (4)

    Wheresubscriptexppresenttheexpansionprocess.

    Therotatingpartsconsumepartofthemechanicalenergyanddecreasethemechanicalefficiencyintoηm. It varies with the rotating speed,the weight of the rotating parts and their weight distribution. The rest mechanical energy is converted by the generator with an efficiency ofηg,which is considered 90%,in accordance with the characteristic of the generator from the manufacture.

    The energy conversion efficiency is one of the most important criteria in the system evaluation. Based on the first law of thermodynamics,it is expressed as

    (6)

    Where subscript con present the energy conversion;subscript g present the power generator;subscript m present mechanical.

    All the energy consumed in the system is for the pump,to circulate the organic fluid. It is expressed asWp. Net power output is

    Wnet=Wg-Wp

    (7)

    Astothesystematicefficiency,thewholesystemshouldbetakenintoconsideration.Thus,Wpshould also be included. Equation(8)shows the systematic efficiency,

    (8)

    Where subscript sys present systematic analysis.

    Although the energy efficiencies provide evaluation of energy loss,the exergy loss,which is even more important in low-temperature thermal energy conversion,is neglected. Thus,efficiency based on the second law of thermodynamics is induced,as

    (9)

    WhereEis exergy,kW;Iis exergy loss,kW;subscript ex present exergy.

    The goal of this energy conversion system is to explore as much the exergy in heat source,and convert it into useful high-quality energy. All the efficiencies are adopted to evaluate the performance of the system.

    4 Results and discussion

    Experimental results reveal the performance of the system. There are lots of factors that have impact on the energy conversion efficiency,theoretically and experimentally.

    In chapter 2.2,the analysis shows saturated vapor performs the best and flooded evaporator is chosen to supply saturated vapor. The evaporating temperature affects the evaporating pressure,and thus the expansion process. Its influence based on a selected basic condensing temperature of 11℃ is shown in Fig.6. Higher evaporating temperature means more power output and larger energy conversion efficiency,theoretically and experimentally. The same trends are revealed in Table.1. On the other hand,it also confirms that the use of low-temperature energy is more difficult. The disparity between the ideal and experimental energy conversion efficiency comes from the irreversible loss and the energy consumption of the rotating components. To reduce the disparity and lower the energy loss,optimization of the system is needed.

    Fig.6 Association between power output and evaporating temperature (condensing temperature is 11 ℃)

    On the contrary,based on a certain evaporating temperature of 75℃,the influence of the condensing pressure is also investigated,as shown in Fig.7. Lower condensing temperature means lower expansion back pressure for the organic vapor,and larger enthalpy difference of the expansion process. Lowering the condensing temperature has the same consequence as increasing the evaporating temperature. Referring to Fig.2,it is the enthalpy difference between the expander inlet and outlet organic vapor that is converted to mechanical energy. Thus,the evaporating pressure and the condensing pressure together depends on the expansion process. Larger expansion pressure difference means larger enthalpy difference and more energy output,as Fig.1-2 and Fig.6-7 shows. Table 1 also elucidates the same trends clearly. The only difficulty is to find the cold enough coolant. The research of using liquefied natural gas(LNG)as the coolant is based on the same theoretical analysis[9-13]. The larger temperature difference between the evaporator and condenser is,the more power output and higher energy conversion efficiency is acquired.

    Fig.7 Association between power output and the condensing temperature (evaporating temperature is 75 ℃)

    Table 1 Analysis of overall energy conversion system

    Referring to Table 1,the power output and the systematic efficiency increase as the evaporating temperature rises. Since the rotational kinetic energy is only determined by the mechanical parameters and rotating speed,which are relatively fixed,the mechanical efficiency is dependent on the generated mechanical energy. The part of the rotational energy decreases as the generated mechanical energy increases. For large energy conversion systems,the rotational kinetic energy takes only a small part,which is negligible,thus the mechanical efficiency tends to be 100%.

    The expansion efficiency is affected by several factors,such as the pressure difference of the expansion,the leakage rate of the screw expander,the status of the organic vapor and the lubrication. It varies between 91%-97%. It is one of the most important factors in the energy conversion process.

    The energy conversion efficiency evaluates the overall energy conversion process and is up to 6%. It is influenced by the systematic design,the characteristic of the expander,the inlet vapor status and so on. Taking the energy consumed by the pump into consideration,the systematic efficiency is 5.16% maximally,which is still considerably low. The promotion of the system is also constrained by low systematic efficiency.

    The mass flow rate of the organic vapor is one of the critical factors. It is determined by the density and the volume flow rate together. Since screw expander is a volume-type machine,the volume flow rate of the organic vapor is determined by the mechanical parameters and the rotating speed. For a selected screw expander,to raise the rotating speed is one of the fundamental ways for more power output. For the expander in use,the volume flow rate changes linearly with the rotating speed,as shown in Fig.8. However,because of the leakage,the curve doesn’t pass through the origin. The leakage raises the backpressure, and reduces the energy output.

    Fig.8 Relationship between rational speed of expander and flow rate of steam

    Thus,to reduce the leakage is also an important issue in the mechanical and systematic research.

    There is another aspect in this approach. Since the drive pulleys consume part of the generated mechanical energy,high rotating speed seems counteractive to the power output. Rotational kinetic energy increases exponentially with the rotating speed,as in Table 2. It varies with the weight and weight distribution of the rotating parts. Taking the two aspects into consideration,3 000 r/min is believed the most suitable rotating speed.

    Table 2 Calculated kinetic energy of drive pulleys

    Exergy efficiency takes not only the quantity of energy,but also the quality into consideration. In thermodynamics,exergy means the maximum useful work during a process that brings the system into equilibrium with a heat reservoir. Lower the temperature means less exergy. That is also a bottleneck of the low-temperature heat utilization. In this system,the exergetic efficiency is up to 32% as in Table 1. The exergy loss comes from the entropy increases and the exergy consumption of the rotational parts and the pump. Investigation of the exergy loss of each process and each component is one of the most efficient ways on optimization of the system. Further work needs to be done.

    According to Austin[14]and Smith[15]et al.,wet inlet organic vapor raises the energy conversion efficiency. A dryness of 10%-15% is considered the best. However,according to the ideal analysis of the authors,the inlet liquid brings only extra sensible energy,with the volume flow rate of the vapor slightly decreased. According to its characteristic,the vapor of R142b keeps saturated during the expansion. Only the inlet sensible heat vaporizes a small amount of liquid. The qualitative influence of the dryness on the energy conversion efficiency is shown in Fig.9. According to the experiment,when a small quantity of liquid is imported into expander,the power output increases slightly. But the increase can not last. It falls down as the quantity of the liquid increases instantly. Since there is no lubrication in the experimental system,the imported liquid plays a role in sealing,which reduced the mechanical leakage,and the power efficiency is increased. Also,the reduction of leakage lowers the temperature of the exhaust vapor. Meanwhile the volume flow rate is also reduced. However,as the liquid continuously atlends the expansion,there are far more than the required sealing liquid,and the conversion efficiency falls accordingly because the liquid takes part of the volume flow rate. More research is needed for accurate quantitative results. Moreover,lubrication system should be added for the sake of higher expansion efficiency and lower mechanical wear. Furthermore,the sealing effect of the inlet liquid can be excluded,and more accurate results are expectable.

    Fig.9 Qualitative influence of inlet dryness on energy conversion efficiency for R142b(evaporating temperature and condensing temperature is 70 ℃ and 20 ℃ respectively)

    5 Conclusion

    The experimental study of the low-temperature energy conversion system with R142b as the working organic fluid was conducted. Analysis reveals that a rotating speed of 3 000 r/min is most suitable for the expander. A conversion efficiency of 6.00% and a systematic efficiency of 5.16% are obtained. One of the most critical factors that lower the systematic efficiency is the mechanical efficiency,which is only between 48%-65%. The result is caused by the large mechanical energy loss,which is consumed by the rotational transmission. For large systems,the rotational kinetic energy is negligible and the mechanical energy can be substantially increased. The expansion efficiency is up to 97%,which also varies with the status of the inlet vapor,the mechanical precision of the screws,the leakage rate and the lubrication system and so on. The exergetic efficiency is also elucidated,since it is one of the most important criteria to evaluate the energy conversion system. It is up to 32%,and is closely related to the evaporating temperature,following the second law of thermodynamics.

    The experimental results follow the theoretical principles well. Through analysis,saturated vapor performs best,thus the combination of pre-heater and flooded evaporator is adopted to supply saturated organic vapor for expansion. Higher evaporating pressure and lower condensing pressure raise the power output consistently. The total flow concept is also tested qualitatively. However,different principles are drawn. When a small amount of liquid is added,the leakage of the expander is reduced and the expansion efficiency is raised instantly. However,there is no visible contribution to the expansion. Proper lubrication system can also lower the leakage,and the effect of liquid can be examined alone. More work should be done on this aspect for more quantitative results.

    The experiments give good guideline on the low-temperature thermal energy conversion system. The systematic efficiency is considerable,especially for large systems. This technology is feasible on utilization of low-grade waste heat and renewable solar and geothermal energy,with varied efficiency based on the quality of the energy sources. It also contributes to lower the environmental pollution. More work should be done on the optimization of the overall system to raise the energy conversion efficiency. The impact of wet expansion also needs to be studied furthermore.

    Reference

    1 Chen Y,Lundqvist P. A comparative study of the carbon dioxide transcritical power cycle compared with an Organic Rankine Cycle with R123 as working fluid in waste heat recovery[J]. Applied Thermal Engineering,2006(26):2142-2147.

    2 Larjola J. Electricity from industrial waste heat using high-speed Organic Rankine Cycle(ORC)[J]. International Journal of Production Economics,1995(41):227-235.

    3 Cong C,Velautham,Sanjayan,et al. Solar thermal organic Rankine cycle as a renewable energy option[J]. Journal Mekanikal,2002(20):68-77.

    4 Franco A,Marco Villani. Optimal design of binary cycle power plants for water-dominated,medium-temperature geothermal fields[J]. Geothermics,2009(38):379-391.

    5 Schuster A,Karellas S,Kakaras E,et al. Energetic and economic investigation of organic Rankine cycle applications[J]. Applied Thermal Engineering,2009(29):1809-1817.

    6 Manolakos D,Kosmadakis G,Kyritsis S,et al. On site experimental evaluation of a low-temperature solar Organic Rankine cycle system for RO desalination[J]. Solar Energy,2009(83):646-656.

    7 魏莉莉,張于峰,穆永超. 低溫朗肯循環(huán)發(fā)電系統(tǒng)中的蒸發(fā)器設(shè)計研究[J]. 低溫工程,2015(6):40-45.

    Wei Lili,Zhang Yufeng,Mu Yongchao. Study of evaporator in low-temperature energy conversion system using organic Rankine Cycle(ORC)[J]. Cryogenics,2015(6):40-45.

    8 魏莉莉,張于峰,穆永超. 低溫有機工質(zhì)朗肯循環(huán)發(fā)電系統(tǒng)的設(shè)計研究[J]. 太陽能學報,2010,33(5):821-826.

    Wei Lili,Zhang Yufeng,Mu Yongchao. Design and research on low-temperature energy conversion system based on Organic Rankine Cycles(ORCs)[J]. Acta Energiae Solaris Sinica,2010,33(5):821-826.

    9 Bai F,Zhang Z. Integration of low-level waste heat recovery and liquefied nature gas cold energy utilization[J]. Chinese Journal of Chemical Engineering,2008(16):95-99.

    10 Hisazumi Y,Yamasaki Y,Sugiyama S. Proposal for a high efficiency LNG power-generation system utilizing waste heat from the combined cycle[J]. Applied Energy,1998(60):169-182.

    11 Shi X,Che D. A combined power cycle utilizing low-temperature waste heat and LNG cold energy[J]. Energy Conversion Management,2009(50):567-575.

    12 Sun W,Hu P,Chen Z,et al. Performance of cryogenic thermoelectric generators in LNG cold energy utilization[J]. Energy Conversion Management,2005(46):789-796.

    13 Wang Q,Li Y,Wang J. Analysis of power cycle based on cold energy of liquefied natural gas and low-grade heat source[J]. Applied Thermal Engineering,2004(24):539-548.

    14 Austin A L,Higgins G H,Howard J H. The total flow concept for recovery of energy from geothermal hot brine deposits[P]. UCRL-51366Sprankle,R.S. 1973. Electrical power generating system. US Pat. 3751673.

    15 Smith I K,Stosic N,Kovacevic A. Power recovery from low cost two-phase expanders[J]. Proceedings of the Institution of Mechanical Engineeers,2001,210(A2),75-93.

    2016-01-23;

    2016-07-02

    魏莉莉,女,34歲,博士、講師。Wei Lili,female,34 years old,doctor and university lecturer in School of Civil and Transportation Engineering,Ningbo University of Technology in China.

    TB653

    A

    1000-6516(2016)04-0061-08

    以R142b為工質(zhì)的有機朗肯循環(huán)低溫發(fā)電系統(tǒng)研究

    魏莉莉

    (寧波工程學院建筑與交通工程學院 寧波 315016)

    研究了以R142b為循環(huán)介質(zhì)、采用螺桿式膨脹機的低溫熱能有機朗肯循環(huán)發(fā)電系統(tǒng)。在熱源溫度低于80 ℃的條件下,膨脹機最大能量轉(zhuǎn)化效率為6%,系統(tǒng)總效率5.16%。在系統(tǒng)膨脹效率達97%的情況下,傳輸能耗導致機械效率僅有48%—65%,因此系統(tǒng)總效率較低,但最大效率為32%。提高蒸發(fā)壓力、降低冷凝壓力是提升能量轉(zhuǎn)化效率的根本途徑。實驗研究表明,降低膨脹機入口蒸汽干度對膨脹效率略有促進,主要由于少量液體參與膨脹減少了膨脹環(huán)節(jié)的滲漏,提高了膨脹效率。實驗表明該低溫熱能發(fā)電系統(tǒng)可行,但系統(tǒng)效率較低,有待進一步優(yōu)化提高。

    有機朗肯循環(huán) 低溫熱源 能量轉(zhuǎn)化 發(fā)電 效率

    猜你喜歡
    莉莉低溫有機
    低溫也能“燙傷”嗎
    有機旱作,倚“特”而立 向“高”而行
    基于低溫等離子體修飾的PET/PVC浮選分離
    九十九分就是不及格——有機農(nóng)業(yè),“機”在何處?
    當代陜西(2019年23期)2020-01-06 12:17:52
    零下低溫引發(fā)的火災
    勞動保護(2018年8期)2018-09-12 01:16:18
    不倒自行車
    Look from the Anglo—American jury system of jury system in our country
    科學與財富(2017年6期)2017-03-19 09:34:58
    有機心不如無機心
    山東青年(2016年2期)2016-02-28 14:25:31
    如何養(yǎng)一條有機魚
    低溫休眠不是夢
    最近最新中文字幕大全电影3| 欧美激情在线99| 国产成人福利小说| 久久香蕉国产精品| 99精品欧美一区二区三区四区| 免费电影在线观看免费观看| 搡女人真爽免费视频火全软件 | www国产在线视频色| 欧美丝袜亚洲另类 | 国产免费一级a男人的天堂| 悠悠久久av| 国内少妇人妻偷人精品xxx网站| 精品一区二区三区视频在线观看免费| 国产精品亚洲一级av第二区| 国产精品1区2区在线观看.| 每晚都被弄得嗷嗷叫到高潮| 国产真实伦视频高清在线观看 | 成人一区二区视频在线观看| 在线播放国产精品三级| 精品日产1卡2卡| 亚洲第一欧美日韩一区二区三区| 日本黄色片子视频| 成人鲁丝片一二三区免费| 内地一区二区视频在线| 99热这里只有是精品50| 国产av麻豆久久久久久久| 韩国av一区二区三区四区| 国产精品99久久久久久久久| 成年版毛片免费区| 欧美日韩黄片免| 日本免费一区二区三区高清不卡| 国产乱人视频| 人人妻人人澡欧美一区二区| 久久精品夜夜夜夜夜久久蜜豆| 久久99热这里只有精品18| 亚洲av免费在线观看| 88av欧美| 一区福利在线观看| 国产精品香港三级国产av潘金莲| 亚洲成人精品中文字幕电影| 亚洲成人中文字幕在线播放| 国产精品,欧美在线| 亚洲国产欧洲综合997久久,| 亚洲av日韩精品久久久久久密| 国产黄色小视频在线观看| 一边摸一边抽搐一进一小说| 毛片女人毛片| 在线观看免费午夜福利视频| 国内精品久久久久久久电影| 成熟少妇高潮喷水视频| 国产在线精品亚洲第一网站| 真实男女啪啪啪动态图| 免费在线观看日本一区| 最新中文字幕久久久久| 欧美+亚洲+日韩+国产| 精品电影一区二区在线| 日韩成人在线观看一区二区三区| 一a级毛片在线观看| 亚洲激情在线av| 国产精品一区二区三区四区久久| 深爱激情五月婷婷| 美女cb高潮喷水在线观看| 女警被强在线播放| www国产在线视频色| 色尼玛亚洲综合影院| 国产高清三级在线| 成人精品一区二区免费| 免费无遮挡裸体视频| 人妻夜夜爽99麻豆av| 好男人电影高清在线观看| 国产三级在线视频| 久久99热这里只有精品18| 国产精品一区二区三区四区久久| 淫秽高清视频在线观看| 51午夜福利影视在线观看| 欧美成人a在线观看| 国产欧美日韩一区二区精品| 51国产日韩欧美| 亚洲人成网站在线播| 国产成人a区在线观看| 真人做人爱边吃奶动态| 少妇高潮的动态图| 中文字幕av成人在线电影| 一进一出好大好爽视频| 国产精品精品国产色婷婷| 最后的刺客免费高清国语| 日韩有码中文字幕| 校园春色视频在线观看| 真实男女啪啪啪动态图| 人人妻人人看人人澡| 日韩精品中文字幕看吧| 日本黄色视频三级网站网址| av天堂在线播放| 精品久久久久久,| 波多野结衣高清作品| 俄罗斯特黄特色一大片| 天天躁日日操中文字幕| 在线观看免费午夜福利视频| 99热这里只有精品一区| 怎么达到女性高潮| 国产精品国产高清国产av| 色哟哟哟哟哟哟| 国产精品av视频在线免费观看| 九色成人免费人妻av| 老鸭窝网址在线观看| 无人区码免费观看不卡| 国产色爽女视频免费观看| 9191精品国产免费久久| 成年版毛片免费区| 每晚都被弄得嗷嗷叫到高潮| 97人妻精品一区二区三区麻豆| 亚洲18禁久久av| 69av精品久久久久久| 久9热在线精品视频| 女人被狂操c到高潮| 最近最新中文字幕大全电影3| 又黄又粗又硬又大视频| 成人av一区二区三区在线看| 男女下面进入的视频免费午夜| 欧美一区二区国产精品久久精品| 国产精品久久视频播放| 在线看三级毛片| 亚洲久久久久久中文字幕| 可以在线观看毛片的网站| 手机成人av网站| av在线蜜桃| 亚洲国产精品sss在线观看| 一二三四社区在线视频社区8| 一个人免费在线观看电影| 毛片女人毛片| 99久久综合精品五月天人人| 国内精品久久久久精免费| 又紧又爽又黄一区二区| 97人妻精品一区二区三区麻豆| 国产精品日韩av在线免费观看| 国产亚洲av嫩草精品影院| 国产久久久一区二区三区| 国产精品99久久久久久久久| 欧美+亚洲+日韩+国产| 九色成人免费人妻av| 国产亚洲精品久久久com| 亚洲第一电影网av| 老司机在亚洲福利影院| 国产三级在线视频| 国产精品,欧美在线| 51午夜福利影视在线观看| 国产淫片久久久久久久久 | www.999成人在线观看| 18禁美女被吸乳视频| 免费在线观看亚洲国产| 国产探花在线观看一区二区| 欧美+日韩+精品| 久久久久久人人人人人| 男女做爰动态图高潮gif福利片| 免费看a级黄色片| 床上黄色一级片| 国产精华一区二区三区| 欧美日韩亚洲国产一区二区在线观看| 亚洲人成网站高清观看| 国产乱人伦免费视频| 亚洲精品成人久久久久久| 九九热线精品视视频播放| 欧美xxxx黑人xx丫x性爽| 精品午夜福利视频在线观看一区| 国产精品电影一区二区三区| 脱女人内裤的视频| 中文字幕av在线有码专区| 久久精品亚洲精品国产色婷小说| 女人高潮潮喷娇喘18禁视频| 久久久久久久午夜电影| 禁无遮挡网站| 国产精品一区二区免费欧美| 国产老妇女一区| 午夜福利18| 久久久久久久午夜电影| 国产欧美日韩一区二区精品| 欧美中文综合在线视频| 久久精品亚洲精品国产色婷小说| 波多野结衣高清无吗| 欧美黄色片欧美黄色片| 观看美女的网站| 在线观看免费午夜福利视频| 久久久久精品国产欧美久久久| 搞女人的毛片| 日本免费一区二区三区高清不卡| 久久中文看片网| 亚洲五月天丁香| 欧美3d第一页| 天堂av国产一区二区熟女人妻| 亚洲精品一卡2卡三卡4卡5卡| 日本五十路高清| 久久精品影院6| 久久午夜亚洲精品久久| 中文字幕人妻熟人妻熟丝袜美 | 色综合站精品国产| 国产精华一区二区三区| 亚洲久久久久久中文字幕| 免费看光身美女| 午夜福利在线在线| 国产精品日韩av在线免费观看| 麻豆国产av国片精品| 高潮久久久久久久久久久不卡| 精品不卡国产一区二区三区| 97人妻精品一区二区三区麻豆| АⅤ资源中文在线天堂| 啪啪无遮挡十八禁网站| 午夜激情福利司机影院| 黄色丝袜av网址大全| 小蜜桃在线观看免费完整版高清| 亚洲人成网站在线播放欧美日韩| 国产蜜桃级精品一区二区三区| 一区二区三区免费毛片| 欧美国产日韩亚洲一区| 在线观看免费视频日本深夜| 午夜a级毛片| 少妇丰满av| 国产精品影院久久| 叶爱在线成人免费视频播放| 国产97色在线日韩免费| 日本熟妇午夜| 草草在线视频免费看| 69人妻影院| 亚洲精品乱码久久久v下载方式 | 超碰av人人做人人爽久久 | 99久久九九国产精品国产免费| 少妇人妻一区二区三区视频| 国产高清有码在线观看视频| 亚洲av不卡在线观看| 中文资源天堂在线| 日本免费一区二区三区高清不卡| 五月玫瑰六月丁香| 国产成人影院久久av| 欧美极品一区二区三区四区| 国产精品亚洲美女久久久| 精华霜和精华液先用哪个| av视频在线观看入口| 欧美黄色淫秽网站| 国产精品99久久久久久久久| 18禁黄网站禁片免费观看直播| 51午夜福利影视在线观看| 色av中文字幕| 免费av不卡在线播放| 搡女人真爽免费视频火全软件 | 婷婷六月久久综合丁香| 精品久久久久久久末码| 久久人妻av系列| 亚洲av五月六月丁香网| 国产成人系列免费观看| 欧美性感艳星| 成年女人毛片免费观看观看9| 麻豆一二三区av精品| 亚洲av不卡在线观看| 亚洲精品影视一区二区三区av| 女生性感内裤真人,穿戴方法视频| 精品人妻1区二区| 亚洲国产精品999在线| 午夜福利欧美成人| 欧美3d第一页| 两性午夜刺激爽爽歪歪视频在线观看| 91九色精品人成在线观看| 亚洲电影在线观看av| 亚洲激情在线av| 久久午夜亚洲精品久久| 国产欧美日韩精品一区二区| 中文字幕av成人在线电影| or卡值多少钱| 欧美日韩亚洲国产一区二区在线观看| h日本视频在线播放| 日韩欧美三级三区| tocl精华| 亚洲中文日韩欧美视频| 伊人久久大香线蕉亚洲五| 俄罗斯特黄特色一大片| 国产精品久久久久久久久免 | 搞女人的毛片| 日韩 欧美 亚洲 中文字幕| 久久亚洲真实| 国产又黄又爽又无遮挡在线| 每晚都被弄得嗷嗷叫到高潮| 久久久国产精品麻豆| 99热6这里只有精品| 国产成+人综合+亚洲专区| 国产一区二区在线观看日韩 | 久久久精品大字幕| 婷婷精品国产亚洲av在线| 天美传媒精品一区二区| 色综合欧美亚洲国产小说| 老司机在亚洲福利影院| 97超视频在线观看视频| 非洲黑人性xxxx精品又粗又长| 欧美+日韩+精品| 久久亚洲精品不卡| 美女cb高潮喷水在线观看| av专区在线播放| 最好的美女福利视频网| 日日干狠狠操夜夜爽| 日韩欧美在线二视频| 成人特级黄色片久久久久久久| 十八禁网站免费在线| 国产麻豆成人av免费视频| 伊人久久精品亚洲午夜| 久久亚洲精品不卡| 久久九九热精品免费| 成人精品一区二区免费| 午夜影院日韩av| 两个人视频免费观看高清| 老师上课跳d突然被开到最大视频 久久午夜综合久久蜜桃 | 国产久久久一区二区三区| 人妻夜夜爽99麻豆av| 日韩欧美免费精品| 欧美极品一区二区三区四区| 一个人看的www免费观看视频| 亚洲精品色激情综合| 狂野欧美白嫩少妇大欣赏| 无限看片的www在线观看| avwww免费| 一本一本综合久久| 99精品在免费线老司机午夜| 国产精品久久久久久亚洲av鲁大| 香蕉丝袜av| 日本三级黄在线观看| 三级国产精品欧美在线观看| 香蕉丝袜av| av黄色大香蕉| 日韩精品青青久久久久久| 观看美女的网站| 亚洲天堂国产精品一区在线| 亚洲一区二区三区色噜噜| 色综合站精品国产| 特大巨黑吊av在线直播| 国产黄片美女视频| 欧美黄色片欧美黄色片| 亚洲av免费高清在线观看| 丁香六月欧美| 啦啦啦免费观看视频1| 国产精品女同一区二区软件 | 五月伊人婷婷丁香| 色播亚洲综合网| 一级毛片女人18水好多| 最好的美女福利视频网| 亚洲五月天丁香| 成人欧美大片| 午夜福利18| av视频在线观看入口| 99热这里只有是精品50| 亚洲国产精品999在线| tocl精华| 国产精品一区二区三区四区免费观看 | 好看av亚洲va欧美ⅴa在| 少妇人妻一区二区三区视频| 99riav亚洲国产免费| 免费av观看视频| 五月伊人婷婷丁香| 亚洲最大成人手机在线| 午夜免费男女啪啪视频观看 | 琪琪午夜伦伦电影理论片6080| 女人被狂操c到高潮| 成年女人看的毛片在线观看| 亚洲狠狠婷婷综合久久图片| 亚洲国产中文字幕在线视频| 国产高潮美女av| 51午夜福利影视在线观看| xxx96com| 女人高潮潮喷娇喘18禁视频| 18美女黄网站色大片免费观看| 波多野结衣巨乳人妻| 精品国产三级普通话版| 久久久国产成人免费| 欧美精品啪啪一区二区三区| 日本精品一区二区三区蜜桃| 特大巨黑吊av在线直播| 一区二区三区高清视频在线| 岛国在线免费视频观看| 九色国产91popny在线| av国产免费在线观看| 精品熟女少妇八av免费久了| 欧美最新免费一区二区三区 | 久久婷婷人人爽人人干人人爱| 少妇人妻精品综合一区二区 | tocl精华| 亚洲中文日韩欧美视频| 一进一出好大好爽视频| 熟女人妻精品中文字幕| 熟妇人妻久久中文字幕3abv| 久久99热这里只有精品18| 三级毛片av免费| 日本成人三级电影网站| 最近视频中文字幕2019在线8| 99热这里只有精品一区| 在线观看av片永久免费下载| 欧美成人性av电影在线观看| 欧美一级a爱片免费观看看| 在线观看一区二区三区| 别揉我奶头~嗯~啊~动态视频| 婷婷亚洲欧美| 成人特级av手机在线观看| 一本精品99久久精品77| 此物有八面人人有两片| 一本久久中文字幕| 一个人看视频在线观看www免费 | 国产色婷婷99| 草草在线视频免费看| 欧美3d第一页| 悠悠久久av| 日韩欧美精品免费久久 | 成人国产综合亚洲| 色综合亚洲欧美另类图片| 18禁黄网站禁片午夜丰满| 一级黄色大片毛片| 嫩草影院精品99| 亚洲天堂国产精品一区在线| 日韩成人在线观看一区二区三区| 男人和女人高潮做爰伦理| 老熟妇乱子伦视频在线观看| 免费高清视频大片| 欧洲精品卡2卡3卡4卡5卡区| 免费在线观看影片大全网站| 一个人观看的视频www高清免费观看| a级一级毛片免费在线观看| 久久亚洲精品不卡| 欧美丝袜亚洲另类 | 首页视频小说图片口味搜索| av在线蜜桃| 色精品久久人妻99蜜桃| 91九色精品人成在线观看| 五月玫瑰六月丁香| 精品99又大又爽又粗少妇毛片 | 日韩欧美在线二视频| 日本与韩国留学比较| 麻豆成人午夜福利视频| 一个人看的www免费观看视频| 99国产综合亚洲精品| 午夜精品一区二区三区免费看| 一a级毛片在线观看| 在线看三级毛片| 我的老师免费观看完整版| 一区二区三区免费毛片| 成人永久免费在线观看视频| 99热只有精品国产| 婷婷丁香在线五月| 久久欧美精品欧美久久欧美| 亚洲成av人片免费观看| 欧美绝顶高潮抽搐喷水| 国产一区二区激情短视频| 国产乱人视频| 最近最新中文字幕大全免费视频| 怎么达到女性高潮| 一区福利在线观看| 亚洲成a人片在线一区二区| 12—13女人毛片做爰片一| 午夜福利在线观看吧| 天天一区二区日本电影三级| 中文字幕熟女人妻在线| 免费在线观看日本一区| 亚洲,欧美精品.| 久久久国产成人精品二区| 两性午夜刺激爽爽歪歪视频在线观看| 长腿黑丝高跟| 老司机福利观看| 波多野结衣高清无吗| 美女cb高潮喷水在线观看| 精品国内亚洲2022精品成人| 亚洲精品日韩av片在线观看 | 一级黄片播放器| 三级男女做爰猛烈吃奶摸视频| 18禁美女被吸乳视频| a级一级毛片免费在线观看| 美女高潮喷水抽搐中文字幕| 亚洲av电影不卡..在线观看| 丁香欧美五月| 色视频www国产| 久久人人精品亚洲av| 亚洲国产色片| 成人特级黄色片久久久久久久| 69av精品久久久久久| 亚洲最大成人中文| 亚洲av电影在线进入| 一级毛片女人18水好多| 丰满人妻一区二区三区视频av | 国产视频一区二区在线看| 天天躁日日操中文字幕| 在线十欧美十亚洲十日本专区| 在线观看美女被高潮喷水网站 | 又爽又黄无遮挡网站| 久久久久久九九精品二区国产| tocl精华| 成人特级黄色片久久久久久久| 久久精品91无色码中文字幕| 免费看光身美女| 观看美女的网站| 欧美+日韩+精品| 国产精品精品国产色婷婷| 国产亚洲精品av在线| 亚洲狠狠婷婷综合久久图片| 一级毛片高清免费大全| 国产国拍精品亚洲av在线观看 | 我的老师免费观看完整版| 中国美女看黄片| 亚洲一区二区三区不卡视频| 天天添夜夜摸| 久久久久免费精品人妻一区二区| 中文字幕熟女人妻在线| 国产亚洲精品综合一区在线观看| 国产国拍精品亚洲av在线观看 | 日韩欧美 国产精品| 亚洲欧美日韩高清专用| 精品一区二区三区视频在线观看免费| 十八禁人妻一区二区| 国产精品98久久久久久宅男小说| 两个人视频免费观看高清| 又黄又粗又硬又大视频| 制服丝袜大香蕉在线| 小蜜桃在线观看免费完整版高清| 老汉色av国产亚洲站长工具| 亚洲人成网站高清观看| 美女高潮喷水抽搐中文字幕| 男女那种视频在线观看| 免费电影在线观看免费观看| 午夜久久久久精精品| 美女黄网站色视频| 天堂网av新在线| 欧美一区二区国产精品久久精品| 波多野结衣巨乳人妻| 88av欧美| 欧美中文综合在线视频| 日韩 欧美 亚洲 中文字幕| 精品99又大又爽又粗少妇毛片 | 老师上课跳d突然被开到最大视频 久久午夜综合久久蜜桃 | 99久久99久久久精品蜜桃| 欧美一区二区国产精品久久精品| 一级毛片女人18水好多| 99在线人妻在线中文字幕| 免费一级毛片在线播放高清视频| 一二三四社区在线视频社区8| 国产精品电影一区二区三区| 女生性感内裤真人,穿戴方法视频| 天堂av国产一区二区熟女人妻| 有码 亚洲区| 99久久成人亚洲精品观看| 午夜精品一区二区三区免费看| 亚洲熟妇中文字幕五十中出| 麻豆一二三区av精品| 香蕉丝袜av| 免费无遮挡裸体视频| 最后的刺客免费高清国语| 精品一区二区三区人妻视频| 无人区码免费观看不卡| 亚洲国产精品999在线| 亚洲不卡免费看| 亚洲精品色激情综合| 精品久久久久久久人妻蜜臀av| 亚洲狠狠婷婷综合久久图片| 老司机深夜福利视频在线观看| 国产精品 国内视频| 亚洲精品在线美女| 国产成人av教育| 丁香欧美五月| 尤物成人国产欧美一区二区三区| 国产成年人精品一区二区| 小蜜桃在线观看免费完整版高清| 免费观看人在逋| 亚洲av二区三区四区| 亚洲av免费高清在线观看| 日韩欧美 国产精品| 美女 人体艺术 gogo| 亚洲av成人不卡在线观看播放网| 99热6这里只有精品| 午夜福利18| 亚洲av不卡在线观看| 久久99热这里只有精品18| 国产精品一区二区免费欧美| 国产黄a三级三级三级人| 中文字幕高清在线视频| 国产精品精品国产色婷婷| 99国产精品一区二区三区| 国产精品久久久久久人妻精品电影| 黄色成人免费大全| 男人和女人高潮做爰伦理| 一进一出抽搐gif免费好疼| 操出白浆在线播放| 日韩欧美国产一区二区入口| 国产97色在线日韩免费| 91av网一区二区| 老司机福利观看| 一进一出好大好爽视频| 怎么达到女性高潮| 俄罗斯特黄特色一大片| 手机成人av网站| 国产亚洲精品久久久com| 大型黄色视频在线免费观看| 国产成人av教育| 久久精品国产自在天天线| 一本精品99久久精品77| 国产精品三级大全| 91九色精品人成在线观看| 两个人视频免费观看高清| 日本成人三级电影网站| 午夜精品久久久久久毛片777| 日韩人妻高清精品专区| 99久久精品国产亚洲精品| 欧美bdsm另类| 观看免费一级毛片| 亚洲精品国产精品久久久不卡| 国产伦在线观看视频一区| 免费人成视频x8x8入口观看| 亚洲中文字幕日韩| 成人性生交大片免费视频hd| 亚洲精品一区av在线观看| 日韩欧美在线二视频| 欧美午夜高清在线| 精品国内亚洲2022精品成人| 久久久精品欧美日韩精品| 日韩精品中文字幕看吧| www.www免费av| 我的老师免费观看完整版|