• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Experimental study on the effects of big particles physical characteristics on the hydraulic transport inside a horizontal pipe

    2016-05-29 03:33:31SalahZouaouiHassaneDjebouriKamalMohammediSofianeKhelladiAomarAitAider

    Salah Zouaoui*,Hassane DjebouriKamal Mohammedi,So fiane Khelladi,Aomar Ait Aider

    1 LMSE Laboratory,Mouloud Mammeri University of Tizi-Ouzou,P.O.Box 17 RP15000,Algeria

    2 LEMILaboratory MESO,M'Hamed Bougara University of Boumerdes,35000,Algeria

    3 DynFluid Laboratory,Arts et Metiers Paris Tech,151 boulevard de l'H?pital,75013 Paris,France

    1.Introduction

    During these last decades,the demand of mineral materials from emerging countries strongly increased,causing the exploitation of new deposits.For this reason,several firms have recently launched a subsea mining project study,and the main task was to estimate the pressure drop of solid–liquid mixture in the flow line for various flow regimes.In this case,the circuit would have various and complex shapes,including vertical,horizontal ones,potentially bends,and S-shapes.

    In general,solid transport is divided into three major flow patterns[1]:

    (1)Pseudo-homogeneous or homogeneous flow and heterogeneous flow.

    (2)Heterogeneous and sliding bed flow(or moving bed flow).

    (3)Saltation and stationary bed flow.

    In a pseudo-homogeneous flow case,the particles are distributed almost uniformly over the pipe cross-section and moved at a very high velocity.When the flow velocity of the particles decreases,the heterogeneous flow pattern occurs if there is a concentration gradient in the direction perpendicular to the pipe axis.Most of particles are carried out in the lower part of the pipe cross-section.

    Transporting solid particles in a fluid flow is very complex.Many researchers have tried to create a mathematical modelin order to predict the head losses in slurry transport.Such as the models of Zandi[2],Turian and Yuan[3],Doron et al.[4],Doron and Barnea[5],Wilson and Pugh[6],Matousek[7],Bratland[8],and references therein.Lahiri and Ghanta[9]proposed a hybrid supportvector regression-genetic algorithm approach to predicting the pressure drop of solid–liquid slurry flow.Recently,Edelin etal.[10]reported an experimental investigation of the transportof fluids composed ofwater and smallsize polypropylene particles,in order to study the transport of floating particles,also to determine the conditions that minimize the energy consumed by installations designed to this type of flow.These models enabled a fast and a global approach of the transported solid quantity in fluid flows,butthey are generally approximate[11].A predictive model for transporting large particles in vertical pipes was proposed and rati fied on a set ofexperimental data,based on the work ofNewitt etal.[12],Richardson and Zaki[13],Xia etal.[14],and Yoon etal.[15].In horizontal pipes,the prediction of the flow patterns and pressure gradient known as a complex problem is treated via experimental correl ations.Some of them are restricted to one ortwo flow patterns[16–18].However,differentauthors[12,19–21]claim to apply these correlations for all flow patterns of liquid–solid systems.Miedema[22,23]proposed a new head loss model for slurry transport in the heterogeneous regime.This model shows resemblance with the Durand and Condolios[24]model.However the in fluence of the pipe diameter is much less matching the experimental results in larger pipes.

    Many parameters are needed to describe the solid transport,such as water flow rate and solid particles,particle density and diameter,and the pressure drop along the pipe.This lastis considered to be the mainly important parameter in solid–liquid flow.Most investigations carried out concerns only the very small ratio of particle to pipe diameter and low solid concentration.In this present study,an experimental investigation is conducted in a small scale to identify the effects of physical characteristics of big particles on the hydraulic transport in horizontal pipe.Moreover,in fluence of concentration,size and density of particles on the pressure drop,and mixture velocity above which the bed starts to move(critical velocity)are highlighted.Also,this work allows one to understand the blocking problem of the pipelines transporting water-solid mixture.

    2.Experimental Device

    2.1.Test loop

    We performed a series oftests with the experimental loop shown in Fig.1,and the different materials used are described below.We focused on the liquid–solid flow in a horizontalrigid pipe of length L=2×2 m and diameter D=60 mm.This tube carries a 180°horizontal curve with 30 cm of diameter curvature.The test loop composed with a pump to supply the circuitwith clear water and an injection system for solid particles.The particles fall down by gravity through a flexible tube connecting the bottom of particle tank to the main duct via a buffer zone.The last one,situated between the two valves is divided into three compartments of known capacity,allows us to determine the mean solid flow rate.The flow rate of injected particles into the pipe is adjusted by the lower valve(Fig.1).Globally the particles flow is relatively stable and uniform,since we are dealing with a mean particles flow rate through measurement of time elapsed between opening and closure of the lowervalve.The mixture arrives finally in a systemto separate the solid from the liquid.This system consists of a firsttank with a filter to recover the solid particles and allows only water to pass to the second tank.In order to realize a closed circuit for water,the second tank is connected to a pump which delivers the water into the circuit(Fig.1).

    2.2.Particles and pipe

    The circuit is constructed with Plexiglas tube to allow the visualization of the flow.The calibrated beads of alumina(Umicore,Alumina Degussit 92%,with a relative size dispersion of 10%),and glass(SiLi,SiLibeads type M,with a relative dispersion of size of 4%)are used[11].The particles are relatively large,with size up to 25%of the pipe diameter.Their physical and geometrical characteristics are summarized in Fig.2.

    2.3.Control parameters

    To masseur the flow parameters,we need some necessary measuring instruments.The water flow rate is measured using an electromagnetic flow meter(KROHNE Opti flux 2000),and adjusted using a pump's variator.The flow rate of solids is controlled by a device designed and realized in the laboratory.Optical measurements are also performed with a high-speed camera(Optronis CamRecord600).Typically 1000 images are recorded with a resolution of 1280×1024 pixels at a frame rate of 500 Hz.The flow is illuminated backwards with a LED plate from Phlox,and the pressure drop is measured using two differential pressure sensors(VEGADIF65,VEGA,Germany).

    The aim of the present work is to measure the pressure drops in different parts of the test loop as a function of solid concentration and mixture velocity.The parameters that are adjusted with experimental means are the volumetric flow rates of liquid(Ql)and of solids(Qs).To present the results we define the mixture velocity(Um)and the delivered concentration(C)as follows:

    where S is the cross-section area of the pipe,and the mixture velocity(Um)presents a volumetric average of the velocities of each phase.

    The pressure drops(G)are expressed in terms of hydraulic gradients(meters of water column per meter of pipe):

    where ρeis the water density equal1000 kg·m-3and L the distance between the pressure taps equalto 1.4 m.

    3.Results and Discussion

    The thick black line in all figures stands for the measured hydraulic gradient with pure water flowing(C=0%).The Reynolds number is 105and the flow is fully turbulent and the estimated rugosity is 20μm.We observe inside the pipe that the pressure drop and the mixture speed start to increase with quadratic rate,and the curve has the form:

    Fig.1.Sketch oftest loop.

    Fig.2.Physical characteristics of the calibrated beads.

    where the friction coefficientλis calculated by the Cole brook formula.

    All curves in this study present the evolution of the hydraulic gradient as a function of the mixture speed for different particles types(alumina and glass)with different size and concentration.We see that for all the speed flow,the pressure drop is much higher than in the case of clear water.Moreover,the pressure drop curve does not vary monotonically with the mixture velocity.Following the definition of Doron etal.[4],the mixture velocity corresponding to the minimum hydraulic gradient is called the critical velocity(Uc).

    Some pictures taken for the glass beads of diameter 10 mm at C=10%,are presented in Fig.3 for different velocities.It shows that the flow regimes vary with the mixture speed:at low mixture speed we see the presence of a compactstationary bed at the bottom of the pipe(Fig.3a);around the critical velocity(Uc)we observe a compact moving bed(Fig.3b);at high speed,as we can see also a pseudo homogeneous dispersed flow(Fig.3c).

    3.1.Effects of concentration of alumina and glass particles

    This subsection is devoted to the comparison of the pressure drop curves with various concentrations and identical physical characteristics of the beads(density,size).

    The effects of the concentration are shown in the Figs.4 to 7.

    From Figs.4 to 7,we note that the increase in the delivered concentration leads to an increase in the pressure drop.Furthermore,the change in the concentration seems to increase only slightly the critical velocity(Fig.4).Please note that with 5%concentration in most figures the pressure curves crosses the pure watercurve(C=0%)in Figs.5 to 7,due to the measurements errors.

    Fig.4.Hydraulic gradient versus speed mixture.Alumina's concentration effect of6 mm size.

    The curvature of the pressure drop evolution in solid–liquid flow is due to the various flow regimes in horizontal pipe.At high mixture velocities(Um>Uc),where the particles are suspended,the pressure drop is usually somewhat higher than that of the carrier liquid(water).We are in pseudo-homogeneous dispersed flow with a vertical concentration gradient(Fig.3c).Reduction of the mixture velocity(Um≈Uc),the concentration of particles in the bottom of the pipe reaches the compactness limit,leads to a moving bed formation(Fig.3b)and to pressure drops much higher than those of the pure water.For even lower speeds(Um<Uc),a stationary bed is formed below a moving bed(Fig.3a).So there are two or three layers.

    For the case of alumina beads of6 mm,density ρa(bǔ)l=3650 kg·m-3,and delivered concentration C=5%,the magnitude of the minimal pressure drop at the criticalvelocity Uc?2.3 m·s-1is Gc?0.11 m·m-1(Fig.4).

    Fig.3.Pictures illustrating the different flow regimes with increasing mixture speed.(Glass beads 10 mm,C=10%).a)Compact stationary bed,b)compact moving bed,c)pseudo-homogeneous dispersed flow.

    Fig.5.Hydraulic gradient versus speed mixture.Alumina's concentration effect of15 mm size.

    Fig.6.Hydraulic gradient versus speed mixture.Glass's concentration effect of5 mm size.

    Fig.7.Hydraulic gradient versus speed mixture.Glass's concentration effect of10 mm size.

    3.2.Density effects

    Figs.8 and 9 show experimental measurements of the pressure drop for the two types of solids(alumina and glass)with almostsimilar size(dp?5 mm)and two different densities,respectivel yρa(bǔ)l=3650 kg·m-3and ρG=2500 kg·m-3for two differentconcentrations,respectively C=5%and C=10%.

    Fig.8.Hydraulic gradient versus speed mixture.Density effect for C=5%.

    Fig.9.Hydraulic gradient versus speed mixture.Density effect for C=10%.

    We note that the increase in density leads to a considerable increase in the pressure loss and the criticalspeed.The shape of these curves is very similar to the work of Newitt etal.[12],Doron etal.[4],and Ravelet et al.[11].

    3.3.Size effects

    To illustrate the effect of the size on the solid particles on the pressure drop we take the same types of particles(density)with the same concentration.Figs.10 and 11 show the alumina size effect on the hydraulic gradient with,respectively,5%and 10%of concentration.

    Fig.10.Hydraulic gradient versus speed mixture.Alumina's size effect with C=5%.

    Fig.11.Hydraulic gradient versus speed mixture.Alumina's size effect with C=10%.

    Figs.12 and 13 show the glass bead size effect on the hydraulic gradient with,respectively,5%and 10%of concentration.

    We perform the comparison of the two sizes ofbeads with same specific mass at the same concentration,and we observe that the effects of the alumina size on the pressure drop are to decrease by large particles.However,the critical velocity does not seem to be affected by the particle size.Such behavior is found in the results of Raveletetal.[11].We notice that this outcome has not been reported in previous works,mainly dealing with particles below 4 mm.On the other hand,we can't con firm this result for the glass particles(Figs.12 and 13).

    4.Conclusions

    In this work,the water/solid particle flow inside a pipe was visualized and measured pressure drop as a function of the solid–liquid mixture speed studied.Calibrated beads of alumina and glass with different sizes and densities were used.The particles are relatively large with sizes between 8%and 25%of the pipe diameter.The main results are summarized below:

    Fig.12.Hydraulic gradient versus speed mixture.Glass's size effect with C=5%.

    Fig.13.Hydraulic gradient versus speed mixture.Glass's size effect with C=10%.

    ·The pressure drop is higher with solid particles.

    ·For Um<Uc,a flow regime with a stationary bed is observed and above this bed is flowing a ball-compact layer.As a result,the pressure drop increases.

    ·When Um>Uc,the particles are keptin suspension and the pressure drop curves follow the trend of clear water curve.We observe a pseudo-homogeneous dispersed flow.

    ·Around the critical velocity Uc,a separate flow regime with a compact moving bed is noted.

    ·When the concentration increases,the pressure drop increases and the criticalspeed increases slightly.

    ·The pressure drop and the critical velocity increase when the density increases.The density has a strong effect on the transition point between the stationary bed flow and the dispersed flow.

    ·The hydraulic gradient decreases with an increase in the alumina particle size in a horizontal pipe for a given specific mass and concentration.However,for glass particles,the result is not confirmed yet.

    The obtained data are so difficult to model because of many factors affecting the pressure drop and their relative importance varies drastically with the velocity.The efforts are to be devoted to establishing reliable pressure drop correlations.

    Nomenclature

    Acknowledgments

    This research was supported by the DynFluid Laboratory at Arts et Métiers Paris Tech.We would like to express our gratitude to Pr.Farid BAKIR for his assistance in the design and development of the experiment.

    [1]P.Doron,D.Barnea,Flow pattern maps for solid–liquid flow in pipes,Int.J.Multiphase Flow 22(1996)273–283.

    [2]I.Zandi,Hydraulic transportofbulky materials,in:I.Zandi(Ed.),Advances in solid–liquid flow in pipes and its applications,Pergamon Press,Oxford 1971,pp.1–34.

    [3]R.M.Turian,T.F.Yuan,Flow of slurries in pipelines,AIChE J.23(1977)232–243.

    [4]P.Doron,D.Granica,D.Barnea,Slurry flow in horizontal pipes,experimental and modeling,Int.J.Multiphase Flow 13(4)(1987)535–547.

    [5]P.Doron,D.Barnea,A three layer model for solid liquid flow in horizontalpipes,Int.J.Multiphase Flow 19(6)(1993)1029–1043.

    [6]K.C.Wilson,F.J.Pugh,Dispersive-force modeling ofturbulent suspension in heterogeneous slurry flow,Can.J.Chem.Eng.66(1988)721–727.

    [7]V.Matousek,Flow mechanism of sand/water mixtures in pipelines(PhD Thesis)Delft University of Technology,Delft,Netherlands,1997.

    [8]O.Bratland,Pipe Flow 2,Multiphase Flow Assurance,Electronic book,www.drbratland.com/PipeFlow2/index.html2010.

    [9]S.K.Lahiri,K.C.Ghanta,Prediction ofpressure drop of slurry flow in pipeline by hybrid support vector regression and genetic algorithm model,Chin.J.Chem.Eng.16(6)(2008)841–848.

    [10]D.Edelin,P.C.Czujko,C.Castelain,C.Josset,F.Fayolle,Experimentaldetermination of the energy optimum for the transport of floating particles in pipes,Exp.Thermal Fluid Sci.68(2015)634–643.

    [11]F.Ravelet,F.Bakir,S.Khelladi,R.Rey,Experimentalstudy of hydraulic transport of large particles in horizontalpipes,Exp.ThermalFluid Sci.45(2013)87–197.

    [12]D.M.Newitt,M.C.Richardson,M.Abbott,R.B.Turtle,Hydraulic conveying of solids in horizontalpipes,Trans.Inst.Chem.Eng.33(1955)93–113.

    [13]J.F.Richardson,W.N.Zaki,Sedimentation and fluidisation,Trans.Inst.Chem.Eng.32(1957)35–53.

    [14]J.X.Xia,J.R.Ni,C.Mendoza,Hydraulic lifting of manganese nodules through a riser,J.Offshore Mech.Arct.Eng.126(1)(2004)72–77.

    [15]C.H.Yoon,J.S.Kang,Y.C.Park,Y.J.Kim,J.M.Park,S.K.Kwon,Solid-liquid flow experiment with real and arti ficial manganese nodules in flexible hoses,Proceedings of the Eighteenth International Off shore and Polar Engineering Conference,Vancouver,Canada 2008,pp.68–72.

    [16]H.A.Babcock,The sliding bed flow regime,Hydrotransport I.Proceedings of the First International Conference on the Hydraulics of Transport of Solids in Pipes,Coventry,England,1970.

    [17]M.Toda,H.Konno,S.Saito,Simulation of limit-deposit velocity in horizontalliquid–solid flow,Proceedings of the Seventh International Conference on the Hydraulic Transport of Solids in Pipes,Sendai,Japan,Paper J2 1980,pp.347–358.

    [18]G.A.Wani,Criticalvelocity in multisize particle transport through pipes,Chapter 4 in encyclopedia of fluid mechanics,vol.5,Slurry Flow Technology,Gulf Publishing Company,Book Division,1986.

    [19]J.W.Hayden,T.E.Stelson,Hydraulic conveyance of solids in pipes,in:I.Zandi(Ed.),Advances in solid–liquid flow in pipes and its applications,Pergamon Press,Oxford 1971,pp.149–163.

    [20]R.M.Turian,T.F.Yuan,Flow of slurries in pipelines,AICHE J.23(1977)232–243.

    [21]P.E.Baha Abulnaga,Slurry systems,handbook,McGraw-Hill,2002 4.1–4.66.

    [22]S.A.Miedema,An overview of theories describing head losses in slurry transport:A tribute to some of the early researchers,ASME 32nd International Conference on Ocean,Offshore and Arctic Engineering,ASME,2013(V04AT04A038).

    [23]S.A.Miedema,A head loss model for slurry transport in the heterogeneous regime,Ocean Eng.106(2015)360–370.

    [24]R.Durand,E.Condolios,Etude expérimentale du refoulement des matériaux en conduites en particulier des produits de dragage et des schlamms,Deuxièmes Journées de l'Hydraulique(Grenoble)1952,pp.27–55.

    狂野欧美激情性xxxx在线观看| 国产伦理片在线播放av一区| 日韩欧美 国产精品| 亚洲综合色惰| 91久久精品国产一区二区成人| 日本黄色片子视频| 人人妻人人看人人澡| 亚洲av日韩在线播放| 亚洲欧洲国产日韩| 王馨瑶露胸无遮挡在线观看| 在线亚洲精品国产二区图片欧美 | 超碰av人人做人人爽久久| 国产老妇伦熟女老妇高清| 国产 一区 欧美 日韩| 亚洲国产日韩一区二区| 日本色播在线视频| 午夜免费鲁丝| 超碰97精品在线观看| 少妇的逼水好多| 日韩欧美 国产精品| xxx大片免费视频| 亚洲国产最新在线播放| 久久精品国产鲁丝片午夜精品| 麻豆成人av视频| 日韩av在线免费看完整版不卡| 亚洲av福利一区| 国语对白做爰xxxⅹ性视频网站| 中文字幕免费在线视频6| 内射极品少妇av片p| 蜜臀久久99精品久久宅男| 亚洲内射少妇av| 国产精品嫩草影院av在线观看| 最近最新中文字幕大全电影3| av天堂中文字幕网| 亚洲精品乱久久久久久| 国产片特级美女逼逼视频| tube8黄色片| 插逼视频在线观看| 又粗又硬又长又爽又黄的视频| 久久久久九九精品影院| 日韩视频在线欧美| 国内少妇人妻偷人精品xxx网站| 久久久国产一区二区| 国产精品熟女久久久久浪| 真实男女啪啪啪动态图| 男的添女的下面高潮视频| 午夜激情久久久久久久| 少妇人妻精品综合一区二区| 人妻一区二区av| 亚洲精品久久久久久婷婷小说| 久久久久久国产a免费观看| 国产精品嫩草影院av在线观看| 精品久久久噜噜| 亚洲国产高清在线一区二区三| 美女国产视频在线观看| 亚洲精品日本国产第一区| 欧美一级a爱片免费观看看| 亚洲电影在线观看av| 亚洲av男天堂| 性插视频无遮挡在线免费观看| 香蕉精品网在线| 久久精品国产亚洲av涩爱| 久久热精品热| 国产免费福利视频在线观看| 成人鲁丝片一二三区免费| 晚上一个人看的免费电影| 国产精品国产三级国产专区5o| 国产精品国产三级国产专区5o| 国产色爽女视频免费观看| 男女无遮挡免费网站观看| 久久这里有精品视频免费| 精品少妇黑人巨大在线播放| 人人妻人人澡人人爽人人夜夜| 久久国产乱子免费精品| 日韩精品有码人妻一区| 亚洲天堂av无毛| 国产精品国产三级国产av玫瑰| 国产亚洲午夜精品一区二区久久 | 国产爽快片一区二区三区| 极品少妇高潮喷水抽搐| 精品亚洲乱码少妇综合久久| a级一级毛片免费在线观看| 人妻一区二区av| 国产一区二区三区综合在线观看 | 日本一本二区三区精品| 91狼人影院| 欧美日韩一区二区视频在线观看视频在线 | 日韩一区二区视频免费看| 色5月婷婷丁香| 亚洲在久久综合| 成年女人看的毛片在线观看| 男女啪啪激烈高潮av片| 国产精品国产三级专区第一集| 免费av毛片视频| 偷拍熟女少妇极品色| 深爱激情五月婷婷| 美女内射精品一级片tv| 在线 av 中文字幕| 日本黄色片子视频| 国产一区有黄有色的免费视频| 在线播放无遮挡| 97超碰精品成人国产| 国产精品一区二区三区四区免费观看| 人体艺术视频欧美日本| 久久99精品国语久久久| 亚洲av成人精品一二三区| 国产综合精华液| 国产精品嫩草影院av在线观看| 最近的中文字幕免费完整| 极品教师在线视频| 国产伦精品一区二区三区四那| 99re6热这里在线精品视频| 五月开心婷婷网| 中文欧美无线码| 亚洲av电影在线观看一区二区三区 | 51国产日韩欧美| 极品教师在线视频| 国产一级毛片在线| 欧美极品一区二区三区四区| 秋霞在线观看毛片| 亚洲国产色片| 国产精品熟女久久久久浪| 18禁在线无遮挡免费观看视频| 亚洲精品久久午夜乱码| 国产男人的电影天堂91| 婷婷色麻豆天堂久久| 日本与韩国留学比较| 免费观看av网站的网址| 中文资源天堂在线| 国产成人精品一,二区| 亚洲欧美日韩另类电影网站 | 色哟哟·www| 97超视频在线观看视频| 国产精品国产三级专区第一集| 99热国产这里只有精品6| 国产黄色免费在线视频| 午夜福利在线观看免费完整高清在| 91狼人影院| 国产色婷婷99| 国产在线一区二区三区精| 波多野结衣巨乳人妻| 精品一区二区三卡| 久久久a久久爽久久v久久| 亚洲欧美日韩另类电影网站 | 777米奇影视久久| 大码成人一级视频| 午夜福利视频精品| 国产亚洲最大av| 亚洲av电影在线观看一区二区三区 | 天天躁日日操中文字幕| 一区二区三区四区激情视频| 国产黄色视频一区二区在线观看| 国产精品久久久久久久久免| 免费看av在线观看网站| 免费看av在线观看网站| 国产91av在线免费观看| 美女内射精品一级片tv| 七月丁香在线播放| av在线播放精品| 欧美丝袜亚洲另类| 又黄又爽又刺激的免费视频.| 91狼人影院| 午夜福利网站1000一区二区三区| 欧美另类一区| 国产爽快片一区二区三区| 亚洲欧美精品自产自拍| 久久久久久久精品精品| 免费黄频网站在线观看国产| 日韩av在线免费看完整版不卡| av国产精品久久久久影院| 国产日韩欧美亚洲二区| 2021天堂中文幕一二区在线观| 18禁在线无遮挡免费观看视频| 久久精品熟女亚洲av麻豆精品| 一区二区三区精品91| 男男h啪啪无遮挡| 国产探花在线观看一区二区| 99热国产这里只有精品6| 色婷婷久久久亚洲欧美| 伊人久久精品亚洲午夜| 欧美国产精品一级二级三级 | 简卡轻食公司| 一个人看的www免费观看视频| 大码成人一级视频| 欧美高清性xxxxhd video| 欧美xxⅹ黑人| 久久人人爽av亚洲精品天堂 | 精品国产露脸久久av麻豆| 丰满乱子伦码专区| 又爽又黄a免费视频| 91午夜精品亚洲一区二区三区| 嫩草影院新地址| 最近最新中文字幕大全电影3| 日日啪夜夜撸| 日本一二三区视频观看| 国产毛片a区久久久久| 97超视频在线观看视频| 精品99又大又爽又粗少妇毛片| 国内精品美女久久久久久| 国产综合精华液| 又黄又爽又刺激的免费视频.| 亚洲精品,欧美精品| 久久韩国三级中文字幕| 亚洲国产精品999| 国产精品久久久久久精品电影| 亚洲欧美一区二区三区国产| 肉色欧美久久久久久久蜜桃 | 人人妻人人澡人人爽人人夜夜| 麻豆国产97在线/欧美| 极品教师在线视频| 男人舔奶头视频| 色播亚洲综合网| 可以在线观看毛片的网站| 精品久久久久久久久亚洲| 热99国产精品久久久久久7| 高清视频免费观看一区二区| 少妇的逼好多水| 午夜精品国产一区二区电影 | 国模一区二区三区四区视频| 十八禁网站网址无遮挡 | 日韩制服骚丝袜av| 又爽又黄无遮挡网站| 亚洲欧美一区二区三区黑人 | 亚洲内射少妇av| 精品99又大又爽又粗少妇毛片| av网站免费在线观看视频| 卡戴珊不雅视频在线播放| 日韩欧美一区视频在线观看 | 2021天堂中文幕一二区在线观| 久久久久九九精品影院| 内射极品少妇av片p| 日韩三级伦理在线观看| 亚洲人成网站在线播| 在线观看av片永久免费下载| 久久国内精品自在自线图片| 人人妻人人澡人人爽人人夜夜| 91久久精品国产一区二区三区| 久久精品国产亚洲av天美| 久久精品人妻少妇| 午夜激情福利司机影院| 三级男女做爰猛烈吃奶摸视频| 亚洲精品国产成人久久av| 久久精品国产鲁丝片午夜精品| 蜜臀久久99精品久久宅男| 日本一二三区视频观看| 国产黄片美女视频| 综合色丁香网| 国产精品不卡视频一区二区| 2018国产大陆天天弄谢| 最近最新中文字幕大全电影3| 国产精品无大码| 亚洲精品日本国产第一区| 国产精品.久久久| a级毛片免费高清观看在线播放| 国产日韩欧美亚洲二区| 亚洲欧美成人综合另类久久久| 99热6这里只有精品| 99精国产麻豆久久婷婷| 激情 狠狠 欧美| 观看免费一级毛片| 久久久成人免费电影| 性色av一级| 制服丝袜香蕉在线| 亚洲国产精品成人综合色| 久久久欧美国产精品| 免费电影在线观看免费观看| 亚洲久久久久久中文字幕| 国产精品国产三级专区第一集| 亚洲四区av| 国产黄片美女视频| 免费观看无遮挡的男女| 十八禁网站网址无遮挡 | 国产成人免费观看mmmm| 啦啦啦啦在线视频资源| 亚洲精品视频女| 国产在视频线精品| 久久女婷五月综合色啪小说 | a级一级毛片免费在线观看| 国产成人免费观看mmmm| 亚洲图色成人| 少妇被粗大猛烈的视频| 婷婷色av中文字幕| 亚洲欧美精品专区久久| 麻豆乱淫一区二区| 神马国产精品三级电影在线观看| 亚洲欧美清纯卡通| 国产高清不卡午夜福利| 六月丁香七月| 成人免费观看视频高清| 国产成人免费无遮挡视频| 97超碰精品成人国产| 久久久国产一区二区| av在线app专区| 日本午夜av视频| 少妇 在线观看| 在线看a的网站| 精品久久久久久久末码| 女人久久www免费人成看片| 国产精品女同一区二区软件| 亚洲欧美成人精品一区二区| 欧美国产精品一级二级三级 | 亚洲久久久久久中文字幕| 久久99蜜桃精品久久| 黄色视频在线播放观看不卡| av在线蜜桃| 最近手机中文字幕大全| 久久久久久久久久人人人人人人| 毛片一级片免费看久久久久| 看十八女毛片水多多多| 女人十人毛片免费观看3o分钟| 欧美高清成人免费视频www| 大码成人一级视频| 免费少妇av软件| 国产成人91sexporn| 欧美日韩亚洲高清精品| 3wmmmm亚洲av在线观看| 91精品国产九色| freevideosex欧美| 韩国av在线不卡| 22中文网久久字幕| 国产精品一区www在线观看| 99视频精品全部免费 在线| 一个人观看的视频www高清免费观看| 欧美激情国产日韩精品一区| 午夜亚洲福利在线播放| 日韩国内少妇激情av| 青春草亚洲视频在线观看| 久久久精品免费免费高清| 国产亚洲91精品色在线| 大又大粗又爽又黄少妇毛片口| 日日撸夜夜添| 久久久a久久爽久久v久久| 日韩制服骚丝袜av| 97在线人人人人妻| 国产成人91sexporn| 亚洲久久久久久中文字幕| 亚洲成人中文字幕在线播放| 国产视频内射| 国产午夜精品久久久久久一区二区三区| 亚洲人与动物交配视频| 天天躁夜夜躁狠狠久久av| 亚洲国产色片| 日韩一本色道免费dvd| 简卡轻食公司| 日韩一本色道免费dvd| 亚洲国产精品成人久久小说| 国产女主播在线喷水免费视频网站| 一本久久精品| 高清午夜精品一区二区三区| 免费观看的影片在线观看| 国产高清不卡午夜福利| 最近手机中文字幕大全| 亚洲欧美一区二区三区黑人 | 一二三四中文在线观看免费高清| 国产白丝娇喘喷水9色精品| 亚洲欧美日韩卡通动漫| 少妇高潮的动态图| 男男h啪啪无遮挡| 成年版毛片免费区| 成人无遮挡网站| h日本视频在线播放| 国产免费视频播放在线视频| av天堂中文字幕网| 婷婷色综合www| 国产老妇女一区| 国产免费一区二区三区四区乱码| 久久女婷五月综合色啪小说 | 精品少妇黑人巨大在线播放| 亚洲欧美日韩卡通动漫| 波野结衣二区三区在线| 精品久久久精品久久久| 欧美三级亚洲精品| 丝袜脚勾引网站| 男的添女的下面高潮视频| 人妻少妇偷人精品九色| 日韩av在线免费看完整版不卡| 最近2019中文字幕mv第一页| 婷婷色麻豆天堂久久| 秋霞在线观看毛片| 国产真实伦视频高清在线观看| 美女高潮的动态| 日韩欧美精品v在线| 免费看日本二区| 日本午夜av视频| 亚洲精品国产av蜜桃| 在线观看一区二区三区| 亚洲图色成人| 日韩三级伦理在线观看| 成人欧美大片| 亚洲最大成人av| 97超碰精品成人国产| 欧美性感艳星| 大香蕉久久网| 国语对白做爰xxxⅹ性视频网站| 高清午夜精品一区二区三区| 国产淫片久久久久久久久| 午夜福利高清视频| 色视频www国产| 亚洲欧美精品专区久久| 精品99又大又爽又粗少妇毛片| 草草在线视频免费看| 国产在线一区二区三区精| av免费在线看不卡| 成年女人在线观看亚洲视频 | 搞女人的毛片| 欧美成人a在线观看| 国产男女超爽视频在线观看| 最近手机中文字幕大全| 中文天堂在线官网| 国产精品一二三区在线看| av播播在线观看一区| 如何舔出高潮| 亚洲av男天堂| 免费人成在线观看视频色| 一级a做视频免费观看| 亚洲av中文字字幕乱码综合| 视频中文字幕在线观看| 黄色日韩在线| 国产老妇伦熟女老妇高清| 国产乱人视频| 超碰97精品在线观看| 精品国产乱码久久久久久小说| 别揉我奶头 嗯啊视频| 亚洲美女搞黄在线观看| 久久久久久伊人网av| 一级爰片在线观看| 麻豆国产97在线/欧美| 97超碰精品成人国产| 色视频在线一区二区三区| 国产精品一区二区三区四区免费观看| 亚洲综合精品二区| 午夜福利网站1000一区二区三区| 麻豆精品久久久久久蜜桃| 精华霜和精华液先用哪个| av线在线观看网站| 又粗又硬又长又爽又黄的视频| 欧美变态另类bdsm刘玥| 日韩成人av中文字幕在线观看| 看免费成人av毛片| 亚洲va在线va天堂va国产| 亚洲欧美一区二区三区黑人 | 婷婷色综合www| 亚洲精品aⅴ在线观看| 最近的中文字幕免费完整| 91精品国产九色| 免费高清在线观看视频在线观看| 18禁动态无遮挡网站| 国产成人91sexporn| 日韩视频在线欧美| 久久影院123| 黄色配什么色好看| 99久久精品国产国产毛片| 国内少妇人妻偷人精品xxx网站| a级毛色黄片| 少妇丰满av| 真实男女啪啪啪动态图| 亚洲精品国产色婷婷电影| 日韩国内少妇激情av| 欧美成人一区二区免费高清观看| 身体一侧抽搐| 韩国av在线不卡| 国产一区二区在线观看日韩| 国产精品麻豆人妻色哟哟久久| 久久精品综合一区二区三区| 亚洲在久久综合| videossex国产| 亚洲精品aⅴ在线观看| 国产乱来视频区| 久久精品国产自在天天线| 观看免费一级毛片| av一本久久久久| 精品少妇黑人巨大在线播放| 18禁裸乳无遮挡免费网站照片| 男的添女的下面高潮视频| 热re99久久精品国产66热6| 男女下面进入的视频免费午夜| 涩涩av久久男人的天堂| av一本久久久久| 人妻制服诱惑在线中文字幕| 亚洲精品国产av成人精品| 男女啪啪激烈高潮av片| 狠狠精品人妻久久久久久综合| 一本色道久久久久久精品综合| av专区在线播放| 天美传媒精品一区二区| 最近中文字幕2019免费版| 简卡轻食公司| 婷婷色综合大香蕉| 国产色爽女视频免费观看| 精品一区在线观看国产| 亚洲色图av天堂| 国产老妇伦熟女老妇高清| 黄片无遮挡物在线观看| 老师上课跳d突然被开到最大视频| 久久久久久国产a免费观看| 亚洲国产日韩一区二区| 日本欧美国产在线视频| 免费看a级黄色片| 久久精品国产a三级三级三级| 国产男女内射视频| 黄色配什么色好看| 国产片特级美女逼逼视频| 91aial.com中文字幕在线观看| 极品少妇高潮喷水抽搐| 国产亚洲最大av| 久久久久久久久久久免费av| 午夜爱爱视频在线播放| 久久精品国产自在天天线| 欧美一级a爱片免费观看看| 欧美一区二区亚洲| 在线天堂最新版资源| 麻豆乱淫一区二区| 国产成人91sexporn| 欧美变态另类bdsm刘玥| 天天躁日日操中文字幕| 日韩一本色道免费dvd| 国产91av在线免费观看| 日本猛色少妇xxxxx猛交久久| 久久精品国产亚洲av涩爱| 午夜福利视频1000在线观看| 蜜臀久久99精品久久宅男| 伊人久久国产一区二区| 久久ye,这里只有精品| 看十八女毛片水多多多| 日韩 亚洲 欧美在线| 又大又黄又爽视频免费| 日韩欧美一区视频在线观看 | 我要看日韩黄色一级片| .国产精品久久| 少妇人妻精品综合一区二区| 日韩制服骚丝袜av| 免费看不卡的av| 久久午夜福利片| 日韩av不卡免费在线播放| 国产爽快片一区二区三区| 国产成人福利小说| 国产精品.久久久| 国产美女午夜福利| 免费播放大片免费观看视频在线观看| 日韩欧美一区视频在线观看 | 欧美性感艳星| 欧美日韩一区二区视频在线观看视频在线 | 精品视频人人做人人爽| 亚洲aⅴ乱码一区二区在线播放| 麻豆久久精品国产亚洲av| 一级av片app| 爱豆传媒免费全集在线观看| 国产伦在线观看视频一区| 国产亚洲av嫩草精品影院| 精品人妻视频免费看| 国产色婷婷99| 一二三四中文在线观看免费高清| 天天躁夜夜躁狠狠久久av| av线在线观看网站| 在线观看国产h片| 高清午夜精品一区二区三区| 欧美丝袜亚洲另类| 黑人高潮一二区| 免费看光身美女| 亚洲国产色片| 草草在线视频免费看| 欧美高清成人免费视频www| 日韩欧美精品免费久久| 亚洲真实伦在线观看| 男女那种视频在线观看| 黄色怎么调成土黄色| 日韩欧美 国产精品| 欧美高清性xxxxhd video| 国产视频首页在线观看| 最近中文字幕2019免费版| 成年免费大片在线观看| 国产精品人妻久久久影院| 人妻制服诱惑在线中文字幕| 国产成人aa在线观看| 菩萨蛮人人尽说江南好唐韦庄| 中文资源天堂在线| 国产精品嫩草影院av在线观看| 久久精品国产自在天天线| 波多野结衣巨乳人妻| 18禁裸乳无遮挡免费网站照片| 国产精品无大码| 久久精品熟女亚洲av麻豆精品| 天天躁日日操中文字幕| 免费看a级黄色片| 国产免费又黄又爽又色| 在线观看免费高清a一片| 亚洲精品视频女| 国产色爽女视频免费观看| av国产精品久久久久影院| 日韩人妻高清精品专区| 涩涩av久久男人的天堂| 精品少妇久久久久久888优播| av在线蜜桃| 别揉我奶头 嗯啊视频| 国产精品女同一区二区软件| 1000部很黄的大片| 99久久人妻综合| 青青草视频在线视频观看| 成人毛片a级毛片在线播放| 亚洲图色成人| 在线观看美女被高潮喷水网站| 在线看a的网站| 99久久人妻综合| 在线观看美女被高潮喷水网站| 91久久精品电影网| 新久久久久国产一级毛片| 69人妻影院| 婷婷色麻豆天堂久久| 天堂网av新在线| 卡戴珊不雅视频在线播放| 自拍偷自拍亚洲精品老妇| 精品视频人人做人人爽| av国产久精品久网站免费入址| 欧美日韩视频精品一区| 小蜜桃在线观看免费完整版高清|