• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    CFD based extraction column design—Chances and challenges

    2016-05-29 03:33:17MarkHlawitschkaMenwerAttarakihSamerAlzyodHansrgBart

    Mark W.Hlawitschka ,Menwer M.Attarakih ,Samer S.Alzyod ,Hans-J?rg Bart,*

    1 Chair ofSeparation Science and Technology,POB 3049,TU Kaiserslautern,Kaiserslautern 67653,Germany

    2 Center for Computationaland MathematicalModelling(CM2),TU Kaiserslautern,Kaiserslautern 67653,Germany

    3 University ofJordan,Department ofChemicalEngineering,11942 Amman,Jordan

    1.Introduction

    Solventextraction columnsare widely used in chemical,petrochemical,hydrometallurgical and nuclear processes.The main apparatus used for solvent extraction is stillthe mixer–settler or mixer–settler cascades because of easy design,reliability and high capacity.The main disadvantages are the large footprint of the mixer–settler,which is mainly determined by the settling zone and multiple pumps and piping requirements.By comparison,solvent extraction columns provide a high number of theoreticalstages at high throughputs,requiring only a small footprint and low capitalcosts.

    Despite their advantages,solvent extraction columns are not widely applied due to their sophisticated layout and scale-up.Uncertainties mainly arise from the complex interactions of the liquid phases as for example back-and forward mixing and a changing dropletsize distribution by coalescence and breakage.These phenomena finally have an impact on the operation limits(e.g.flooding)and the efficiency of the column.Hence,in the field of solvent extraction design,a scale-up from mini-plant columns to industrial sized columns has become an importantfeature.As the diameterof the column increases,the tendency for back mixing phenomena to occur increases,and this results in lower column efficiency during scale-up.Correlations derived on a pilot-plant scale will not accurately depict that behavior on an industrial scale,hence overdesign is a must.

    For improved and reliable design of solvent extraction columns,standardized lab-scale cells were developed that allow monitoring of single droplet behavior.Mini-plant column experiments could capture pilot-scale effects,especially during long duration runs.The hydrodynamic gap(droplet behavior,such as movement and size)between mini-plant experiments and pilot-plant scale could be partially closed by droplet population balance modeling(DPBM),based on geometrical identicalcolumn designs[1-10].

    2.1-D Droplet Population Balance Modeling

    An enhancement of the axialdispersion or back mixing models was achieved by taking into account the changes in droplet size along the column height by DPBM for a differentialheight,?z,based on the droplet volume distribution P(v)is as follows[1]:

    The left hand side of Eq.(1)gives the transport of the population balance along the column height.On the right hand side,Ddis the dispersed phase axialdispersion coefficient,f(v)is the volumetric inlet distribution and R(v)describes the net droplet volume production due to breakage and coalescence per unit time.In addition,two similar equations describe the solute balances of the dispersed and continuous phases:

    In the lineardriving force model,the overallmasstransfercoefficient is defined by kc,the solute concentration in the continuous phase is given by cxand the distribution coefficient is m.In addition,the surface area of droplets ofvolume v is given by S.The average solute concentration for alldroplets having volume in the range(v,v+d v)at level z is given byThe source term accounting for coalescence and breakage accounts in this context the mass transfer.In the given continuous phase solute balance(Eq.(3)),the axial dispersion is given by Dc.In addition the hold-up ofdispersed phase is defined by:

    where vminand vmaxare the minimum and maximum dropletvolumes.The above equations can be easily adapted to any arbitrary column geometry when exchanging the required kernels for breakage and coalescence,energy dissipation,dropletvelocity,mass transfer correlations and axialdispersion[11].

    3.3-D CFD Modeling of Solvent Extraction Columns

    3-D CFD simulations allow a description ofcolumn hydrodynamics without any geometricalconstraints,where the geometricalpossibilities are mainly limited by computationalresources.The investigations of stirred solvent extraction columns started in 1993 with a publication of Weiss&Bart[12]describing the simulation of a single segment of an rotating disc contactor(RDC)column with the CFD code Fire.Rieger etal.[13]simulated a DN150 RDC column atlow hold-up and employed the Euler–Euler model to predict the two-phase flow structure.Yundong et al.[14]measured and simulated the pro file in a computationaltwo dimensionalrepresented RDC column using the CFD code PHOENICS.A validation of the velocity field was performed using the laser induced anemometer(LDA)-measurements of Fei et al.[15]with single phase flow in stirred solvent extraction columns.The residence time distribution was numerically and experimentally investigated by Modes&Bart[16]and recently by Gurker&Marr[17].The two-phase flow field was simulated by You&Xiao[18].Ghaniyari-Benis et al.[19]simulated an RDC column using the Euler–Euler approach.The first study using CFD simulations for the optimization of solventextraction columns was undertaken by Kolb[20]for a mini-plant Kühni column.An early extension of the two-phase flow accounting the droplet size distribution was reached by Vikhansky et al.[21].Drumm[22]further extended CFD/DPBMresearch.Therefore,he implemented and applied several DPBM using the commercial CFD code FLUENT for the simulation of the droplet interactions in an RDC column.The concept of Kolb[20]and Drumm[22]was applied by Aksamija&Siebenhofer[23]for the optimization of an RDC column,where it could be shown that a stator less design could outperform the stateof-the-art design by 36%with regard to the HTU value.A firstcombination using a commercial CFD/DPBM/mass transfer code for the investigation of solvent extraction columns was done by Hlawitschka&Bart[24]and Jildeh et al.[25].A further improvement regarding the simulation setup,computationaltime and flexibility can be reached by the extension of an OpenSource CFD code[26],namely OpenFOAM?(v171).The numerical framework of the modified “twoPhaseEulerFoam”code is based on a set of continuity and momentum equations for each phase.

    The continuity equation for the continuous phase is represented by:

    where S represents the source term due to possible mass transfer.The phase fraction in Eq.(5)is represented byαc,the density of the continuous phase byρcand the velocity of the continuous phase by uc.The respective momentum conservation equation is given by:

    In addition,the volume fraction mustsatisfy the following constraint for the given two phase flow:

    As previously stated in the works of Drumm[22]and the work of Wang&Mao[27],the dominant interphase interaction in agitated extraction columns is the drag force,which is calculated by

    In the smaller sized columns with small sized rising droplets(<5 mm),the drag coefficient CDobtained by the modelof Schiller&Naumann[28]can be used:

    where the Reynolds number,Re,is defined as

    Agitator movement is accounted for by the moving reference frame(MRF),where the rotation of the agitator is accounted for by source terms to the surrounding fluid.Turbulence is accounted by the mixture k-εmodel.The transportequation for the turbulent kinetic energy is given as:

    The density,viscosity and velocity are replaced by the mixture density,viscosity and velocity to accountfor the in fluences of the dispersed phase.The transport equation for the turbulent energy dissipation instead is derived from physicalreasons[29]:

    where the turbulent viscosity in Eq.(12)is modeled as:

    The generation ofturbulentkinetic energy is derived from the mean rate-of-strain tensor:

    The modelconstants,which also have been applied in this work,are given as:

    The mesh generation was optimized for the two Kühniand a RDC column from a single mesh generation for each column design to an automated mesh generation allowing a flexible design of the internals which is shown in Fig.1 for the Kühniminiplant column(DN32,compartment height:28 mm)with different agitator baffle heights.In total,the column is represented by eight compartments,as well as in flow and out flow zones.Note that Fig.1 shows the fourth lowest compartment.It can be observed that the velocity inside a single compartment increases with increased agitator baffle heights.Besides the local hydrodynamics,the axialdis persion coefficient is a key value for liquid–liquid extraction column layout and is also required for the 1-Dapproach.It can be obtained by an additional Euler–Lagrange simulation.The main force balance equation for the Lagrangian particles is:

    where FDrepresents the drag force per unit particle mass:

    In Eq.(15),u is the fluid-phase velocity and upis the particle velocity.The molecular viscosity of the fluid isμ.The densitiesρ and ρpdescribe the densities of the fluid and particle respectively.The relative Reynolds number and drag coefficient are set as per the Eulerian model.For the determination of the axialdispersion coefficient,the Lagrangian particles were introduced as a Dirac function at the top of the column.The Lagrangian particles follow the continuous phase down the column and are tracked close to the out flow.The resulting distribution is then used to calculate the axialdispersion coefficient.For the three presented geometries,only a slight deviation in the axialdispersion coefficient of the continuous phase can be observed for 3.0 mm and 4.5 mm baffle heights(Fig.2).The axialdispersion coefficient increases by 20%,when the heightis increased to 8.0 mm.Also the effect ofdifferent compartmentheights can be studied using CFD simulations.In general,an increase of the axialdispersion coefficient can be observed at higher compartment heights and higher rotational speeds(Fig.3),which also results from changes in the local flow structure resulting in larger dead zones underneath the stator plates.For the originaldesign of the Kühniminiplant column(compartment height 28 mm,baffle height:4.5 mm),the 3-D-CFD results follow the trend of the axialdispersion coefficient correlation developed by Breysee et al.[30].

    Fig.2.In fluence of the agitator baffle height on the axial dispersion coefficient(6 m3·m-2·h-1).

    Fig.3.In fluence of the compartment height to the axial dispersion coefficient(5 m3·m-2·h-1)at a baffle height of 4.5 mm.

    4.Combination of Both Approaches

    Fig.1.Velocity fields in a Kühnimini-plantcolumn atdifferentagitator designs(baffle heights)at6 m3·m-2·h-1 and a rotationalspeed of200 r·min-1 ata constantcom partmen the ight of28 mm.

    Both approaches,the 1-D and 3-D,have advantages and disadvantages concerning the computationaleffort,the accuracy and simulation time.The computationaltime for a mass transfer simulation heavily relies on the throughput.A simulation of the finalsteady state of a solvent extraction columns requires a simulation of5–7 times of the residence time of the liquids inside the column.In contrast to this 3-D-CFD simulations are stillbased in literature on the simulation oftime scales in the range of seconds and minutes due to the high computational load.As an example,the required time to reach steady state for a transient fullmini-plant column simulation taking into account the mass transfer is approximated by one month on a modern cluster.The bene fit is the fullresolution of the localhydrodynamics,droplet size and mass transfer.The 1-Dsimulation instead,is able to simulate the transientbehavior of the solute concentration within a few minutes including the simulation setup,but is based on experimentally derived correlations(dropletvelocity,slowing factor,axialdispersion coefficient,energy dissipation,mass transfer coefficient,droplet coalescence and breakup).Therefore,a combination of3-D-CFD and 1-D-CFD seems to be straight forward to reduce experimentaleffortfor the 1-Dsimulation and on the other hand to reduce the computationaltime for mass transfer simulation.The main hydrodynamic correlations as the presented axialdispersion coefficient can be gained by 3-D-CFD simulations,where in addition,different geometricalmodifications can be investigated.The geometry dependentcorrelations for the slowing factor,axialdispersion coefficient and energy dissipation can then be used asan inputfor the 1-D simulation.The concept can be readily extended to droplet resolved 3-D-CFD simulations,to obtain further information about the mass transfer coefficients of single droplets and droplet swarms.

    As a proofof concept,Fig.4 shows the resulting dropletsize distribution for a 1-D CFD full Kühniminiplant column simulation(Table 1)compared to experimental data.Fig.5 shows that a high accuracy between the simulated concentration pro file and the experimental data could be obtained by using the mentioned 3-D-CFD correlations.

    Fig.4.Simulated droplet size using 1-D simulation(Particulate Population Balance Laboratory)as compared to the measured outlet droplet size distribution at 150 r·min-1 and a throughput of 18.7 m3·m-2·h-1.

    Table 1 Principaldesign parameters of the used Kühniminiplant column

    5.Conclusions

    Fig.5.Comparison between the measured concentration pro file and the 1-D simulation(Particulate Population Balance Laboratory)simulation result for 150 r·min-1 and a throughput of 18.7 m3·m-2 · h-1.

    The experimentally based design of solvent extraction columns can be supported by numericalmodeling using 1-D and 3-D approaches.The 1-D simulation of solvent extraction columns was facilitated by modern tools using graphicaluser interfaces.The tools allow a description of the hydrodynamics(e.g.holdup),solute concentration and droplet size for different boundary conditions within minutes based on known or experimentalderived correlations.The further development of the 3-D simulation reduces the required number of experimental correlations,due to a direct description of the local hydrodynamics(flow field,energy dissipation).A coupling of the 3-D CFD simulation with DPBMand mass transfer correlations allows the optimization of different column designs,including the column efficiency.Finally,by using the obtained correlations from the 3-D simulations(e.g.axial dispersion coefficients,energy dissipation)in the 1-D simulation,the computationaltime,especially for the mass transfer simulations,is reduced by keeping a good accuracy.The combination of both approaches is evidently the mostpromising technique for future column design.

    6.Future Challenges

    Despite the promising results using DPBMfor extraction column design and the prediction of mass transfer,the numericalcodes stilldo not cover all the effects observed in solvent extraction columns.Among them are wetting properties,the enrichmentofimpurities,crud formation and entrainment.In addition,these numericaltools were mainly tested for standard testsystems and a common available column geometry.Itwillnotre flectchanges in column design and system properties,such as viscosity,interfacialtension and mass transferrates,occurring in industrialapplications.Afurther task is also the extension of the models to account for reactive extraction,which is essentialfor efficient recovery ofionic species(metalions,organic acids,intermediates)in hydrometallurgy,urban mining,fine chemicals,bio and pharmaceutical fields.

    Nomenclature

    [1]G.Casamatta,Compartement de la population des gouttes dans une colonne d'extraction(Ph.D.Thesis)Institue National Polytechnique de Toulouse,Toulouse,France,1981.

    [2]M.Kalem,F.Buchbender,A.Pfennig,Simulation of hydrodynamics in RDC extraction columns using the simulation tool“ReDrop”,Chem.Eng.Res.Des.89(2011)1–9.

    [3]D.Adinata,J.M.Ayesterán,F.Buchbender,M.Kalem,N.Kopriwa,A.Pfennig,Tropfenpopulationsbilanzen zur Auslegung von Extraktionskolonnen,Chem.Ing.Tech.83(7)(2011)1–14.

    [4]F.Buchbender,M.Schmidt,T.Steinmetz,A.Pfennig,Simulation von Extraktionskolonnen in der industriellen Praxis,Chem.Ing.Tech.84(4)(2012)540–546.

    [5]F.Buchbender,Single-drop-based Modelling of Drop Residence Times in Kühni Columns(Ph.D.Thesis)RTWH Aachen,Aachen,Germany,2013.

    [6]M.Attarakih,H.J.Bart,N.Faqir,Numerical solution of the bivariate population balance equation for the interacting hydrodynamics and mass transfer in liquid–liquid extraction columns,Chem.Eng.Sci.61(2006)113–123.

    [7]M.M.Attarakih,H.J.Bart,N.M.Faqir,LLECMOD:a Windows-based program for hydrodynamics simulation of liquid–liquid extraction columns,Chem.Eng.Process.45(2006)113–123.

    [8]M.M.Attarakih,H.J.Bart,T.Steinmetz,M.Dietzen,N.M.Faqir,LLECMOD:a bivariate population balance simulation toolfor liquid-liquid extraction columns,Open Chem.Eng.J.2(2008)10–34.

    [9]M.Jaradat,M.Attarakih,H.J.Bart,Effect ofphase dispersion and mass transfer direction on steady state RDC performance using population balance modelling,Chem.Eng.J.165(2)(2010)379–387.

    [10]M.Jaradat,M.Attarakih,H.-J.Bart,Advanced prediction ofpulsed(packed and sieve plate)extraction columns performance using population balance modelling,Chem.Eng.Res.Des.89(2011)2752–2760.

    [11]M.Attarakih,S.Al-Zyod,M.Abu-Khader,H.J.Bart,PPBLAB:a new multivariate population balance environment for particulate system modelling and simulation,Procedia Eng.42(2012)1574–1591.

    [12]C.Weiss,H.J.Bart,in:D.H.Logsdail,M.J.Slater(Eds.),Solvent Extraction in the Process Industry,Elsevier Applied Science,London 1993,pp.1191–1197.

    [13]R.Rieger,C.Weiss,G.Wigley,H.J.Bart,R.Marr,Investigating the process of liquid–liquid extraction by means ofcomputational fluid dynamics,Comput.Chem.Eng.20(12)(1996)1467–1475.

    [14]W.Yundong,F.Weiyang,D.Youyuan,W.Jiading,Numericalsimulation and experimental investigation of velocity fields in a rotating disc contactor,Tsinghua Sci.Technol.1(4)(1996)323–326.

    [15]W.Y.Fei,Y.D.Wang,Y.K.Wan,Physicalmodelling and numerical simulation of velocity fields in Rotating Disc Contactor via CFD simulation and LDV measurement,Chem.Eng.J.78(2-3)(2000)131–139.

    [16]G.Modes,H.J.Bart,CFD-simulation of non-ideal dispersed phase flow in stirred extraction columns,Chem.Eng.Technol.24(12)(2001)1242–1245.

    [17]T.Gurker,R.Marr,Aufbau und Vermessung einer 150 mm Labor RDC Kolonne und Vergleich mittels CFD-Simulation,Chem.Ing.Tech.81(8)(2009)1090.

    [18]X.Y.You,X.Xiao,Simulation of the three-dimensional two-phase flow in stirred extraction columns by Lagrangian–Eulerian method,Chem.Biochem.Eng.Q.19(1)(2005)1–11.

    [19]S.Ghaniyari-Benis,N.Hedayat,A.Ziyari,M.Kazemzadeh,M.Sha fiee,Threedimensional simulation of hydrodynamics in a rotating disc contactor using computational fluid dynamics,Chem.Eng.Technol.32(1)(2009)93–102.

    [20]P.Kolb,Hydrodynamik und Stoffaustausch in einem gerührten Miniplantextraktor der Bauart Kühni(Ph.D.Thesis)TU Kaiserslautern,Kaiserslautern,Germany,2005.

    [21]A.Vikhansky,M.Kraft,M.Simon,S.Schmidt,H.-J.Bart,Population balance modelling of droplet size distribution in a RDC:inverse problem approach,Technical Report 28 c4e-Preprint Series,Cambridge2005.

    [22]C.Drumm,Coupling of Computational Fluid Dynamics and Population Balance Modelling for Liquid–Liquid Extraction(Ph.D.Thesis)TU Kaiserslautern,Kaiserslautern,Germany,2010.

    [23]E.Aksamija,M.Siebenhofer,Statorlose RDC-Extraktionskolonnen:Design und Betriebscharakteristik,Chem.Ing.Tech.85(9)(2013)1388.

    [24]M.W.Hlawitschka,H.J.Bart,CFD-mass transfer simulation of an RDC column,Comp.Aided Chem.Eng.31(2012)920–924.

    [25]H.B.Jildeh,M.W.Hlawitschka,M.Attarakih,H.J.Bart,Solution of inverse problem with the one primary and one secondary particle model(OPOSPM)coupled with computational fluid dynamics(CFD),Procedia Eng.42(2012)1692–1710.

    [26]M.W.Hlawitschka,Computational Fluid Dynamics Aided Design of Stirred Liquid–Liquid Extraction Columns(Ph.D.Thesis)TU Kaiserslautern,Kaiserslautern,Germany,2013.

    [27]F.Wang,Z.S.Mao,Numericaland experimental investigation of liquid–liquid twophase flow in stirred tanks,Ind.Eng.Chem.Res.44(2005)5776–5787.

    [28]L.Schiller,Z.Naumann,über die grundlegenden Berechnungen bei der Schwerkraftaufbereitung,Z.Ver.Dtsch.Ing.77(1935)318.

    [29]Fluent Inc.,Fluent 6.2 User's Guide,2005(Lebanon,USA).

    [30]J.Breysee,U.Bühlmann,J.C.Godfrey,Axialmixing characteristics of industrialand pilot scale Kühni columns,AIChE Symp.Ser.80(1983)94–101.

    国产精品亚洲一级av第二区| 少妇的丰满在线观看| 日日夜夜操网爽| 成人特级黄色片久久久久久久| 精华霜和精华液先用哪个| 国产精品爽爽va在线观看网站| 亚洲成av人片免费观看| 国产成人av激情在线播放| 免费av不卡在线播放| www日本黄色视频网| a级毛片a级免费在线| 好男人在线观看高清免费视频| 日本在线视频免费播放| 亚洲国产精品合色在线| 亚洲美女视频黄频| 国产精品久久视频播放| 一本精品99久久精品77| 亚洲精品在线美女| 亚洲av免费在线观看| 中国美女看黄片| 熟女少妇亚洲综合色aaa.| 久久精品亚洲精品国产色婷小说| 无遮挡黄片免费观看| 久久99热这里只有精品18| 日韩三级视频一区二区三区| 麻豆国产97在线/欧美| 精品久久久久久久毛片微露脸| 少妇裸体淫交视频免费看高清| 最近最新中文字幕大全免费视频| 久久亚洲真实| 一级作爱视频免费观看| 热99re8久久精品国产| e午夜精品久久久久久久| 99热这里只有精品一区 | 免费在线观看日本一区| 超碰成人久久| 精品不卡国产一区二区三区| 最好的美女福利视频网| 亚洲av电影在线进入| 久99久视频精品免费| 99精品在免费线老司机午夜| 亚洲色图av天堂| 亚洲国产精品999在线| 国产精品av久久久久免费| 国内精品久久久久久久电影| 无限看片的www在线观看| 免费看a级黄色片| 淫秽高清视频在线观看| 黄色片一级片一级黄色片| 欧美最黄视频在线播放免费| av天堂在线播放| 亚洲狠狠婷婷综合久久图片| 人妻久久中文字幕网| 亚洲国产日韩欧美精品在线观看 | 中文亚洲av片在线观看爽| www.精华液| 免费在线观看日本一区| 身体一侧抽搐| 国产精品免费一区二区三区在线| 欧美黑人巨大hd| e午夜精品久久久久久久| 精品久久久久久久久久免费视频| 国产精品一区二区三区四区免费观看 | 久久久久国产一级毛片高清牌| 亚洲人成网站高清观看| 国内精品一区二区在线观看| 国产野战对白在线观看| 亚洲,欧美精品.| 精品久久久久久久毛片微露脸| 久久亚洲真实| 亚洲人成电影免费在线| 国产成人欧美在线观看| 中文字幕久久专区| 韩国av一区二区三区四区| 国产视频一区二区在线看| 欧美日韩黄片免| 久久国产乱子伦精品免费另类| 亚洲,欧美精品.| 免费观看人在逋| 久久久色成人| 男女那种视频在线观看| 此物有八面人人有两片| 男女之事视频高清在线观看| 成人三级做爰电影| 又紧又爽又黄一区二区| 国产成人福利小说| 国产单亲对白刺激| 在线观看免费视频日本深夜| 哪里可以看免费的av片| 三级毛片av免费| 欧美乱码精品一区二区三区| 午夜a级毛片| 久久精品91无色码中文字幕| 九色国产91popny在线| 黄色 视频免费看| 麻豆国产97在线/欧美| 热99re8久久精品国产| 搡老熟女国产l中国老女人| 在线视频色国产色| 夜夜爽天天搞| 观看免费一级毛片| av天堂在线播放| 亚洲欧美一区二区三区黑人| 男女那种视频在线观看| av中文乱码字幕在线| 日韩欧美免费精品| 国产 一区 欧美 日韩| 亚洲一区二区三区色噜噜| 麻豆国产97在线/欧美| 免费在线观看成人毛片| 欧美日韩精品网址| 国产精品,欧美在线| 亚洲色图 男人天堂 中文字幕| 日日夜夜操网爽| 午夜免费成人在线视频| 69av精品久久久久久| 国产久久久一区二区三区| 黑人巨大精品欧美一区二区mp4| 精品乱码久久久久久99久播| 欧美成狂野欧美在线观看| 国产激情欧美一区二区| 丁香欧美五月| 久久九九热精品免费| 国产伦精品一区二区三区四那| 99国产极品粉嫩在线观看| 亚洲精品中文字幕一二三四区| 亚洲精品乱码久久久v下载方式 | 波多野结衣高清作品| 日韩有码中文字幕| 国内精品一区二区在线观看| 宅男免费午夜| 在线看三级毛片| 亚洲欧美日韩东京热| 久久久成人免费电影| 午夜精品在线福利| 亚洲欧美日韩东京热| 在线永久观看黄色视频| 中文字幕精品亚洲无线码一区| 久久精品亚洲精品国产色婷小说| 男女做爰动态图高潮gif福利片| 亚洲五月婷婷丁香| 免费在线观看视频国产中文字幕亚洲| 在线免费观看的www视频| 在线观看免费午夜福利视频| 手机成人av网站| 久久中文看片网| 国产美女午夜福利| 精品福利观看| 久久久国产精品麻豆| 久久这里只有精品19| 成人一区二区视频在线观看| www.www免费av| 亚洲国产精品成人综合色| 99riav亚洲国产免费| 99久久精品国产亚洲精品| 国产av麻豆久久久久久久| 亚洲欧美精品综合一区二区三区| 亚洲专区中文字幕在线| 婷婷六月久久综合丁香| 极品教师在线免费播放| 又大又爽又粗| 国产单亲对白刺激| 小蜜桃在线观看免费完整版高清| 99re在线观看精品视频| 一进一出抽搐动态| 日本成人三级电影网站| 俄罗斯特黄特色一大片| 久久久精品大字幕| 午夜福利欧美成人| 在线免费观看不下载黄p国产 | 白带黄色成豆腐渣| 色综合站精品国产| 成人18禁在线播放| 亚洲美女黄片视频| 一级作爱视频免费观看| 亚洲专区国产一区二区| a级毛片a级免费在线| 99热这里只有精品一区 | www.www免费av| 亚洲av中文字字幕乱码综合| 国产欧美日韩一区二区三| 国产美女午夜福利| 日韩中文字幕欧美一区二区| 亚洲精品中文字幕一二三四区| 亚洲av成人精品一区久久| av中文乱码字幕在线| 嫩草影院入口| 欧美乱色亚洲激情| 99在线人妻在线中文字幕| 成人鲁丝片一二三区免费| 国产精品1区2区在线观看.| 天堂√8在线中文| x7x7x7水蜜桃| 国产精品亚洲一级av第二区| 极品教师在线免费播放| 免费观看精品视频网站| 他把我摸到了高潮在线观看| 久久久久国产一级毛片高清牌| 精品国产超薄肉色丝袜足j| 亚洲性夜色夜夜综合| 在线播放国产精品三级| 在线视频色国产色| 亚洲成av人片免费观看| 亚洲精品一卡2卡三卡4卡5卡| 琪琪午夜伦伦电影理论片6080| 99热这里只有精品一区 | 国产亚洲精品久久久com| 国产亚洲精品一区二区www| 午夜免费观看网址| 中出人妻视频一区二区| 亚洲专区中文字幕在线| 免费观看的影片在线观看| 国产熟女xx| 久久中文看片网| 国产97色在线日韩免费| 中文亚洲av片在线观看爽| 国产精品女同一区二区软件 | 99国产综合亚洲精品| 精品久久久久久久久久久久久| 亚洲av成人不卡在线观看播放网| 国产亚洲av嫩草精品影院| 国产伦一二天堂av在线观看| 国产一区二区激情短视频| 欧美另类亚洲清纯唯美| 欧美+亚洲+日韩+国产| 久久亚洲真实| 日本熟妇午夜| 一个人免费在线观看的高清视频| 国产成人av激情在线播放| 一级a爱片免费观看的视频| 后天国语完整版免费观看| 久久久久国产精品人妻aⅴ院| 亚洲熟妇熟女久久| 国产精品久久电影中文字幕| 村上凉子中文字幕在线| 一本一本综合久久| 午夜两性在线视频| 91在线精品国自产拍蜜月 | 好男人电影高清在线观看| 久久亚洲真实| 韩国av一区二区三区四区| 国产成年人精品一区二区| 久久草成人影院| 两个人的视频大全免费| 久久久久国内视频| 老熟妇乱子伦视频在线观看| 淫秽高清视频在线观看| 男女那种视频在线观看| 一进一出好大好爽视频| 美女扒开内裤让男人捅视频| 国产精品影院久久| 国产亚洲av嫩草精品影院| 婷婷亚洲欧美| 免费观看人在逋| 99精品在免费线老司机午夜| 99精品欧美一区二区三区四区| 亚洲精品456在线播放app | 一卡2卡三卡四卡精品乱码亚洲| 国产爱豆传媒在线观看| 国产欧美日韩一区二区精品| 亚洲成人免费电影在线观看| 欧美xxxx黑人xx丫x性爽| 在线观看舔阴道视频| www.999成人在线观看| 一卡2卡三卡四卡精品乱码亚洲| 欧美+亚洲+日韩+国产| 日本一二三区视频观看| av福利片在线观看| 国产成人精品久久二区二区91| 99国产精品99久久久久| www.999成人在线观看| 日本在线视频免费播放| 日本 av在线| 欧美3d第一页| av中文乱码字幕在线| 欧美色视频一区免费| 国产黄片美女视频| 色播亚洲综合网| 国产伦在线观看视频一区| АⅤ资源中文在线天堂| 欧美一级a爱片免费观看看| 国内揄拍国产精品人妻在线| 久久草成人影院| 亚洲av成人不卡在线观看播放网| 一进一出抽搐动态| 午夜福利在线观看免费完整高清在 | 久久久国产欧美日韩av| 免费在线观看成人毛片| 老熟妇仑乱视频hdxx| 亚洲五月婷婷丁香| 夜夜看夜夜爽夜夜摸| 国产高清有码在线观看视频| 欧美绝顶高潮抽搐喷水| 黄频高清免费视频| 午夜日韩欧美国产| 午夜福利免费观看在线| 99国产精品99久久久久| 国产亚洲欧美在线一区二区| 99久久精品一区二区三区| 国产私拍福利视频在线观看| 天堂影院成人在线观看| 嫩草影视91久久| 99国产综合亚洲精品| 在线播放国产精品三级| 18禁观看日本| 90打野战视频偷拍视频| 一卡2卡三卡四卡精品乱码亚洲| 亚洲精品在线美女| 成年女人永久免费观看视频| 国产亚洲欧美98| 一级毛片高清免费大全| 日本与韩国留学比较| 69av精品久久久久久| 色尼玛亚洲综合影院| 一区二区三区激情视频| 国产三级黄色录像| 美女 人体艺术 gogo| 天天一区二区日本电影三级| 国产91精品成人一区二区三区| 99精品久久久久人妻精品| 免费观看精品视频网站| 亚洲成人精品中文字幕电影| 亚洲国产欧美一区二区综合| 两个人看的免费小视频| av在线蜜桃| 91在线精品国自产拍蜜月 | 久久热在线av| 男女床上黄色一级片免费看| 久久久精品大字幕| 国产av不卡久久| 最近最新中文字幕大全电影3| 久久精品aⅴ一区二区三区四区| 欧美成人免费av一区二区三区| 日韩欧美精品v在线| 日本撒尿小便嘘嘘汇集6| 久久精品人妻少妇| x7x7x7水蜜桃| 村上凉子中文字幕在线| 老司机午夜福利在线观看视频| av天堂在线播放| 热99re8久久精品国产| 国产精品综合久久久久久久免费| 别揉我奶头~嗯~啊~动态视频| 亚洲 欧美 日韩 在线 免费| 国产精华一区二区三区| 熟女电影av网| 一本一本综合久久| 国产精品综合久久久久久久免费| 久9热在线精品视频| 亚洲国产高清在线一区二区三| 最近最新免费中文字幕在线| 国语自产精品视频在线第100页| 亚洲av成人av| 亚洲第一电影网av| 中文字幕人成人乱码亚洲影| 国产精品美女特级片免费视频播放器 | 十八禁网站免费在线| 99热这里只有是精品50| 亚洲熟妇熟女久久| 成人精品一区二区免费| 国产精品自产拍在线观看55亚洲| 国产成+人综合+亚洲专区| 亚洲av电影在线进入| 在线国产一区二区在线| 香蕉丝袜av| 亚洲专区字幕在线| 亚洲精品中文字幕一二三四区| 不卡av一区二区三区| 日韩欧美免费精品| 国产毛片a区久久久久| 亚洲欧美一区二区三区黑人| 免费无遮挡裸体视频| cao死你这个sao货| 在线观看免费视频日本深夜| 香蕉国产在线看| 999精品在线视频| 好男人在线观看高清免费视频| av在线蜜桃| 99精品久久久久人妻精品| 午夜福利高清视频| 欧美色欧美亚洲另类二区| 女人高潮潮喷娇喘18禁视频| 国产v大片淫在线免费观看| 久久国产乱子伦精品免费另类| 性欧美人与动物交配| 18禁黄网站禁片免费观看直播| 少妇的丰满在线观看| av国产免费在线观看| 色av中文字幕| 国产一区二区在线观看日韩 | 日韩大尺度精品在线看网址| 亚洲国产欧美人成| 亚洲无线观看免费| 最近最新中文字幕大全免费视频| 国产精品1区2区在线观看.| 欧美xxxx黑人xx丫x性爽| 国产亚洲精品久久久久久毛片| 桃红色精品国产亚洲av| 日韩欧美 国产精品| 在线观看免费午夜福利视频| 女人高潮潮喷娇喘18禁视频| 成人三级做爰电影| 国产私拍福利视频在线观看| 欧美最黄视频在线播放免费| 欧美日韩中文字幕国产精品一区二区三区| 欧美乱码精品一区二区三区| 99国产精品一区二区蜜桃av| av福利片在线观看| 1024手机看黄色片| 久久欧美精品欧美久久欧美| 中出人妻视频一区二区| 色综合亚洲欧美另类图片| 制服人妻中文乱码| 变态另类丝袜制服| 香蕉久久夜色| 母亲3免费完整高清在线观看| 免费av不卡在线播放| 美女cb高潮喷水在线观看 | 国产69精品久久久久777片 | 日日夜夜操网爽| 国产精品爽爽va在线观看网站| 国产成+人综合+亚洲专区| 久久久久久久精品吃奶| 在线a可以看的网站| 久久性视频一级片| 日本免费一区二区三区高清不卡| 成年免费大片在线观看| 少妇丰满av| 级片在线观看| 国产精品九九99| 国产亚洲精品综合一区在线观看| 性色av乱码一区二区三区2| 国内精品一区二区在线观看| 男女之事视频高清在线观看| 韩国av一区二区三区四区| 少妇丰满av| 国产一区二区激情短视频| 淫妇啪啪啪对白视频| 国产爱豆传媒在线观看| 这个男人来自地球电影免费观看| 在线十欧美十亚洲十日本专区| 欧美日韩乱码在线| 国产精品乱码一区二三区的特点| 午夜亚洲福利在线播放| 国产亚洲精品av在线| 成在线人永久免费视频| 婷婷精品国产亚洲av| 少妇丰满av| 亚洲欧美精品综合久久99| 亚洲中文字幕一区二区三区有码在线看 | 夜夜爽天天搞| 天天一区二区日本电影三级| 免费看美女性在线毛片视频| 91九色精品人成在线观看| 久久久国产精品麻豆| 亚洲欧美日韩高清在线视频| 丰满的人妻完整版| 国产精品永久免费网站| 男女下面进入的视频免费午夜| 成年女人毛片免费观看观看9| 日韩精品青青久久久久久| 午夜精品在线福利| 黑人巨大精品欧美一区二区mp4| 亚洲av熟女| 欧美精品啪啪一区二区三区| 欧美成人性av电影在线观看| 国产激情偷乱视频一区二区| 一二三四社区在线视频社区8| 黑人欧美特级aaaaaa片| 男人舔女人下体高潮全视频| 给我免费播放毛片高清在线观看| 黄色成人免费大全| 嫩草影院入口| 一二三四在线观看免费中文在| 免费看十八禁软件| 久久香蕉精品热| 精品免费久久久久久久清纯| 国产欧美日韩精品一区二区| 国产一区二区激情短视频| 免费一级毛片在线播放高清视频| 亚洲av成人av| 精品国内亚洲2022精品成人| 视频区欧美日本亚洲| 久久久久久久久中文| 亚洲av电影在线进入| 免费在线观看日本一区| 床上黄色一级片| 观看免费一级毛片| 老汉色av国产亚洲站长工具| 国产成人av激情在线播放| 亚洲av免费在线观看| 日本一本二区三区精品| 亚洲18禁久久av| 夜夜躁狠狠躁天天躁| 亚洲精品色激情综合| 国产精品一区二区免费欧美| 88av欧美| 日韩大尺度精品在线看网址| 亚洲精品粉嫩美女一区| 日日夜夜操网爽| 国产99白浆流出| 性色avwww在线观看| 99视频精品全部免费 在线 | 亚洲午夜精品一区,二区,三区| 91在线精品国自产拍蜜月 | 国产精品98久久久久久宅男小说| 亚洲五月天丁香| 在线观看66精品国产| www.www免费av| 黄色日韩在线| 久久精品91无色码中文字幕| 黄色成人免费大全| 亚洲五月天丁香| 久久香蕉精品热| 国产亚洲av嫩草精品影院| 我的老师免费观看完整版| 一本一本综合久久| 国产乱人视频| 国产日本99.免费观看| 午夜免费成人在线视频| e午夜精品久久久久久久| 国产精品影院久久| 桃色一区二区三区在线观看| 最好的美女福利视频网| 成年人黄色毛片网站| 亚洲欧美日韩东京热| 国产伦人伦偷精品视频| 久久久久免费精品人妻一区二区| 香蕉av资源在线| 亚洲精品乱码久久久v下载方式 | or卡值多少钱| 熟妇人妻久久中文字幕3abv| 欧美激情在线99| av天堂中文字幕网| 又大又爽又粗| 免费在线观看影片大全网站| bbb黄色大片| 免费看a级黄色片| 久久精品国产99精品国产亚洲性色| 欧美日本亚洲视频在线播放| 久久久国产成人精品二区| 亚洲自拍偷在线| 欧美日韩亚洲国产一区二区在线观看| avwww免费| 日韩欧美国产在线观看| 亚洲18禁久久av| 波多野结衣巨乳人妻| 精品久久久久久久毛片微露脸| 国产伦在线观看视频一区| 91久久精品国产一区二区成人 | 99久久综合精品五月天人人| 五月伊人婷婷丁香| 女警被强在线播放| 无遮挡黄片免费观看| 特大巨黑吊av在线直播| 国内揄拍国产精品人妻在线| 午夜福利成人在线免费观看| 一区福利在线观看| 中文在线观看免费www的网站| 老汉色av国产亚洲站长工具| 亚洲午夜理论影院| 性色av乱码一区二区三区2| 亚洲精品一卡2卡三卡4卡5卡| 欧美成狂野欧美在线观看| 欧美+亚洲+日韩+国产| 最新在线观看一区二区三区| 在线观看一区二区三区| svipshipincom国产片| 久久久久久久久久黄片| 中文字幕高清在线视频| 我要搜黄色片| 激情在线观看视频在线高清| 男女视频在线观看网站免费| 久久香蕉精品热| 99精品久久久久人妻精品| 女人高潮潮喷娇喘18禁视频| 一卡2卡三卡四卡精品乱码亚洲| 午夜免费观看网址| 窝窝影院91人妻| 偷拍熟女少妇极品色| 老熟妇乱子伦视频在线观看| 黄片大片在线免费观看| 日韩免费av在线播放| 国产精品亚洲av一区麻豆| 午夜a级毛片| 亚洲人成网站高清观看| 国产精品爽爽va在线观看网站| 日本熟妇午夜| 嫁个100分男人电影在线观看| 久久久久久九九精品二区国产| 桃色一区二区三区在线观看| 最新中文字幕久久久久 | 一区二区三区高清视频在线| 欧美色欧美亚洲另类二区| 少妇丰满av| 男女那种视频在线观看| 国产一区二区激情短视频| 国产亚洲精品一区二区www| 日韩av在线大香蕉| 久久久久国产精品人妻aⅴ院| 久久亚洲真实| 国产极品精品免费视频能看的| 在线免费观看不下载黄p国产 | 欧美日韩乱码在线| 日本成人三级电影网站| 熟女人妻精品中文字幕| 搡老岳熟女国产| 级片在线观看| 久久久久久大精品| 亚洲av五月六月丁香网| 好男人在线观看高清免费视频| av中文乱码字幕在线| 色尼玛亚洲综合影院| 久久香蕉国产精品| 又黄又爽又免费观看的视频|