• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Impact of corticotropin-releasing factor receptor 1 on alzheimer’s disease

    2016-06-01 12:21:34,,
    關(guān)鍵詞:周繼紅藥理學(xué)皮質(zhì)激素

    , ,

    (1.Department of Physiology,Zunyi Medical University,Zunyi Guizhou 563099,China;2.Department of Psychiatry and Behavioral Sciences,Northwestern University ,Chicago 60611,USA)

    Impact of corticotropin-releasing factor receptor 1 on alzheimer’s disease

    YanYan1,2,ChenYuanshou1,DongHongxin1,2

    (1.Department of Physiology,Zunyi Medical University,Zunyi Guizhou 563099,China;2.Department of Psychiatry and Behavioral Sciences,Northwestern University ,Chicago 60611,USA)

    Growing evidence suggests that stress-induced release of corticotrophin-releasing factor (CRF) and subsequent effects through CRF receptor 1(CRFR1),have been linked to Alzheimer's disease (AD) onset and progression.The main function of CRFR1 is to act as a key regulator of stress-induced changes of the hypothalamic-pituitary-adrenal (HPA) axis.However,given the fact that CRFR1 is widely located in brain areas that are associated with emotion and cognition,additional functions of CRF/CRFR1 signaling have been proposed,including the regulation of AD neuropathology.In particular,specific downstream signaling of CRFR1 can promote amyloid β-protein accumulation and tau phosphorylation,which can be blocked by CRFR1 antagonist.Thus,CRFR1 antagonists may have therapeutic potential for the prevention and treatment of AD.So we reviewed current literature and our studies to clarify the relationship between CRF/CRFR1 signaling and AD.

    stress;corticotropin-releasing factor (CRF);corticotropin-releasing factor receptor 1(CRFR1); CRFR1 antagonist;alzheimer`s disease

    1 Introduction

    Increasing evidence suggests that,in addition to genetic,environmental factors also markedly affect the development of Alzheimer’s disease (AD).Chronic psychosocial stress is believed to be one of the environmental factors that can significantly accelerate the onset and progression of AD[1-5].Clinical and preclinical studies support this hypothesis as plasma cortisol levels and brain corticotrophin-releasing factor (CRF) and CRF receptor 1 (CRFR1) expression,the main markers and regulators of hypothalamic-pituitary-adrenal (HPA) axis activity,are elevated in AD patients[6-10].Results from preclinical studies also show that stress and stress hormones accelerate amyloid levels and aggregation[11-13],and increase hippocampal tau phosphorylation (tau-P)[14-16].CRFR1 antagonists reverse stress-induced these abnormalities[15,17-21].These studies indicate that CRF/CRFR1 and their downstream signaling cascades,which include targets such as the adenylyl cyclase-cAMP signaling pathway,PKA-dependent protein phosphorylation and CREB-dependent transcription regulation,may play a significant role in the development of Alzheimer`s disease.In this review we will examine the role of CRFR1 signaling in Alzheimer`s disease pathogenesis based on the current available literature,with a focus on preclinical studies.

    2 Stress,stress hormones and AD

    Stress is a physical reaction to an emotional or physical stimulus (i.e.the reaction to an unpleasant social interaction or escaping from a predator.Stress-mediated effects on brain function can be beneficial or detrimental,depending on the intensity and duration of the stressor,as well as the developmental stage of the organism.The hypothalamic-pituitary-adrenal (HPA) axis is one of the primary effectors of the stress response in mammals,and allows an organism to adapt to changes in its internal or external environment[22].Under ordinary circumstances,secretion of stress hormones,cortisol (in humans) and corticosterone (in rodents),enables the organism to adapt physically and mentally to the stressor.However,HPA axis dysregulation during chronic stress can result in a number of neuropsychological disorders such as anxiety and depression[23-24].While the impact of stress on neurodegeneration has been studied for many years[25-27],the impact of stress on the neuropathogenesis of AD has only recently been appreciated[15,19].Stress responses may be enhanced in AD patients because of decreased resilience due to age,other health problems,and/or limited resources.Increases in plasma cortisol levels have been reported in AD patients[7-8].Furthermore,there are significant correlations between increased 24h cortisol levels and the severity of cognitive decline in AD patients[28].These changes in the HPA axis do not appear to be secondary to depression as AD patients with and without depression have higher cerebrospinal fluid cortisol levels compared to controls[29].A reduction in CRF immunoreactive cells has been reported in the brain of AD patients[30].In addition,increases in the density of CRF receptors have been observed,possibly in response to disinhibition of the HPA axis triggered by AD-related hippocampal degeneration.HPA axis changes have been associated with hippocampal atrophy in AD patients[31]and dysregulation of the HPA axis may be responsible for the abnormal behaviors exhibited by AD patients[32].While one report suggests that stress plays a causal role in a preclinical model of AD[33],most literature supports the hypothesis that stress functions as an environmental factor that can accelerate the progression of the disease in vulnerable individuals[22,25,34-35].

    Post-mortem studies of AD patients have not yet been helpful in elucidating the effects of stress on the development of AD; in one report,ante-mortem distress was associated with late-life dementia,but not with any specific form of neuropathology[35].Advanced neuro-imaging with Aβ plaque labeling techniques may provide a more accurate way to reveal the impact of chronic stress on the pathogenesis of AD patients.However,genetically manipulated animal models that parallel some of the neuropathological changes of AD provide an excellent opportunity to investigate the impact of stress on AD pathogenesis and to discover the molecular mechanisms underlying these effects.The Tg2576 mouse model,which contains the Swedish AD mutant gene,is arguably the most well-established mouse model of AD.This mouse over-expresses the human amyloid precursor protein (APP) 695 and,at 9-10 months of age,shows Aβ plaques in the cortex and hippocampus that coincide with behavioral deficits associated with AD[36].Studies of Tg2576 and APPV717I-CT100 transgenic mice suggest that behavioral stressors accelerate the production of Aβ and its incorporation into Aβ plaques[11,13].Furthermore,treatment of triple transgenic APP/PS1/MAPT mice with dexamethasone increases brain APP and Aβ levels,as well as β-secretase and the β-CTF of APP[12].Our group and others have reported that behavioral stressors increase Aβ levels via the activation of CRF/CRFR1 and concomitant increases in neuronal activity[15,18-19,37].However,the underlying mechanisms linking CRF/CRFR1 to the pathogenesis of AD remain largely speculative.

    3 The dual function of CRF in the HPA axis and brain

    CRF and CRFR1 are critical regulators of HPA axis activity in response to stress and modulators of neuronal activity throughout the brain.Following stress inducing stimuli,neurons within the paraventricular nucleus of the hypothalamus (PVN) and release CRF into the pituitary portal system causing the release of adrenocorticotropic hormone (ACTH) from the pituitary,which in turn,causes the release of glucocorticoids (GCs) from the adrenal cortex.GCs act on the hypothalamus and pituitary to suppress CRF and ACTH production in a negative-feedback loop to terminate the stress response after a threat has passed,thereby preventing prolonged responses that could lead to pathological conditions[38](Fig 1).

    CRF is synthesized and released in PVN via HPA release ACTH, which in turn cause GCs release. However, GCs can act like negative feedback on HPA or activation link to stress response in extra-hypothalamus, such as in hippocampus, cortex and amygdala. Fig 1 CRF associated stress regulation and neuronal modulation

    CRF has a second,interrelated function in the central nervous system.CRF and CRFR1 are extensively distributed throughout the cortex,hippocampus and amygdala.At those extra-hypothalamic sites,CRF exerts a modulatory effect on the neuronal activity associated with stress-sensitive processes,such as memory and anxiety[39-40].Additionally,CRF has been shown to play a role in nerve cell survival under neuro-toxic conditions[41]and prevents kainate-induced neurodegeneration in the hippocampus[42].However,the dual roles of CRF as a critical stress regulator of the HPA axis and a neuromodulator in the CNS,as well as its actions on neuroprotection and neurodegeneration in the brain are not yet well understood.

    4 CRF/CRFR1 downstream signal transduction pathways

    CRF is synthesized in parvocellular neuroendocrine cells,stored in axon terminals,and released from neurosecretory terminals onto the cell bodies and axon initial segments of pyramidal cells.CRF exerts its cellular effects by activating one of two known G-protein-coupled receptors (GPCRs),CRFR1 and CRFR2[43].Since CRF binds to CRFR1 with a ~40-fold higher affinity,most of its activity in the CNS has been attributed to the activation of CRFR1[44].CRFR1 is expressed in hippocampus and prefrontal cortex,which specially expressed in the post-synaptic density of excitatory synapses on dendritic spines in pyramidal neurons[45].CRF can exert its action through several different classes of G-proteins,affecting downstream signaling cascades including cAMP/PKA and PLC/PKC pathways[46- 47].Subsequently,these effects can lead to a reduction in neuronal firing and affect brain function accordingly[48- 49].

    4.1 CRFR1-PKA signaling pathway Evidence indicates that the dominant mode of endogenous CRFR1 signaling is activation of the adenylyl cyclase-protein kinase A (PKA) pathway.CRF binds to membrane-bound CRFR1,increasing the affinity of the α subunit to the Gs protein.The agonist-activated coupling of Gαs to the third intracellular loop of CRFR1 stimulates adenylyl cyclase activity,producing the second messenger cyclic AMP (cAMP).Activation of PKA by cAMP results in the phosphorylation of the transcription factor cAMP response element-binding protein (CREB),the main transcriptional regular for downstream PKA signaling involving gene expression[50- 51](Fig 2).

    CRFR1 can via PKA/PKC cascades, ERK-MAPK cascades and β-arrestin cascades to regulate downstream signaling transduction. Fig 2 The intracellular signal transduction pathways of CRFR1

    CRFR1-driven cAMP/PKA pathway can diverge through activation of other downstream signalling molecules,including membrane guanylyl cyclase,the NF-κB transcription factor,glycogen synthase kinase-3 and the Wnt/β-catenin pathway,K(+) current [I(sAHP)],ERK1/2 and tyrosine hydroxylase.In addition,the cAMP/PKA pathway may have a role in this mechanism by activating GRK2 through phosphorylation[52-53].CRF/CRFR1 also couple to the Gq protein,stimulating phospholipase C activity and intracellular calcium mobilization,in turn,leading to phosphorylation of phospholipase protein kinase C (PKC) which also can phosphorylate cytosolic proteins,modulates gene transcription,and influence cell excitability[54].

    In stress response,cellular CRF-related cAMP/PKA cascade activation regulates neuronal activity.For instance,CRF can suppress Ca(2+)-activated K(+) current in CA1 hippocampal pyramidal neurons to affect calcium mobilization[43].CRF also involves gene transcriptional activation and expression by cAMP/PKA signaling pathway[55].Additionally,stress-induce response activation of CRFR1 in the The Bed Nucleus of the Stria Terminalis (BNST) induces startle hyperreactivity which is mediated by PKC pathway activation[56].

    4.2 CRFR1- β-arrestin signaling pathway As a class B GPCR,CRFR1 can interact with the β-arrestin,predominately with β-arrestin2.The association of CRFR1 with β-arrestin2 promotes internalization into endosomes where it can be recycled back to the plasma membrane or degraded by lysosomes,resulting in receptor downregulation[57].Some phosphorylated GPCRs remain at the membrane and rapidly rebind β-arrestin2 when the agonist re-stimulate (Fig 2).Interaction of CRFR1- β-arrestin2 can result in aberrant trafficking and signaling in the β-arrestin2 pathway[58].Extracellular signal-regulated kinases1/2 (ERK1/2) plays an important role in stress-induce CRFR1-β-arrestin downstream signaling pathway[59].Phosphorylated on the carboxy tail serine/threonine residues by GRKs and third intracellular loop motif configured by agonist-induced changes in CRFR1 conformation are involved in β-arrestin2 recruitment[58].However,overexpressing GRK3 did not alter β-arrestin-2 recruitment or prevent dissociation of the CRFR1 receptor-arrestin complex[58].However,recruitment of β-arrestin 1 to the membrane following receptor activation is not a prerequisite for CRFR1 internalization[60].

    4.3 CRFR1- ERK-MAPK Pathway Another important function of the CRF/CRFR1 is CRFR1 signaling via the extracellular signal-regulated kinases (ERK)- mitogen-activated protein kinase (MAPK) cascade regulates stress-induced synaptic function,possibly through disruption of the excitatory and inhibitory balance[39,61].This pathway has been shown to regulate synaptic plasticity,cognitive and emotional behaviors,and learning and memory processes[58]through regulation of BDNF signaling,dendritic stabilization,ion channel transmission,CREB transcription,scaffolding protein interactions,protein trafficking.ERK-MAPK signaling pathway is activated following restraint stress in the frontal cortex and hippocampal CA1 and CA3 pyramidal neurons,likely as a result of CRFR1 signaling through CREB activation of this pathway[62](Fig 2).One reported that ERK1/2 phosphorylation was increased in hypothalamic tissue under stress conditions[63].Another study identified that ERK1/2 may regulate CRHR1α overexpression through PKC pathway.Finally,CRF-ERK1/2 signaling selectivity and cellular response may be mediated by multiple phosphatidylinositol 3-kinase (PI3-K) subunits,a potentially,important mediator of CRF/CRFR1-ERK1/2 signaling pathway[52].

    5 Regulation of CRFR1 in Alzheimer`s Disease

    As we have addressed above,both clinic and preclinical evidence suggests that stress may affect AD through CRF/CRFR1 signaling.We and some other researchers demonstrate that CRFR1 signaling modulates AD neuropathogenesis,such as amyloid-beta and phosphorylation tau,although most of these results are most from the animal model studies.Specifically,we found that chronic isolation stress increases Aβ production in Tg2576 mice through increases in CRF transmission[13,19,37].Our work and others also suggest that CRFR1 signaling pathways such as cAMP/PKA,PLC/PKC and (GSK)-3β contribute to Aβ accumulation and tau phosphorylation[20].

    5.1 CRFR1 and Aβ deposition The amyloid β protein (Aβ) is the most important element in the development of AD and Aβ deposition in the brain is one of the hallmarks of AD neuropathology.It is believed that the neurotoxicity of Aβ is one of the causes underlying neuronal degeneration and memory loss.Aβ is generated from amyloid- precursor protein (APP).APP can be cleaved by three different secretases:(1) α-secretase cleaves APP within its Aβ domain to produce sAPP α,(2) β-secretase(BACE) cleaves the β-C-terminal fragment (β-CTF) of APP,producing Aβ40/Aβ42 peptides[64],the main components of Aβ plaques,and (3) γ-secretase cleaves β-CTF and 38,40,or 42 amino acid Aβ is released[12,65- 66].

    Using the Tg2576 mouse model of AD,we observed accelerated accumulation of Aβ plaques throughout the cortex and hippocampus along with impaired memory-related behavior after exposure to chronic isolation from weaning until 7 months of age[13,37,67].In a follow-up microdialysis study,we found significant increases in interstitial fluid (ISF) levels of Aβ following exposure to acute restraint stress,as well as chronic isolation stress in Tg2576 mice.Moreover,administration of exogenous CRF,but not corticosterone,through a microdialysis probe to Tg2576 mice mimicked the effects of behavioral stressors[19].Chronic administration of CRFR1 antagonists decreased tissue levels of Aβ and plaque deposition in Tg2576 mice[37].

    To investigate whether endogenous increases in CRF can recapitulate the effects of stress and exogenous administration of CRF on Aβ production and plaque formation,we created a novel triple transgenic mouse model that conditionally overexpresses CRF in the forebrain via a “tet-on” system,while concomitantly overexpressing a mutant version of human APP (Tg2576 mouse strain).These triple transgenic mice are referred to as APP+/CRF+/tTA+,or TT mice[68].Although TT mice develop normally,they display significant anxiety and memory-related deficits compared to Tg2576 and wild type mice[68].ELISA analysis showed that TT mice had higher levels of both soluble and insoluble Aβ at 7 months of age and immunohistochemistry revealed substantially increased Aβ plaque deposition in the cortex and hippocampus,which was reversed when CRF overexpression was turned off via doxycycline.

    Specific GPCR activation has been associated with multiple stages of APP proteolysis,regulation of Aβ generation,and Aβ-mediated toxicity[69-70].GPCRs have been suggested as novel targets for AD drug development[71-72].Gs-PKA signaling pathways play an important role in the pathophysiology of AD[69,73-79]and PKA can influence the proteolysis of APP and the amyloid production cascade through modulation of α-,β- and γ secretases[69-70,80-81].While transient activation of these signaling cascades shifts APP metabolism towards the α secretase-mediated pathway that results in non-pathogenic amyloids,chronic activation shifts APP metabolism to the β- and γ secretase,perhaps also γ-secretase mediated pathways,that results in increased pathogenic Aβ generation[79,82].Additionally,PKA signaling is associated with tau phosphorylation,another molecular pathway that is highly implicated in AD pathogenesis[83-84].

    Since Gs signaling is central to the formation of AD-causative amyloids and phospho-tau,CRFR1-Gs-PKA signaling could be a key pathway involved in AD pathogenesis by accelerating the rate of disease progression and cognitive decline in AD.Further understanding of this pathway could lead to novel therapeutic targets for the prevention and treatment of AD.Our previous studies support this hypothesis.We found that in neurons isolated from the hippocampus of Tg2576 mice and exposed to different concentrations of CRF,there was a significant increase in Aβ levels.Co-treatment with the CRFR1 antagonist,antalarmin,blocked the CRF-induced increase in Aβ levels.Since PKA is activated by CRFR1 in neuronal systems[85-86],and the PKAIIβ isoform is a major downstream target of CRFR1,we selected this isoform to investigate the involvement of PKA-signaling in CRF/CRFR1 activity and Aβ production.As predicted,co-treatment of Tg2576 hippocampal neurons with CRF and PKA inhibitors H-89 reduced the CRF-mediated rise in Aβ levels.In addition,48 hours of CRF stimulation resulted in a significant increase in PKAIIβ expression in hippocampal neurons,which was blocked by antalarmin or H-89 co-treatment,and levels of Aβ42 were strongly correlated with PKA expression(Fig 3).

    Growing evidence indicate that CRF/CRFR1-Gs-PKA directly affect amyloid related neuropathogenesis. CRF regulates tau-P through BNDF -GSK-3-CREB signaling pathways. Moreover, CRF can also via CRFR1-PKA/PKC pathways induce tau-P. Fig 3 CRF/CRFR1 signaling pathways are involved in the AD neuropathology

    Stress-induced Aβ formation in cells can be modulated by CRFR1 associated γ-secretase activity through both β-arrestin1 and β-arrestin2 binding motifs[81].Reports suggest that decrease translocation of β-arrestin2 to CRFR1 exhibited a reduced interaction with γ-secretase[58].Additionally,G protein-coupled receptor 3 (GPR3) and the β2-adrenergic receptor regulate γ-secretase activity and Aβ through recruitment and binding of β-arrestin2[81].

    5.2 CRFR1 and tau phosphorylation Tau,a microtubule associated protein,stabilization of microtubules contributes to the maintenance of neuronal structure,polarity,and axon transport[87].Intracellular neurofibrillary tangles (NFTs),another important factor in AD,are composed of hyperphosphorylated and aggregated forms of tau.Growing studies indicate that stresses not only induce Aβ deposition,but also affects tau phosphorylation (tau-P) and CRF signaling contributes to these effects[88-91].It has been shown in hippocampus,CRFR1 overexpression can induce tau-P accumulation[89].Stress-induced tau-P is an essential process required for stress adaption that becomes dysfunctional with advancing age or chronic over-simulation[14,18].Glycogen synthase kinase (GSK)-3β is one of CRFR1 downstream targets mediated by brain-derived neurotrophic factor (BDNF),which regulates CREB phosphorylation and modifies several sites of the tau protein present in neurofibrillary tangles[92].Another study indicates that chronic noise stress exposure elevates the expression of the CRF system,which may contribute to AD-like changes[88].Using a phosphoproteomic approach in CRF-overexpressing mice,we demonstrated that CRF overexpression in females was associated with increased tau phosphorylation and phosphorylation of β-secretase,the enzyme involved in the formation of Aβ[91](Fig 3).

    6 CRFR1 antagonists and AD

    Given the l utility of targeting GPCR for therapeutic benefit,efforts have been underway to develop CRFR1 antagonists for the potential treatment of stress related disorders,including mood disorders[93-98].Preclinical studies and clinical trials with CRFR1 antagonists have been assessed for the treatment of depression,anxiety,and irritable bowel disorders.However,CRFR1 antagonists have had a poor record of success as anti-depressants,perhaps because of low bioavailability[93-97].Nonetheless,new CRFR1 antagonists are being developed with better pharmacodynamics and pharmacokinetic properties and may be available for clinical testing soon[94].The therapeutic potential of CRFR1 antagonists as treatments for neurodegenerative disorders,such as AD,as evaluated by both our group and others indicates that CRFR1 antagonists block stress induced Aβ accumulation[17,19-20].Additionally,there have been reports of the beneficial effects of CRFR1 antagonists on tau phosphorylation[15,18].In our previous work,we have evaluated the acute and long-term effects of CRFR1 antagonist administration on Aβ production,plaque deposition,and behavior in an animal model of AD[19-20].CRFR1 antagonists widely used in AD animal models,such as R-121919,can reduce cellular and synaptic deficits,A β and C-terminal fragment-β levels[99].Also,R-121919 can reduce S-glutathionylated proteins (Pr-SSG) and increase glutathione peroxide activity to combat oxidative stress in AD[100].Furthermore,studies show that CRFR1 antagonist can effect amyloid plaque deposition in Tg2576 mice under stressed conditions and antalarmin can affect Aβ levels via cAMP/PKA signaling pathways in hippocampal neurons[20].Another study suggested that CRFR1 antagonist may regulate AD neuropathology and synaptic function in a sex biased manner[21].These results suggested that CRFR1 antagonists may have therapeutic potential for treatment of AD.

    7 Conclusion

    CRFR1 signaling plays significant role in regulation of HPA axis to respond stress and to modulate neuronal activity in brain.CRFR1 signaling may contribute to the neuropathogenesis of AD,at least in individuals that are more susceptible to chronic stress.This review integrates convergent findings supporting the novel concept of CRFR1 signaling and trafficking as contributing factors to AD pathology.Identifying specific consequences of CRFR1 signaling has revealed molecular mechanisms by which this signaling pathway may contribute to stress-related disease and AD.This knowledge can further be used to elucidate the pathophysiology underlying these disease states,leading to more efficacious therapeutic strategies aimed at earlier clinical intervention and treatment in patients.

    [1] Wilson R S,Evans D A,Bienias J L,et al.Proneness to psychological distress is associated with risk of Alzheimer's disease [J].Neurology,2003,61(11):1479-1485.

    [2] Nation D A,Hong S,Jak A J,et al.Stress,exercise,and Alzheimer's disease:a neurovascular pathway [J].Med Hypotheses,2011,76(6):847-854.

    [3] Alberini C M.Unwind:chronic stress exacerbates the deficits of Alzheimer's disease [J].Biol Psychiatry,2009,65(11):916-917.

    [4] Alkadhi K A.Chronic psychosocial stress exposes Alzheimer's disease phenotype in a novel at-risk model [J].Front Biosci (Elite Ed),2012,4(1):214-229.

    [5] Rothman S M,Mattson M P.Adverse stress,hippocampal networks,and Alzheimer's disease [J].Neuromolecular Med,2010,12(1):56-70.

    [6] De Souza E B,Whitehouse P J,Kuhar M J,et al.Reciprocal changes in corticotropin-releasing factor (CRF)-like immunoreactivity and CRF receptors in cerebral cortex of Alzheimer's disease [J].Nature,1986,319(6054):593-595.

    [7] Umegaki H,Ikari H,Nakahata H,et al.Plasma cortisol levels in elderly female subjects with Alzheimer's disease:a cross-sectional and longitudinal study [J].Brain Res,2000,881(2):241-243.

    [8] Rehman H U.Role of CRH in the pathogenesis of dementia of Alzheimer's type and other dementias [J].Curr Opin Investig Drugs,2002,3(11):1637-1642.

    [9] Csernansky J G,Dong H,Fagan A M,et al.Plasma cortisol and progression of dementia in subjects with Alzheimer-type dementia [J].Am J Psychiatry,2006,163(12):2164-2169.

    [10] 金丹,沙金燕.促腎上腺皮質(zhì)激素釋放激素受體的研究進(jìn)展 [J].中國婦幼健康研究,2006,17(3):244-248.

    [11] Jeong Y H,Park C H,Yoo J,et al.Chronic stress accelerates learning and memory impairments and increases amyloid deposition in APPV717I-CT100 transgenic mice,an Alzheimer's disease model [J].Faseb J,2006,20(6):729-731.

    [12] Green K N,L.Billings M,Roozendaal B,et al.Glucocorticoids increase amyloid-beta and tau pathology in a mouse model of Alzheimer's disease [J].J Neurosci,2006,26(35):9047-9456.

    [13] Dong H,Goico B,Martin M,et al.Modulation of hippocampal cell proliferation,memory,and amyloid plaque deposition in APPsw (Tg2576) mutant mice by isolation stress [J].Neuroscience,2004,127(3):601-609.

    [14] Rissman R A,Lee K F,Vale W,et al.Corticotropin-releasing factor receptors differentially regulate stress-induced tau phosphorylation [J].J Neurosci,2007,27(24):6552-6562.

    [15] Carroll J C,Iba M,Bangasser D A,et al.Chronic stress exacerbates tau pathology,neurodegeneration,and cognitive performance through a corticotropin-releasing factor receptor-dependent mechanism in a transgenic mouse model of tauopathy [J].J Neurosci,2011,31(40):14436-14449.

    [16] Cuadrado-Tejedor M,Ricobaraza A,Frechilla D,et al.Chronic mild stress accelerates the onset and progression of the Alzheimer's disease phenotype in Tg 2576 mice [J].J Alzheimers Dis,2012,28(3):567-578.

    [17] Lee K W,Kim J B,Seo J S,et al.Behavioral stress accelerates plaque pathogenesis in the brain of Tg2576 mice via generation of metabolic oxidative stress [J].J Neurochem,2009,108(1):165-175.

    [18] Rissman R A,Staup M A,Lee A R,et al.Corticotropin-releasing factor receptor-dependent effects of repeated stress on tau phosphorylation,solubility,and aggregation [J].Proc Natl Acad Sci U S A,2012,109(16):6277-6282.

    [19] Kang J E,Cirrito J R,Dong H,et al.Acute stress increases interstitial fluid amyloid-beta via corticotropin-releasing factor and neuronal activity [J].Proc Natl Acad Sci U S A,2007,104(25):10673-10678.

    [20] Dong H,Wang S,Zeng Z,et al.Effects of corticotrophin-releasing factor receptor 1 antagonists on amyloid-beta and behavior in Tg2576 mice [J].Psychopharmacology (Berl),2014,231(24):4711-4722.

    [21] Zhang C,Kuo C C,Moghadam S H,et al.Corticotropin-releasing factor receptor-1 antagonism mitigates beta amyloid pathology and cognitive and synaptic deficits in a mouse model of Alzheimer's disease [J].Alzheimers Dement,2015,12(5):527-537.

    [22] Bao A M,Meynen G,Swaab D F.The stress system in depression and neurodegeneration:focus on the human hypothalamus [J].Brain Res Rev,2008,57(2):531-553.

    [23] Mello A F,Mello M F,Carpenter L L,et al.Update on stress and depression:the role of the hypothalamic-pituitary-adrenal (HPA) axis [J].Rev Bras Psiquiatr,2003,25(4):231-238.

    [24] Laryea G,Arnett M G,Muglia L J.Behavioral studies and genetic alterations in corticotropin-releasing hormone (CRH) neurocircuitry:insights into human psychiatric disorders [J].Behav Sci (Basel),2012,2(2):135-171.

    [25] Swaab D F,Bao A M,Lucassen P J.The stress system in the human brain in depression and neurodegeneration [J].Ageing Res Rev,2005,4(2):141-194.

    [26] Garrido P.Aging and stress:past hypotheses,present approaches and perspectives [J].Aging Dis,2011,2(1):80-99.

    [27] Intlekofer K A,Cotman C W.Exercise counteracts declining hippocampal function in aging and Alzheimer's disease [J].Neurobiol Dis,2013,57:47-55

    [28] Pedersen W A,Wan R,Mattson M P.Impact of aging on stress-responsive neuroendocrine systems [J].Mech Ageing Dev,2001,122(9):963-983.

    [29] Hoogendijk W J,Meynen G,Endert E,et al.Increased cerebrospinal fluid cortisol level in Alzheimer's disease is not related to depression [J].Neurobiol Aging,2006,27(5):780 e1-780 e2.

    [30] 易金娥,袁慧,文利新.促腎上腺皮質(zhì)激素釋放激素結(jié)合蛋白功能與調(diào)控研究進(jìn)展 [J].動(dòng)物醫(yī)學(xué)進(jìn)展,2009,30( 11):95-100.

    [31] O'Brien J T,Ames D,Schweitzer I,et al.Clinical and magnetic resonance imaging correlates of hypothalamic-pituitary-adrenal axis function in depression and Alzheimer's disease [J].Br J Psychiatry,1996,168(6):679-687.

    [32] Reisberg B,Borenstein J,Salob S P,et al.Behavioral symptoms in Alzheimer's disease:phenomenology and treatment [J].J Clin Psychiatry,1987,48 Suppl:9-15.

    [33] Catania C,Sotiropoulos I,Silva R,et al.The amyloidogenic potential and behavioral correlates of stress [J].Mol Psychiatry,2009,14(1):95-105.

    [34] Pardon M C,Rattray I.What do we know about the long-term consequences of stress on ageing and the progression of age-related neurodegenerative disorders? [J].Neurosci Biobehav Rev,2008,32(6):1103-1120.

    [35] Wilson R S,Arnold S E,Schneider J A,et al.Chronic distress,age-related neuropathology,and late-life dementia [J].Psychosom Med,2007,69(1):47-53.

    [36] Chapman P F,White G L,Jones M W,et al.Impaired synaptic plasticity and learning in aged amyloid precursor protein transgenic mice [J].Nat Neurosci,1999,2(3):271-276.

    [37] Dong H,Yuede C M,Yoo H S,et al.Corticosterone and related receptor expression are associated with increased beta-amyloid plaques in isolated Tg2576 mice [J].Neuroscience,2008,155(1):154-163.

    [38] 曾純,嚴(yán)燦,徐志偉.促腎上腺皮質(zhì)激素釋放激素受體在應(yīng)激反應(yīng)中的作用研究 [J].中國藥理學(xué)通報(bào),2006,22(5):517-520.

    [39] Gallagher J P,Orozco-Cabal L F,Liu J,et al.Synaptic physiology of central CRH system [J].Eur J Pharmacol,2008,583(2-3):215-225.

    [40] Orozco-Cabal L,Pollandt S,Liu J,et al.Regulation of synaptic transmission by CRF receptors [J].Rev Neurosci,2006,17(3):279-307.

    [41] Bayatti N,Zschocke J,Behl C.Brain region-specific neuroprotective action and signaling of corticotropin-releasing hormone in primary neurons [J].Endocrinology,2003,144(9):4051-4060.

    [42] Hanstein R,Lu A,Wurst W,et al.Transgenic overexpression of corticotropin releasing hormone provides partial protection against neurodegeneration in an in vivo model of acute excitotoxic stress [J].Neuroscience,2008,156(3):712-721.

    [43] Haug T,Storm J F.Protein kinase A mediates the modulation of the slow Ca(2+)-dependent K(+) current,I(sAHP),by the neuropeptides CRF,VIP,and CGRP in hippocampal pyramidal neurons [J].J Neurophysiol,2000,83(4):2071-2079.

    [44] Wood S K,Woods J H.Corticotropin-releasing factor receptor-1:a therapeutic target for cardiac autonomic disturbances [J].Expert Opin Ther Targets,2007,11(11):1401-1413.

    [45] Chen Y,Andres A L,Frotscher M,et al.Tuning synaptic transmission in the hippocampus by stress:the CRH system [J].Front Cell Neurosci,2012,6(14):5016-5016.

    [46] Grammatopoulos D K,Randeva H S,Levine M A,et al.Rat cerebral cortex corticotropin-releasing hormone receptors:evidence for receptor coupling to multiple G-proteins [J].J Neurochem,2001,76(2):509-519.

    [47] Blank T,Nijholt I,Grammatopoulos D K,et al.Corticotropin-releasing factor receptors couple to multiple G-proteins to activate diverse intracellular signaling pathways in mouse hippocampus:role in neuronal excitability and associative learning [J].J Neurosci,2003,23(2):700-707.

    [48] Birnbaum S G,Yuan P X,Wang M,et al.Protein kinase C overactivity impairs prefrontal cortical regulation of working memory [J].Science,2004,306(5697):882-884.

    [49] Hains A B ,Arnsten A F.Molecular mechanisms of stress-induced prefrontal cortical impairment:implications for mental illness [J].Learn Mem,2008,15(8):551-564.

    [50] 陳立朝,許民輝,周繼紅.CRH通過PKA途徑調(diào)節(jié)大鼠下丘腦CRH表達(dá)的研究 [J].第三軍醫(yī)大學(xué)學(xué)報(bào),2004,26(16):1459-1462.

    [51] 陳立朝,許民輝,周繼紅.PKA信號(hào)通路調(diào)控大鼠下丘腦腦片CRHmRNA的表達(dá)研究 [J].中華神經(jīng)外科疾病研究雜志,2005,02:141-144.

    [52] Grammatopoulos D K.Insights into mechanisms of corticotropin-releasing hormone receptor signal transduction [J].British Journal of Pharmacology,2012,166(1):85-97.

    [53] 畢燕華,宋婷婷,陳學(xué)群.神經(jīng)肽CRH對(duì)原代大鼠皮層小膠質(zhì)細(xì)胞NO、TNF-α和IL-6釋放的影響 [J].中國應(yīng)用生理學(xué)雜志,2013( 4):323-325.

    [54] Dermitzaki I,Tsatsanis C,Alexaki V I,et al.Roles of protein kinase A (PKA) and PKC on corticotropin-releasing hormone (CRH)-induced elevation of cytosolic calcium from extra-and intra-cellular sources [J].Hormones (Athens),2004,3(4):252-258.

    [55] Kovalovsky D,Refojo D,Liberman A C,et al.Activation and induction of NUR77/NURR1 in corticotrophs by CRH/cAMP:involvement of calcium,protein kinase A,and MAPK pathways [J].Mol Endocrinol,2002,16(7):1638-1651.

    [56] Toth M,Gresack J E,Hauger R L,et al.The role of PKC signaling in CRF-induced modulation of startle [J].Psychopharmacology (Berl),2013,229(4):579-589.

    [57] Reyes B A,Fox K,Valentino R J,et al.Agonist-induced internalization of corticotropin-releasing factor receptors in noradrenergic neurons of the rat locus coeruleus [J].Eur J Neurosci,2006,23(11):2991-2998.

    [58] Oakley R H,Olivares-Reyes J A,Hudson C C,et al.Carboxyl-terminal and intracellular loop sites for CRF1 receptor phosphorylation and beta-arrestin-2 recruitment:a mechanism regulating stress and anxiety responses [J].Am J Physiol Regul Integr Comp Physiol,2007,293(1):R209-222.

    [59] Punn A,Levine M A,Grammatopoulos D K.Identification of signaling molecules mediating corticotropin-releasing hormone-R1 alpha-mitogen-activated protein kinase (MAPK) interactions:The critical role of phosphatidylinositol 3-kinase in regulating ERK1/2 but not p38 MAPK activation [J].Molecular Endocrinology,2006,20(12):3179-3195.

    [60] Rasmussen T N,Novak I,Nielsen S M.Internalization of the human CRF receptor 1 is independent of classical phosphorylation sites and of beta-arrestin 1 recruitment [J].European Journal of Biochemistry,2004,271(22):4366-4374.

    [61] Arzt E,Holsboer F.CRF signaling:molecular specificity for drug targeting in the CNS [J].Trends Pharmacol Sci,2006,27(10):531-538.

    [62] Refojo D,Echenique C,Muller M B,et al.Corticotropin-releasing hormone activates ERK1/2 MAPK in specific brain areas [J].Proc Natl Acad Sci U S A,2005,102(17):6183-6188.

    [63] O'Malley D,Julio-Piepera M,Dinan T G,et al.Strain differences in stress-induced changes in central CRF1 receptor expression [J].Neurosci Lett,2014,561:192-197.

    [64] Selkoe D J,Yamazaki T,Citron M,et al.The role of APP processing and trafficking pathways in the formation of amyloid beta-protein [J].Ann N Y Acad Sci,1996,777(1):57-64.

    [65] Sambamurti K,Greig N H,Lahiri D K.Advances in the cellular and molecular biology of the beta-amyloid protein in Alzheimer's disease [J].Neuromolecular Med,2002,1(1):1-31.

    [66] 劉小陽,韓玉嬌,宋超.與阿爾茲海默癥相關(guān)的G蛋白偶聯(lián)受體研究進(jìn)展 [J].現(xiàn)代生物醫(yī)學(xué)進(jìn)展,2012,12(27):5380-5384.

    [67] Dong H,Csernansky J G.Effects of stress and stress hormones on amyloid-beta protein and plaque deposition [J].J Alzheimers Dis,2009,18(2):459-469.

    [68] Dong H,Murphy K M,Meng L,et al.Corticotrophin releasing factor accelerates neuropathology and cognitive decline in a mouse model of alzheimer's disease [J].J Alzheimers Dis,2011,28(3):579-592.

    [69] Thathiah A,De Strooper B.The role of G protein-coupled receptors in the pathology of Alzheimer's disease [J].Nat Rev Neurosci,2011,12(2):73-87.

    [70] Thathiah A,Horre K,Snellinx A,et al.beta-arrestin 2 regulates Abeta generation and gamma-secretase activity in Alzheimer's disease [J].Nat Med,2013,19(1):43-49.

    [71] Femminella G D,Rengo G,Pagano G,et al.beta-adrenergic receptors and G protein-coupled receptor kinase-2 in Alzheimer's disease:a new paradigm for prognosis and therapy? [J].J Alzheimers Dis,2013,34(2):341-347.

    [72] Wolfe M S.Alzheimer's gamma-secretase under arrestin [J].Nat Med,2013,19(1):22-24.

    [73] Choi D S,Wang D,Yu G Q,et al.PKCepsilon increases endothelin converting enzyme activity and reduces amyloid plaque pathology in transgenic mice [J].Proc Natl Acad Sci U S A,2006,103(21):8215-8120.

    [74] de Barry J,Liegeois C M,Janoshazi A.Protein kinase C as a peripheral biomarker for Alzheimer's disease [J].Exp Gerontol,2010,45(1):64-69.

    [75] Lee W,Boo J H,Jung M W,et al.Amyloid beta peptide directly inhibits PKC activation [J].Mol Cell Neurosci,2004,26(2):222-231.

    [76] Takashima A.GSK-3 is essential in the pathogenesis of Alzheimer's disease [J].J Alzheimers Dis,2006,9(3 Suppl):309-317.

    [77] Nelson T J,Cui C,Luo Y,et al.Reduction of beta-amyloid levels by novel protein kinase C(epsilon) activators [J].J Biol Chem,2009,284(50):34514-34521.

    [78] Kim T,Hinton D J,Choi D S.Protein kinase C-regulated abeta production and clearance [J].Int J Alzheimers Dis,2011,2011(857368):857368.

    [79] Da Cruz e Silva O A,Rebelo S,Vieira S I,et al.Enhanced generation of Alzheimer's amyloid-beta following chronic exposure to phorbol ester correlates with differential effects on alpha and epsilon isozymes of protein kinase C [J].J Neurochem,2009,108(2):319-330.

    [80] Robert S J,Zugaza J L,Fischmeister R,et al.The human serotonin 5-HT4 receptor regulates secretion of non-amyloidogenic precursor protein [J].J Biol Chem,2001,276(48):44881-44888.

    [81] Park H J,Ran Y,Jung J I,et al.The stress response neuropeptide CRF increases amyloid-beta production by regulating gamma-secretase activity [J].EMBO J,2015,34(12):1674-1686.

    [82] Willem M,Tahirovic S,Busche M A,et al.eta-Secretase processing of APP inhibits neuronal activity in the hippocampus [J].Nature,2015 , 526(7573):443-447.

    [83] Sanchez-Mut J V,Aso E,Heyn H,et al.Promoter hypermethylation of the phosphatase DUSP22 mediates PKA-dependent TAU phosphorylation and CREB activation in Alzheimer's disease [J].Hippocampus,2014,24(4):363-368.

    [84] Blanchard B J,devi Raghunandan R,Roder H M,et al.Hyperphosphorylation of human TAU by brain kinase PK40erk beyond phosphorylation by cAMP-dependent PKA:relation to Alzheimer's disease [J].Biochem Biophys Res Commun,1994,200(1):187-194.

    [85] Jedema H P ,Grace A A.Corticotropin-releasing hormone directly activates noradrenergic neurons of the locus ceruleus recorded in vitro [J].J Neurosci,2004,24(43):9703-9713.

    [86] Hauger R L,Risbrough V,Brauns O,et al.Corticotropin releasing factor (CRF) receptor signaling in the central nervous system:new molecular targets [J].CNS Neurol Disord Drug Targets,2006,5(4):453-479.

    [87] Johnson G V,Hartigan J A.Tau protein in normal and Alzheimer's disease brain:an update [J].J Alzheimers Dis,1999,1(4-5):329-351.

    [88] Gai Z,Li K,Sun H,et al.Effects of chronic noise on mRNA and protein expression of CRF family molecules and its relationship with p-tau in the rat prefrontal cortex [J].J Neurol Sci,2016,368:307-313.

    [89] Campbell S N,Zhang C,Monte L,et al.Increased tau phosphorylation and aggregation in the hippocampus of mice overexpressing corticotropin-releasing factor [J].J Alzheimers Dis,2015,43(3):967-976.

    [90] Roe A D,Staup M A,Serrats J,et al.Lipopolysaccharide-induced tau phosphorylation and kinase activity——modulation,but not mediation,by corticotropin-releasing factor receptors [J].Eur J Neurosci,2011,34(3):448-456.

    [91] Bangasser D A,Dong H,Carroll J,et al.Corticotropin-releasing factor overexpression gives rise to sex differences in Alzheimer's disease-related signaling [J].Mol Psychiatry,2016:185.

    [92] Avila J,Wandosell F,Hernandez F.Role of glycogen synthase kinase-3 in Alzheimer's disease pathogenesis and glycogen synthase kinase-3 inhibitors [J].Expert Rev Neurother,2010,10(5):703-710.

    [93] Zorrilla E P,Koob G F.The therapeutic potential of CRF1 antagonists for anxiety [J].Expert Opin Investig Drugs,2004,13(7):799-828.

    [94] Zorrilla E P ,Koob G F.Progress in corticotropin-releasing factor-1 antagonist development [J].Drug Discov Today,2010,15(9-10):371-383.

    [95] Nielsen D M.Corticotropin-releasing factor type-1 receptor antagonists:the next class of antidepressants? [J].Life Sci,2006,78(9):909-919.

    [96] Binneman B,Feltner D,Kolluri S,et al.A 6-week randomized,placebo-controlled trial of CP-316,311 (a selective CRH1 antagonist) in the treatment of major depression [J].Am J Psychiatry,2008,165(5):617-620.

    [97] Cruces J,Venero C,Pereda-Perez I,et al.A higher anxiety state in old rats after social isolation is associated to an impairment of the immune response [J].J Neuroimmunol,2014,277(1-2):18-25.

    [98] 周毅,劉巍,張悅.促腎上腺皮質(zhì)激素釋放激素受體1拮抗劑CP154526對(duì)大鼠海馬神經(jīng)元凋亡的影響 [J].中國藥理學(xué)通報(bào),2015(4):504-509.

    [99] Zhang C,Kuo C C,Moghadam S H,et al.Corticotropin-releasing factor receptor-1 antagonism mitigates beta amyloid pathology and cognitive and synaptic deficits in a mouse model of Alzheimer's disease [J].Alzheimers Dement,2016,12(5):527-537.Z

    [100] Zhang C,Kuo C C,Moghadam S H,et al.Corticotropin-releasing factor receptor-1 antagonism reduces oxidative damage in an Alzheimer's disease transgenic mouse model [J].J Alzheimers Dis,2015,45(2):639-650.

    收稿2016-10-18;修回2016-11-21〗

    (編輯:譚秀榮)

    猜你喜歡
    周繼紅藥理學(xué)皮質(zhì)激素
    基于藥理學(xué)分析的護(hù)理創(chuàng)新實(shí)踐探索
    促腎上腺皮質(zhì)激素治療腎病綜合征的研究進(jìn)展
    糖皮質(zhì)激素聯(lián)合特布他林治療慢阻肺急性加重期的臨床效果觀察
    藝術(shù)藥理學(xué)
    特別健康(2018年4期)2018-07-03 00:38:26
    機(jī)智的快遞員
    煲電話粥
    上海故事(2017年4期)2017-04-18 16:38:11
    怪我喜歡你
    藥理學(xué)原則在抗微生物藥給藥方案設(shè)計(jì)中的應(yīng)用
    生發(fā)Ⅰ號(hào)聯(lián)合局部注射糖皮質(zhì)激素治療斑禿患者禿眉的臨床觀察
    藥理學(xué)教學(xué)方法的改革初探
    国产欧美日韩一区二区精品| 不卡一级毛片| 他把我摸到了高潮在线观看| 99久久无色码亚洲精品果冻| 亚洲人成网站在线播放欧美日韩| 在线观看一区二区三区| 我要搜黄色片| 男人狂女人下面高潮的视频| 亚洲国产日韩欧美精品在线观看| 欧美+亚洲+日韩+国产| 五月玫瑰六月丁香| 俺也久久电影网| 亚洲avbb在线观看| 国语自产精品视频在线第100页| 亚洲成人精品中文字幕电影| 18禁在线播放成人免费| 一级黄片播放器| a级一级毛片免费在线观看| 一级黄色大片毛片| 国产私拍福利视频在线观看| 亚洲精品久久国产高清桃花| 国产精品久久久久久久久免| 欧美激情国产日韩精品一区| 婷婷精品国产亚洲av在线| 精品久久久久久久久av| 嫁个100分男人电影在线观看| 久久午夜亚洲精品久久| 能在线免费观看的黄片| 特大巨黑吊av在线直播| 男人狂女人下面高潮的视频| 狂野欧美白嫩少妇大欣赏| 久久精品国产亚洲网站| 国产大屁股一区二区在线视频| 黄色欧美视频在线观看| 精品久久久噜噜| 国产伦精品一区二区三区四那| 美女被艹到高潮喷水动态| 日韩在线高清观看一区二区三区 | 国产综合懂色| 久久久久久久久中文| 色哟哟哟哟哟哟| 亚洲一级一片aⅴ在线观看| 热99在线观看视频| 日韩欧美国产一区二区入口| 成年女人永久免费观看视频| 成人性生交大片免费视频hd| 成人一区二区视频在线观看| 麻豆久久精品国产亚洲av| 久久精品国产清高在天天线| 美女xxoo啪啪120秒动态图| 18禁裸乳无遮挡免费网站照片| 在线免费观看不下载黄p国产 | 久久久久久伊人网av| 久久午夜福利片| 精品99又大又爽又粗少妇毛片 | 男人和女人高潮做爰伦理| 在线播放国产精品三级| av在线蜜桃| 男人舔女人下体高潮全视频| 亚洲精华国产精华精| 亚洲国产精品久久男人天堂| 在线观看66精品国产| 国产伦精品一区二区三区视频9| 91久久精品国产一区二区成人| 一卡2卡三卡四卡精品乱码亚洲| 久久精品国产亚洲av涩爱 | 国产乱人视频| 日韩欧美免费精品| 亚洲av电影不卡..在线观看| 免费av不卡在线播放| 男人舔女人下体高潮全视频| 最后的刺客免费高清国语| 欧美日韩亚洲国产一区二区在线观看| 亚洲精品一卡2卡三卡4卡5卡| 婷婷六月久久综合丁香| 色精品久久人妻99蜜桃| 国产探花在线观看一区二区| 午夜福利在线在线| 天美传媒精品一区二区| 成熟少妇高潮喷水视频| 成人国产综合亚洲| 国产精品一及| 18禁黄网站禁片午夜丰满| a级一级毛片免费在线观看| 此物有八面人人有两片| 狠狠狠狠99中文字幕| 老司机福利观看| 国产精品一区二区三区四区免费观看 | 99久久精品国产国产毛片| 久久精品国产鲁丝片午夜精品 | 精品一区二区三区视频在线| 人妻丰满熟妇av一区二区三区| 麻豆久久精品国产亚洲av| 成年女人永久免费观看视频| 国产视频内射| 国产精品国产高清国产av| 在线观看一区二区三区| 精品久久久久久久末码| 中文字幕人妻熟人妻熟丝袜美| 99视频精品全部免费 在线| 精品午夜福利在线看| 麻豆成人午夜福利视频| 国产免费男女视频| 国产一区二区在线观看日韩| 嫁个100分男人电影在线观看| 国内精品久久久久精免费| 久久久久久九九精品二区国产| 欧美日韩中文字幕国产精品一区二区三区| 极品教师在线视频| 波野结衣二区三区在线| 97超视频在线观看视频| 欧美xxxx性猛交bbbb| 免费av观看视频| 99国产极品粉嫩在线观看| 天美传媒精品一区二区| 亚洲天堂国产精品一区在线| 男女啪啪激烈高潮av片| 超碰av人人做人人爽久久| 极品教师在线视频| 国产熟女欧美一区二区| a级毛片a级免费在线| 免费在线观看成人毛片| 伦理电影大哥的女人| 色综合亚洲欧美另类图片| 桃红色精品国产亚洲av| 日韩一区二区视频免费看| 久久久午夜欧美精品| 午夜免费成人在线视频| 欧美成人一区二区免费高清观看| 国产色婷婷99| 日本与韩国留学比较| 亚洲av熟女| 成熟少妇高潮喷水视频| 91狼人影院| 国产成人影院久久av| 最后的刺客免费高清国语| 热99re8久久精品国产| 国产精品永久免费网站| 内射极品少妇av片p| 日本黄大片高清| 在线观看一区二区三区| 麻豆国产97在线/欧美| 观看美女的网站| 久久午夜亚洲精品久久| 性欧美人与动物交配| 久久久久久久亚洲中文字幕| 日本熟妇午夜| 国产三级中文精品| 国产精品,欧美在线| 日本 欧美在线| 欧美xxxx性猛交bbbb| av在线老鸭窝| 老司机深夜福利视频在线观看| 日韩人妻高清精品专区| 国产精品免费一区二区三区在线| 麻豆国产97在线/欧美| 午夜精品在线福利| 老师上课跳d突然被开到最大视频| 我的老师免费观看完整版| 综合色av麻豆| 精品人妻一区二区三区麻豆 | 国产高清不卡午夜福利| 色综合站精品国产| 在线播放国产精品三级| 亚洲美女黄片视频| 一边摸一边抽搐一进一小说| 亚洲国产日韩欧美精品在线观看| 亚洲av免费在线观看| 亚洲人与动物交配视频| 欧美区成人在线视频| 亚洲国产欧美人成| 亚洲欧美精品综合久久99| 在线观看免费视频日本深夜| 亚洲av一区综合| 国产av一区在线观看免费| 日韩欧美 国产精品| 日本免费a在线| 在线播放国产精品三级| 在线观看av片永久免费下载| 欧美激情在线99| 又黄又爽又刺激的免费视频.| 男女啪啪激烈高潮av片| 男插女下体视频免费在线播放| 真人做人爱边吃奶动态| 久久久久久久久大av| 可以在线观看的亚洲视频| 亚洲国产精品合色在线| a级毛片免费高清观看在线播放| 亚洲av电影不卡..在线观看| 国产爱豆传媒在线观看| 国模一区二区三区四区视频| 午夜免费男女啪啪视频观看 | 一区二区三区免费毛片| 特级一级黄色大片| 亚洲一级一片aⅴ在线观看| 欧美色欧美亚洲另类二区| 亚洲av二区三区四区| 亚洲熟妇熟女久久| 亚洲av不卡在线观看| 亚洲中文字幕一区二区三区有码在线看| or卡值多少钱| 免费观看精品视频网站| 97人妻精品一区二区三区麻豆| 午夜福利视频1000在线观看| 国内精品一区二区在线观看| 精品久久久久久久久av| 九色国产91popny在线| 最好的美女福利视频网| 日本一二三区视频观看| 亚洲国产精品合色在线| 我要看日韩黄色一级片| 日韩大尺度精品在线看网址| 国产一区二区在线观看日韩| xxxwww97欧美| 欧美区成人在线视频| 国产精品自产拍在线观看55亚洲| 国产探花在线观看一区二区| 高清日韩中文字幕在线| 中文字幕免费在线视频6| 我的老师免费观看完整版| 亚洲欧美日韩卡通动漫| 搡老熟女国产l中国老女人| 久久久久久伊人网av| 两人在一起打扑克的视频| 国产熟女欧美一区二区| 亚洲av第一区精品v没综合| 国产在线精品亚洲第一网站| 97人妻精品一区二区三区麻豆| 亚洲欧美日韩高清专用| 国产视频一区二区在线看| 听说在线观看完整版免费高清| av黄色大香蕉| www日本黄色视频网| 麻豆成人午夜福利视频| 欧美最新免费一区二区三区| 狂野欧美激情性xxxx在线观看| 日韩欧美国产在线观看| 久久亚洲精品不卡| 又爽又黄无遮挡网站| 免费在线观看影片大全网站| 久久天躁狠狠躁夜夜2o2o| 18+在线观看网站| 在线免费观看的www视频| 极品教师在线视频| 成人国产一区最新在线观看| 18禁裸乳无遮挡免费网站照片| 欧美日韩国产亚洲二区| 露出奶头的视频| 十八禁国产超污无遮挡网站| 国产主播在线观看一区二区| 亚洲人成伊人成综合网2020| 永久网站在线| 97热精品久久久久久| 尾随美女入室| 国产精品日韩av在线免费观看| 99久久成人亚洲精品观看| 日本五十路高清| 禁无遮挡网站| h日本视频在线播放| 俄罗斯特黄特色一大片| 麻豆一二三区av精品| 一进一出好大好爽视频| 亚洲国产精品久久男人天堂| 日韩中字成人| 亚洲一区高清亚洲精品| 三级国产精品欧美在线观看| 国产成人影院久久av| 国产精品乱码一区二三区的特点| 国产精品精品国产色婷婷| 久久久精品大字幕| 亚洲美女视频黄频| 特大巨黑吊av在线直播| 国产 一区精品| 国产真实乱freesex| 女同久久另类99精品国产91| 欧美在线一区亚洲| 老司机深夜福利视频在线观看| 琪琪午夜伦伦电影理论片6080| 久久久久精品国产欧美久久久| 国产 一区精品| 久久热精品热| 日韩高清综合在线| 天天一区二区日本电影三级| 制服丝袜大香蕉在线| 美女被艹到高潮喷水动态| 久久久久久久久大av| 如何舔出高潮| 国产精品无大码| 在线观看一区二区三区| 色视频www国产| 两个人的视频大全免费| 午夜福利视频1000在线观看| 婷婷精品国产亚洲av| 听说在线观看完整版免费高清| 啦啦啦韩国在线观看视频| 国产伦精品一区二区三区视频9| 又爽又黄无遮挡网站| 国产三级中文精品| 中文字幕精品亚洲无线码一区| 永久网站在线| 在现免费观看毛片| 成年女人看的毛片在线观看| 性色avwww在线观看| 少妇高潮的动态图| 国产高清有码在线观看视频| 欧美绝顶高潮抽搐喷水| 国产精品三级大全| 联通29元200g的流量卡| 亚洲国产欧洲综合997久久,| 黄色欧美视频在线观看| 免费高清视频大片| 国产又黄又爽又无遮挡在线| 国产 一区精品| 国内精品久久久久久久电影| 人人妻,人人澡人人爽秒播| 精品一区二区三区视频在线| 12—13女人毛片做爰片一| 久久久久国内视频| 变态另类成人亚洲欧美熟女| 嫩草影院入口| 小说图片视频综合网站| a在线观看视频网站| 伦理电影大哥的女人| 精品免费久久久久久久清纯| 亚洲无线观看免费| 制服丝袜大香蕉在线| 在线观看舔阴道视频| 久久久久久大精品| netflix在线观看网站| 床上黄色一级片| 国内精品久久久久精免费| 日韩欧美三级三区| 国产又黄又爽又无遮挡在线| 亚洲av美国av| 99热这里只有是精品50| 精品午夜福利在线看| 最近最新中文字幕大全电影3| 热99在线观看视频| 久久久久精品国产欧美久久久| 国产高清激情床上av| 91精品国产九色| 精品久久久久久,| 久久久久性生活片| 免费看a级黄色片| 国内精品久久久久久久电影| 欧美日本亚洲视频在线播放| 啦啦啦啦在线视频资源| 亚洲欧美日韩无卡精品| 老司机福利观看| 18禁黄网站禁片免费观看直播| 又爽又黄无遮挡网站| 国产午夜精品久久久久久一区二区三区 | 亚州av有码| 级片在线观看| 丰满人妻一区二区三区视频av| 亚洲男人的天堂狠狠| 欧美bdsm另类| 国产精品久久电影中文字幕| 久久婷婷人人爽人人干人人爱| 欧美极品一区二区三区四区| 久久精品夜夜夜夜夜久久蜜豆| 精品午夜福利视频在线观看一区| 国产一区二区在线观看日韩| 亚洲图色成人| 日韩欧美三级三区| 成人一区二区视频在线观看| 综合色av麻豆| 欧美激情国产日韩精品一区| 欧美激情在线99| 国产毛片a区久久久久| 99国产精品一区二区蜜桃av| 国产白丝娇喘喷水9色精品| 99国产精品一区二区蜜桃av| 国产高清不卡午夜福利| 成人无遮挡网站| av天堂中文字幕网| 桃红色精品国产亚洲av| 永久网站在线| 日韩 亚洲 欧美在线| 久久久久久九九精品二区国产| 国产精品一区www在线观看 | 欧美高清性xxxxhd video| 一区福利在线观看| 久久久久久久久久久丰满 | 蜜桃亚洲精品一区二区三区| 亚洲精品成人久久久久久| 亚洲精品456在线播放app | 日本一本二区三区精品| 长腿黑丝高跟| av专区在线播放| 精品久久久久久久久av| 91在线观看av| 搡老妇女老女人老熟妇| 国产精品一区二区三区四区免费观看 | 日本爱情动作片www.在线观看 | av国产免费在线观看| 一卡2卡三卡四卡精品乱码亚洲| 国产主播在线观看一区二区| 九色国产91popny在线| 波多野结衣高清作品| 美女被艹到高潮喷水动态| 欧美一区二区国产精品久久精品| 真人做人爱边吃奶动态| 观看美女的网站| 又黄又爽又免费观看的视频| 最近最新免费中文字幕在线| 亚洲电影在线观看av| 最近在线观看免费完整版| 国产乱人视频| 国产单亲对白刺激| 久久精品夜夜夜夜夜久久蜜豆| 直男gayav资源| 日日撸夜夜添| 国产欧美日韩精品一区二区| 国产一区二区三区在线臀色熟女| 欧美人与善性xxx| 日本爱情动作片www.在线观看 | 丰满的人妻完整版| 99热这里只有是精品50| 综合色av麻豆| 亚洲国产精品合色在线| 俺也久久电影网| 麻豆久久精品国产亚洲av| 51国产日韩欧美| av天堂在线播放| 如何舔出高潮| 国产精品,欧美在线| 大又大粗又爽又黄少妇毛片口| 亚洲av日韩精品久久久久久密| 国产午夜精品论理片| 亚洲aⅴ乱码一区二区在线播放| h日本视频在线播放| 春色校园在线视频观看| 国产爱豆传媒在线观看| 一级av片app| 久久精品国产亚洲av香蕉五月| 十八禁国产超污无遮挡网站| a级毛片免费高清观看在线播放| 国产伦一二天堂av在线观看| 免费人成视频x8x8入口观看| 一区二区三区激情视频| 51国产日韩欧美| 少妇人妻一区二区三区视频| 日本在线视频免费播放| 97超视频在线观看视频| 人人妻人人看人人澡| 亚洲四区av| 悠悠久久av| 久久精品国产亚洲网站| 少妇被粗大猛烈的视频| 又爽又黄a免费视频| 久久精品影院6| 午夜日韩欧美国产| 日日干狠狠操夜夜爽| 欧美区成人在线视频| 在线免费十八禁| 99国产极品粉嫩在线观看| 成熟少妇高潮喷水视频| 久久6这里有精品| 99视频精品全部免费 在线| 亚洲国产色片| 午夜影院日韩av| 欧洲精品卡2卡3卡4卡5卡区| 亚洲18禁久久av| 波多野结衣巨乳人妻| 午夜亚洲福利在线播放| 亚洲专区国产一区二区| 麻豆国产av国片精品| 婷婷精品国产亚洲av在线| 成熟少妇高潮喷水视频| 国产精品人妻久久久影院| 国产精品人妻久久久久久| а√天堂www在线а√下载| 精品不卡国产一区二区三区| 精品人妻熟女av久视频| 亚洲欧美日韩无卡精品| 欧美色欧美亚洲另类二区| 国产av在哪里看| 一级av片app| 婷婷色综合大香蕉| 中文字幕免费在线视频6| 88av欧美| av在线亚洲专区| 男女视频在线观看网站免费| 夜夜看夜夜爽夜夜摸| 狂野欧美白嫩少妇大欣赏| 婷婷色综合大香蕉| 亚洲在线观看片| 深爱激情五月婷婷| 内射极品少妇av片p| 18禁裸乳无遮挡免费网站照片| 国产乱人视频| 如何舔出高潮| 99久久中文字幕三级久久日本| 亚洲av成人精品一区久久| a级毛片免费高清观看在线播放| 黄色配什么色好看| 国产欧美日韩一区二区精品| 日本色播在线视频| 亚洲天堂国产精品一区在线| 国产一区二区三区在线臀色熟女| .国产精品久久| 亚洲成人久久爱视频| 3wmmmm亚洲av在线观看| 国产成人a区在线观看| 欧美性感艳星| 熟女电影av网| 很黄的视频免费| 国内揄拍国产精品人妻在线| 国产欧美日韩精品一区二区| 69av精品久久久久久| 人妻夜夜爽99麻豆av| 免费看日本二区| 国产精品人妻久久久影院| 亚洲,欧美,日韩| videossex国产| 日韩人妻高清精品专区| 亚洲美女搞黄在线观看 | 久99久视频精品免费| 97人妻精品一区二区三区麻豆| 男女那种视频在线观看| 少妇裸体淫交视频免费看高清| 欧美最新免费一区二区三区| 中文字幕精品亚洲无线码一区| 男女做爰动态图高潮gif福利片| 联通29元200g的流量卡| 99国产精品一区二区蜜桃av| 久久久久久九九精品二区国产| 欧美极品一区二区三区四区| 国产一区二区在线av高清观看| 欧美精品啪啪一区二区三区| 欧美性猛交黑人性爽| 白带黄色成豆腐渣| 成年人黄色毛片网站| 国产午夜精品久久久久久一区二区三区 | 在现免费观看毛片| 美女免费视频网站| 国产大屁股一区二区在线视频| or卡值多少钱| 中文亚洲av片在线观看爽| xxxwww97欧美| 久久久久久久久久黄片| 伊人久久精品亚洲午夜| 国产淫片久久久久久久久| 18禁黄网站禁片免费观看直播| 啦啦啦观看免费观看视频高清| а√天堂www在线а√下载| 国产免费一级a男人的天堂| 老司机福利观看| 色哟哟·www| h日本视频在线播放| 美女 人体艺术 gogo| 久久久久久久久大av| 欧美日本视频| 给我免费播放毛片高清在线观看| 免费看a级黄色片| 国产又黄又爽又无遮挡在线| 少妇裸体淫交视频免费看高清| 亚洲国产高清在线一区二区三| 一级av片app| 国产国拍精品亚洲av在线观看| 欧美不卡视频在线免费观看| 精品人妻熟女av久视频| 久久久成人免费电影| 中文资源天堂在线| 日本欧美国产在线视频| 亚洲国产精品sss在线观看| 亚洲在线自拍视频| 99国产精品一区二区蜜桃av| 91午夜精品亚洲一区二区三区 | 女生性感内裤真人,穿戴方法视频| 精品福利观看| 18禁黄网站禁片午夜丰满| 免费av毛片视频| 午夜日韩欧美国产| 在线观看午夜福利视频| 人人妻人人澡欧美一区二区| 午夜精品一区二区三区免费看| 久久久久久久精品吃奶| 成人av一区二区三区在线看| 久久精品国产亚洲av天美| 国产精品爽爽va在线观看网站| 成人特级黄色片久久久久久久| 欧美丝袜亚洲另类 | 天堂av国产一区二区熟女人妻| 欧美激情在线99| 亚洲av中文av极速乱 | 久久久久久国产a免费观看| 国产黄片美女视频| 最新在线观看一区二区三区| 国产精品免费一区二区三区在线| 韩国av一区二区三区四区| 日韩av在线大香蕉| av中文乱码字幕在线| 中文字幕人妻熟人妻熟丝袜美| 国产黄色小视频在线观看| 日本免费一区二区三区高清不卡| 色尼玛亚洲综合影院| 黄色视频,在线免费观看| 国产精品一区二区性色av| 久久精品国产亚洲av天美| 免费大片18禁| 精品人妻偷拍中文字幕| 精品久久久久久久久久久久久| 一级毛片久久久久久久久女| 一区二区三区高清视频在线| 欧洲精品卡2卡3卡4卡5卡区| 国产一区二区在线av高清观看| 亚洲最大成人中文| 一本久久中文字幕| 99国产极品粉嫩在线观看| 欧美高清性xxxxhd video| 十八禁网站免费在线| 欧美日韩国产亚洲二区| 久久天躁狠狠躁夜夜2o2o|