• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Relationship between breakthrough curve and adsorption isotherm of Ca(II)imprinted chitosan microspheres for metaladsorption☆

    2016-05-29 03:33:33YangchengLuJingHeLongwenWuGuangshengLuo

    Yangcheng Lu *,Jing He Longwen Wu ,Guangsheng Luo

    1 State Key Laboratory of Chemical Engineering,Department of Chemical Engineering,Tsinghua University,Beijing 100084,China

    2 State Key Laboratory ofNew Ceramics and Fine Processing,School of Materials Science and Engineering,Tsinghua University,Beijing 100084,China

    1.Introduction

    Heavy metals in waste water impose huge threats to the environment and cause increasing concerns on their treatment.Upon numerous treatment methods ever reported,such as precipitation,ionexchange,adsorption membrane filtration and coagulation–flocculation[1,2],biosorption is a promising alternative due to excellentbiodegradable nature and high efficiency[3–6].Chitosan,fungi,bacteria,and algae are ofcommonly used biomass materials.

    Chitosan,produced by alkaline deacelylation of chitin,has abundant amino groups to chelate with metalions[7].Batch studies for heavy metal adsorption using chitosan based materials[8–10]have been widely carried out to obtain equilibrium data and reveal considerable adsorption capacity.The correlation ofequilibrium data with Langmuir or Freundlich isotherms[11]was frequently conducted to help understand the interactions between adsorbates and adsorbents and guide the design ofbatched adsorption process[12].

    In industry,adsorption in packed column is preferable for heavy metal treatment as for achieving a continuous operation and high removalrate[13].The dynamic behavior of packed columns is usually described in terms of breakthrough curves,expressed as the ratio of effluent concentration to in fluent concentration versus time or throughput volume of ef fluent.The shape of the breakthrough curve depends on various factors including the individual transport processes of the adsorbent[14],and needs to be estimated to design an efficientcolumn adsorption process.

    The complex flow and mass-transfer during the breakthrough process makes it difficult to establish a strict mathematic model for breakthrough curves.Empirical equations,such as the Yoon and Nelson model[15]and the modified dose-response model[16],are widely used in describing column adsorption process.These equations neither come from the batch studies,nor could be extrapolated reasonably.An alternative is to establish breakthrough models derived from simplified mass transfer equations coupled with adsorption isotherms[17],with basic assumptions of fast local equilibrium and uniformly packed uniformed absorbents.Typical models include general rate(GR)modeland its various simplified types such as advection–dispersion–reaction(ADR)equation,lumped pore diffusion(POR)model and transport–dispersive(TD)model,where how to simplify the description of mass transfer process is somehow dependenton the absorbent's morphology and intra-structure.Once mass transfer equations are properly given,corresponding to properly understanding the control step of mass transfer in column,the adsorption isotherms could be calculated from breakthrough curve by the inverse method.However,these models are commonly exploited for the evaluation on chromatography column,and the related report on adsorption column is still uncommon.

    Recently,we developed the micro fluidic technique combined with crosslinking solidi fication to prepare metal imprinted chitosan beads with uniform size,porous morphology,as well as fastadsorption kinetics[18].Ca(II)imprinted chitosan(Ca(II)-CS),asan effective and green heavy metalabsorbent,was found to be appropriate for the continuous removal oflead from aqueous solution[19].Considering that the Ca(II)-CS microspheres have comparable uniformity with chromatography packings,we focused on two aspects in this work.The first is proposing suitable assumptions to correlate the breakthrough curves with sorption isotherms for metaladsor ption using Ca(II)-CS micros pheres and judge the decisive in fluence factor in breakthrough performance.The second is carrying out the sensitivity analysis of breakthrough capacity and con firming the feasibility of acquiring adsorption isotherms of Ca(II)-CS from breakthrough curve.Furthermore,a simple way access to column adsorption practice was figured out for packings with uniform morphology and fast adsorption kinetics like Ca(II)-CS microspheres.

    2.Methods

    2.1.Mathematicalmodel

    In the batch study,the swelled adsorbent was usually regarded as a pseudo solid-phase,and the dry basis adsorption capacity was deduced from experimentally determined wet basis adsorption capacity(the solute in the liquid phase immerged into the absorbent being neglected).As for integrating the column study with the batched study,we attempted to establish the modelon the basis of the pseudo solid-phase assumption.

    Firstly,throughout the column,we supposed that:1)the temperature variance and the compressibility of liquid were negligible during the adsorption process;2)the axial dispersion coefficientin the external liquid phase kept constant.And then,dividing the packed column into numerous in finitesimalunits along the axial direction,within any unit,we supposed that:1)the external liquid phase and the pseudo solid phase had uniform concentrations,respectively;2)the instantaneous phase equilibrium was kept between the liquid phase and the pseudo solid-phase.

    The differentialmass balance of the solute can be written as

    where C is the mass concentration of the liquid phase(mg·ml-1);q′is the mass fraction in the pseudo solid-phase(mg·g-1);ρ′is the density of the pseudo solid-phase(g·cm-3);εeis the external porosity of the packed column;l is the distance along the column;u is the linear velocity.Using water to fully swell the Ca(II)-CS microspheres,ρ′and εefor the application in dilute aqueous solution treatmentcan be simply determined.

    The chitosan based materials have been commonly reported to present Langmuir isotherms for metalion adsorption and give

    where q is the dry basis adsorption capacity(mg·g-1);Qmand b are the Langmuir parameters;φis the swelling ratio of adsorbent in water(g·g-1).Differentiating Eq.(2)gives

    Substituting Eq.(3)into Eq.(1),we have

    The initialconditions are

    The boundary conditions are

    where C0is the in fluent concentration;L is the height ofcolumn.

    Eq.(4)could be regarded as equilibrium-dispersive model neglecting the mass transfer resistance in pseudo solid-phase.When the axialdispersion coefficient could be accurately given,the C at any axial position or any time could be calculated directly.Reversely,according to those experimentally determined breakthrough curves,the axialdis persion coefficient could be calibrated by minimizing the error function defined as follows[20]

    where N is the total number of time points for sampling in a breakthrough experiment;Ccaland Cexpare the outletconcentration obtained by experiment and calculation,respectively;t is the sampling time.Herein,we carried out the mathematical model calculation and calibration using the finite element method(FEM)via the Galerkin variation.The space coordinate of the partialdifferentialequation was uniformly discretized with an intervalof10-3cm,and the backward differentiation formula method was applied to solve the resulting system with a totalerror tolerance of10-5.

    2.2.Experimental

    The preparation method of Ca(II)-CS microspheres could be found elsewhere[19].In brief,the aqueous solution containing acetic acid,CaCl2and chitosan was dispersed into smalldro plets by watersaturated octanolin a micro fluidic device;the droplets were solidi fied by glutaraldehyde crosslinking to generate micros pheres;the micros pheres were stripped for Ca2+removalto obtain wet Ca(II)-CS microsp heres.The dry Ca(II)-CS micros pheres were obtained through freeze-drying.The swell ratio was the mass ratio of wet Ca(II)-CS micros pheres to dry Ca(II)-CS micros pheres.The dry Ca(II)-CS microsp heres were 60μm in average diameter(d32)and 141.1 m2·g-1in BET surface area.

    The isotherms were determined by the batch experiments.After a contact time long enough,the metalion solution and Ca(II)-CS microspheres were separated,and the isotherms were calculated from the concentration variance in solution.A serials of stainless steel circular columns with an inside diameter of 4.6 mm were used to conduct column adsorption experiments,in which wet Ca(II)-CS micros pheres were packed.A metering pump(Beijing satellite manufacturing factory,China)was used to deliver solution into the column with constant flow rate(2–6 ml·min-1).Table 1 listed some parameters in column adsorption experiments.

    Pb(II)and Cu(II)were provided from Lead chloride(PbCl2)and copper nitrate(Cu(NO3)2)in experiments,respectively.Their concentrations were measured by atomic absorption spectrophotometer(Type Z-5000,Hitachi,Japan).All experiments were carried out at room temperature of(20 ± 1)°C.All chemicals were of analyticalgrade and used without further puri fication.Deionized distilled water was used throughout this work.

    Table 1 Some parameters in column adsorption experiments

    3.Results and Discussion

    3.1.Modelcali bration and mass transfer analysis

    The axial dispersion coefficient(Da)is the key parameter in equilibrium-dispersive model.It is not practicalto establish a universal calibration for Dawithout the consideration of adsorbents morphology,because Dais dependent on the geometric structure of void outside packed adsorbents in column.However,based on the experiments using specific adsorbents,some empirical models[21–24]have been proposed to calculate the dispersion coefficient.A general type of them is the sum of contributions ofeddy diffusion and molecular diffusion.It could be written as

    where D is the molecular diffusivity in mobile phase,γis the labyrinth factor,andλis the empirical factor in eddy diffusivity.Bothγandλ are determined by the packing status.The controlled and uniformparticle size may bring repeatable packing status and stable Dacorresponding to specific flow velocity.

    In this work,we calibrated Daat various flow velocities according to those breakthrough curves of Pb(II)reported earlier[25].Fig.1 gives comparisons of experimental results and calculation results.In Fig.1(a)and(b),the flow velocity is constant and a unified Dais calibrated.The good agreement in Fig.1(a)re flecting the effect of column depth indicates these Ca(II)-CS micros pheres packed column have no clear variance in the packing status.Moreover,the good agreement in Fig.1(b)re flecting the effect of in fluent concentration indicates the assumptions of instantaneous equilibrium and Langmuir isotherms may be reasonable.For Fig.1(c)including breakthrough curves obtained under various flow velocities,the good agreement is also achieved by considering the variance of Da.The calibration results of Daand their corresponding flow conditions are listed in Table 1,which appears a linearity of Davs.u.It could be inferred from Eq.(9)that Dais almosttotally determined by the eddy diffusion for the Ca(II)-CS micros pheres packed column operated under proper flow velocity(u is 7.7–23.1 mm·s-1in this work).Such a linear correlation makes it possible to predict Dawithin a range of flow velocity from only one determined data.

    Allthe calibration results con firm the adaptability of equilibrium dispersion model for the continuous removal of metal ions using Ca(II)-CS micros pheres packed column.It implies the mass transfer resistance within the water swelled Ca(II)-CS micros phere could be neglected and the axialeddy diffusion determines the breakthrough performance in column,as a consequence from the small/uniform particle size and fast adsorption kinetics of the adsorbents.

    3.2.The in fluence parameters ofcolumn adsorption performance

    On the basis of good predictability of Eq.(4)for the breakthrough performance ofCa(II)-CS micros pheres packed column in metalionsadsor ption,we investigated the effects of some important adsorption parameters involved in Eq.(4)on the position and the shape of breakthrough curves by modelling calculation,which include maximum adsorption capacity(Qm),Langmuir coefficient(b),and dispersion coefficient(D).Fig.2 gives typicalcal culated results.The reference parameters and conditions include:Qm=78.9 mg·g-1,b=0.0197 L·mg-1,Da=2.4 × 10-6m2·s-1,C0=48.6 mg·L-1,u=7.7 mm·s-1,L=3.1 cm.

    3.2.1.Effects of maximum adsorption capacity

    The breakthrough curves in Fig.2(a)were calculated under reference parameters and conditions except for Qm.As seen,the breakthrough curve gets smoother and the breakthrough time prolongs with the increase of Qm,which are in accordance with Hatzikioseyian's research[15].

    3.2.2.Effects of Langmuir coefficient

    The Langmuir coefficient b re flects the ratio of adsorption rate and stripping rate.The breakthrough curves in Fig.2(b)were calculated under reference parameters and conditions except for b.As seen,the shape of the breakthrough curve is not affected much by b,while the breakthrough time prolongs with the increase of b.It can be expounded that increasing b is favorite for guaranteeing adsorption capability at low ef fluent concentration.

    3.2.3.Effects of dispersion coefficient

    The dispersion coefficientin a continuous flow reactorin fluences the mass trans ferkinetics of the systemby the amount of flow perunittime diverging from plug flow.Fig.2(c)presents the breakthrough curves calculated under reference parameters and conditions except for Da.The results show that the breakthrough curve becomes smooth and the breakthrough point moves forward when Daincreases.It implies that the adsorption performance of the column weakens with Daincreasing.

    3.2.4.Sensitivity analysis

    The breakthrough capacity(Qb),dependent on how to define the breakthrough point,is an importantindex to evaluate a column adsorption process.Herein,we assigned three different criterions for the breakthrough point,including:1)Ct/C0=0.02;2)Ct/C0=0.50;3)Ct/C0=0.98.And then,we analyzed the sensitivity of Qbon Qm,b,and Dato quantify their effects.The relative sensitivity of each parameter can be expressed in terms of the relative change of research objectversus the relative change of the variable under investigation,defined as

    where z is an indepen dentvariable representing the various column parameters,zbis the base point of the variable and znis the new point of the variable.Fig.3 shows the results.As seen,the order of variables from high sensitivity to low sensitivity is maximumadsorption capacity,Langmuir coefficient,and dispersion coefficient.Furthermore,the criterion to determine the breakthrough point,corresponding to the removalobject of heavy metalions,affects the sensitivity of Qbon Damuch,but almost has no in fluence on the sensitivities of Qbon Qmand b.In general,increasing Qmand b should be considered in priority to increase Qb,and decreasing Dabecomes important when the requirement on metalions removal is critical.For Ca(II)-CS microspheres,the former may be achieved by introducing more effective adsorption groups on polymeric skeleton,and the latter may be achieved by decreasing the particle size or the flow velocity.

    Fig.1.Breakthrough curves ofCa(II)-CS beads packed column for Pb(II)atvarious(a)bed depth,(b)in fluentmetal concentrations,and(c)linear velocity.The dots indicated experimental data reported in Ref.[23],and lines calculated results.The reference conditions include:C0=48.6 mg·L-1;u=7.7 mm·s-1(flow rate,2 ml·min-1);L=3.1 cm.

    Fig.2.Calculated breakthrough curves of Ca(II)-CS microspheres packed column for Pb(II)at various(a)Q m,(b)b,and(c)D a.The reference parameters and conditions include:Q m=78.9 mg·g-1;b=0.0197 L·mg-1;D a=2.4 × 10-6 m2·s-1;C0=48.6 mg·L-1;u=7.7 mm·s-1(flow rate,2 ml·min-1);L=3.1 cm.

    Fig.3.The sensitivity analysis of(a)Q m,(b)b,and(c)D a for effective adsorption capacity under various breakthrough conditions.

    3.3.The applications of correlation between breakthrough curve and isotherms

    3.3.1.Retrieval of isotherms from breakthrough curve

    As a linkage between column adsorption and isotherms,Eq.(4)provides feasibility for retrieving isotherms from breakthrough curve.It is well known that Langmuir isotherms have two parameters,Qmand b.In a breakthrough experiment,the limitation of the ef fluent concentration is the in fluent concentration,corresponding to achieving the adsorption capacity in equilibrium with the in fluent concentration(q0)throughout the column.Since the adsorption capacity could be obtained from the breakthrough curve,according to Langmuir isotherms,Qmcould be expressed with b as following

    Furthermore,when using Ca(II)-CS micros pheres packed column for continuous metal ions removal from dilute aqueous solution,some parameters involved in Eq.(4)are independent on the ion species,including ρ′,φ,εe,u and Da.As mentioned above,ρ′,φ and εecould be determined by simple measurement methods for weight and volume;the relationship between Daand u could be established by calibration on the breakthrough curve of reference ion specie(whose isotherms are determined in advance,such as Pb(II)in this work).Thus,if the metalion species in the in fluent is changed,the shift of breakthrough curve will only come from the changing of Qmand b.Combining with Eq.(11),b is unique independent variable determining the pro file of breakthrough curve.It could be calibrated from breakthrough curve by minimizing the error function[Eq.(9)]as well.

    A breakthrough curve for Cu(II)was experimentally determined to test the feasibility of adsorption isotherms retrieval.Fig.4(a)shows experimentalresults and calculation results.Fig.4(b)shows the dependence of calculation error with b.The minimal error corresponds to b=0.0715 mg·L-1.The Qmderived from Eq.(11)is 46.64 mg·g-1.Compared with our previous batch studies[17],the relative errors of b and Qmare+0.14%and-14.8%,respectively,which are acceptable for engineering applications.Similarly,the adsorption isotherms for other heavy metal ion may also be obtained by only one additional breakthrough experiment.It is a convenient and time-saving process for adsorption isotherms estimation.

    3.3.2.A simple way to column adsorption practice

    The elucidation on the correlation between adsorption isotherms and breakthrough performance can help to simplify the column adsorption design starting from batch studies.Fig.5 gives a schematic strategy.The step 1:select a reference species to acquire a set of adsorption isotherms,and then obtain a linear equation describing the relationship between dispersion coefficient and linear velocity in column after conducting single breakthrough testfor reference species.The step 2:introduce the species to be separated to carry out single breakthrough experiment for acquiring new adsorption isotherms equation.The step 3:fulfill the column prediction and design by combining what obtained in steps 1 and 2.This strategy could be potentially exploited in the metalions adsorption design using columns packed with Ca(II)-CS micros pheres or any other absorbents with small/uniform size and fast adsorption kinetics.Its advantages are obvious in cutting down the gap between lab and industry.

    4.Conclusions

    In this work,we investigated the relationship between breakthrough curve and adsorption isotherm of Ca(II)-CS micros pheres for metal adsorption,and following conclusions were summarized:

    (1)An equilibrium-dispersion model was successfully established to describe the breakthrough performance,and the assumptions of Langmuir isotherms and axial dispersion controlled mass transfer process were con firmed.

    Fig.4.(a)Breakthrough curves ofCa(II)-CS beads packed column for Cu(II)and(b)calibration error dependence on b.The conditions include:in fluentmetal concentration,51.6 mg·L-1;flow rate,2 ml·min-1;bed depth,3.1 cm.

    Fig.5.A simple strategy for iso the rmals determination and column adsorption design.

    (2)The axial dispersion coefficientin Ca(II)-CS micros pheres packed column was almost proportional to the linear velocity,so its prediction may be easily achieved through single breakthrough test.

    (3)The axial dispersion coefficientas well as is sensitive variable for deep removal requirement.Feasible enhancement methods for column adsorption include introducing more effective adsorption groups and decreasing the particle size or the flow velocity.

    (4)The retrieval of the adsorption isotherms of Ca(II)-CS micros pheres from breakthrough curve was available by modelling calibration as the axial dispersion coefficient could be obtained separately.

    (5)The elucidation on the correlation between adsorption isotherms and breakthrough performance can help to simplify the column adsorption design strategy starting from batch studies.

    The model and methodology proposed in this work could be potentially exploited in the metal ions adsorption design using absorbents with small/uniform size and fast adsorption kinetics like Ca(II)-CS micros pheres to cut down the gap between lab and industry.

    [1]F.Fu,Q.Wang,Removal of heavy metal ions from waste waters:A review,J.Environ.Manage.92(2011)407–418.

    [2]J.X.Zeng,X.H.Sun,L.F.Zheng,Q.C.He,S.Li,Recovery of tungsten(VI)from aqueous solutions by compl exation–ultra filtration process with the help of pol yquaternium,Chin.J.Chem.Eng.20(2012)831–836.

    [3]S.E.Bailey,T.J.Olin,R.M.Bricka,D.D.Adrian,A review of potentially low-cost sorbents for heavy metals,Water Res.33(1999)2469–2479.

    [4]F.Veglio,F.Beolchini,Removal of metals by biosorption:A review,Hydrometallurgy 44(1997)301–316.

    [5]W.S.V.Ngah,M.A.K.M.Hana fiah,Removal of heavy metal ions from wastewater by chemically modified plant wastes as adsorbents:A review,Bioresour.Technol.99(2008)3935–3948.

    [6]M.N.V.R.Kumar,A review of chitin and chitosan applications,React.Funct.Polym.46(2000)1–27.

    [7]J.Li,E.Z.Chen,H.J.Su,T.W.Tan,Biosorption ofPb2+with modified soybean hulls as absorbent,Chin.J.Chem.Eng.19(2011)334–339.

    [8]K.J.Hsien,C.M.Futalan,W.C.Tsai,C.C.Kan,C.S.Kung,Y.H.Shen,M.W.Wan,Adsorption characteristics of copper(II)onto non-crossl inked and cross-linked chitosan immobilized on sand,Desalin.Water Treat.51(2013)5574–5582.

    [9]T.Y.Hsien,G.L.Rorrer,Heterogeneous cross-linking of chitosan gelbeads:Kinetics,modeling,and in fluence on cadmium ion adsorption capacity,Ind.Eng.Chem.Res.36(1997)3631–3638.

    [10]L.Jin,R.Bai,Mechanisms of lead adsorption on chitosan/PVA hydrogel beads,Langmuir 18(2002)9765–9770.

    [11]P.W.Atkins,Physical chemistry,Oxford University Press,1978.

    [12]Y.Wong,Y.Szeto,W.Cheung,G.McKay,Equilibrium studies for acid dye adsorption onto chitosan,Langmuir 19(2003)7888–7894.

    [13]Z.Aksu,F.G?nen,Biosorption of phenol by immobilized activated sludge in a continuous packed bed:Prediction of breakthrough curves,Process Biochem.39(2004)599–613.

    [14]M.J.Ahmed,A.H.A.K.Mohammed,A.A.H.Kadhum,Prediction of breakthrough curves for light hydrocarbons adsorption on 4A molecular sieve zeolite,Korean J.Chem.Eng.27(2010)752–758.

    [15]D.Park,Y.S.Yun,J.M.Park,The past,present,and future trends of biosorption,Biotechnol.Bioprocess Eng.15(2010)86–102.

    [16]G.Yan,T.Viraraghavan,Heavy metal removal in a biosorption column by immobilized M.rouxii biomass,Bioresour.Technol.78(2001)243–249.

    [17]A.Hatzikioseyian,M.Tsezos,F.Mavituna,Application of simplified rapid equilibrium models in simulating experimental breakthrough curves from fixed bed biosorption reactors,Hydrometallurgy 59(2001)395–406.

    [18]Y.C.Lu,J.He,G.S.Luo,An improved synthesis of chitosan bead for Pb(II)adsorption,Chem.Eng.J.244(2014)202–208.

    [19]J.He,Y.C.Lu,G.S.Luo,Ca(II)imprinted chitosan microspheres:An effective and green adsorbent for the removal of Cu(II),Cd(II)and Pb(II)from aqueous solutions,Chem.Eng.J.226(2013)271–278.

    [20]J.Zhou,J.Wu,Y.Liu,F.Zou,J.Wu,K.Li,Y.Chen,J.Xie,H.Ying,Modeling of breakthrough curves of single and quaternary mixtures ofethanol,glucose,glycerol and acetic acid adsorption onto a microporous hyper-cross-linked resin,Bioresour.Technol.143(2013)360–368.

    [21]S.Chung,C.Wen,Longitudinal dispersion of liquid flowing through fixed and fluidized beds,AICHE J.14(1968)857–866.

    [22]G.F.Froment,K.B.Bischoff,J.De Wilde,Chemicalreactor analysis and design,Wiley,New York,1990.

    [23]M.Suzuki,J.Smith,Axial dispersion in beds of small particles,Chem.Eng.J.3(1972)256–264.

    [24]C.Wilke,P.Chang,Correlation of diffusion coefficients in dilute solutions,AICHE J.1(1955)264–270.

    [25]J.He,Y.C.Lu,L.W.Wu,G.S.Luo,Continuous removal of lead from aqueous solutions by Ca(II)imprinted chitosan micros pheres packed column,Sep.Sci.Technol.50(2015)1127–1134.

    午夜福利视频在线观看免费| a级毛片在线看网站| 精品久久久久久电影网| 中文字幕高清在线视频| 亚洲国产欧美日韩在线播放| 亚洲av美国av| 日韩人妻精品一区2区三区| 久久久久久亚洲精品国产蜜桃av| xxxhd国产人妻xxx| 欧美日韩黄片免| 赤兔流量卡办理| 国产免费福利视频在线观看| 国产男人的电影天堂91| 在现免费观看毛片| 国产精品香港三级国产av潘金莲 | 97人妻天天添夜夜摸| 波多野结衣av一区二区av| 啦啦啦 在线观看视频| 中国美女看黄片| 色综合欧美亚洲国产小说| av电影中文网址| 99久久人妻综合| 啦啦啦 在线观看视频| 欧美精品一区二区免费开放| 脱女人内裤的视频| 18禁观看日本| 天天添夜夜摸| 日韩制服骚丝袜av| 国产成人a∨麻豆精品| 蜜桃国产av成人99| 国产在线视频一区二区| 日本一区二区免费在线视频| 精品国产国语对白av| 亚洲精品国产av蜜桃| 老汉色av国产亚洲站长工具| 免费在线观看黄色视频的| xxxhd国产人妻xxx| 黑人巨大精品欧美一区二区蜜桃| 成在线人永久免费视频| 99久久精品国产亚洲精品| 精品高清国产在线一区| videos熟女内射| videosex国产| 亚洲国产av影院在线观看| 黄色毛片三级朝国网站| 亚洲伊人色综图| videosex国产| 精品久久蜜臀av无| 老司机影院成人| 免费少妇av软件| 99国产综合亚洲精品| 亚洲欧美成人综合另类久久久| 亚洲色图综合在线观看| 黑人巨大精品欧美一区二区蜜桃| 精品免费久久久久久久清纯 | 久久天堂一区二区三区四区| 视频在线观看一区二区三区| 丰满迷人的少妇在线观看| 亚洲五月色婷婷综合| 人妻 亚洲 视频| 久久久久久久久久久久大奶| 欧美国产精品一级二级三级| 国产精品99久久99久久久不卡| avwww免费| 精品福利永久在线观看| 亚洲国产精品一区三区| 久久人人爽人人片av| 18禁国产床啪视频网站| 国产成人影院久久av| 国产高清videossex| 97精品久久久久久久久久精品| 午夜免费观看性视频| 美女大奶头黄色视频| 欧美另类一区| 建设人人有责人人尽责人人享有的| 免费看不卡的av| 亚洲av国产av综合av卡| 久久精品久久精品一区二区三区| videos熟女内射| 久久人妻熟女aⅴ| 成年女人毛片免费观看观看9 | 精品久久久久久久毛片微露脸 | √禁漫天堂资源中文www| 欧美日韩精品网址| 十八禁网站网址无遮挡| 女警被强在线播放| 中文乱码字字幕精品一区二区三区| 欧美精品啪啪一区二区三区 | 亚洲成av片中文字幕在线观看| 久久精品亚洲av国产电影网| 黄色怎么调成土黄色| 老司机靠b影院| www.999成人在线观看| 别揉我奶头~嗯~啊~动态视频 | 纯流量卡能插随身wifi吗| 国产在线免费精品| 国产国语露脸激情在线看| 亚洲中文日韩欧美视频| 亚洲国产看品久久| 只有这里有精品99| 男男h啪啪无遮挡| 黑人巨大精品欧美一区二区蜜桃| 亚洲黑人精品在线| 日本av手机在线免费观看| 悠悠久久av| 国产三级黄色录像| 亚洲国产欧美在线一区| 韩国高清视频一区二区三区| 亚洲精品美女久久久久99蜜臀 | 美女午夜性视频免费| 大话2 男鬼变身卡| 久久久久久久久免费视频了| 亚洲 国产 在线| 欧美日韩综合久久久久久| 18禁裸乳无遮挡动漫免费视频| 女性被躁到高潮视频| 青春草视频在线免费观看| 亚洲国产精品一区二区三区在线| 人人妻人人添人人爽欧美一区卜| 狠狠精品人妻久久久久久综合| 女人久久www免费人成看片| 精品一区二区三区四区五区乱码 | 大香蕉久久网| 国产一区亚洲一区在线观看| 一级黄片播放器| 男女床上黄色一级片免费看| 国产成人91sexporn| 超碰成人久久| 91精品三级在线观看| 操出白浆在线播放| 欧美日韩av久久| 午夜免费男女啪啪视频观看| 亚洲欧洲国产日韩| 五月天丁香电影| kizo精华| 国产一区二区在线观看av| 婷婷色综合www| 久热这里只有精品99| 欧美日韩成人在线一区二区| 热re99久久国产66热| 男女午夜视频在线观看| 老司机影院毛片| 可以免费在线观看a视频的电影网站| 搡老乐熟女国产| 99热全是精品| 亚洲精品一二三| 久久99一区二区三区| 久久久久精品国产欧美久久久 | tube8黄色片| 久久免费观看电影| 美女福利国产在线| 国产又爽黄色视频| 亚洲一区二区三区欧美精品| 美女福利国产在线| 久久毛片免费看一区二区三区| 波多野结衣一区麻豆| 好男人视频免费观看在线| av在线老鸭窝| 亚洲人成电影观看| 一本综合久久免费| 深夜精品福利| 桃花免费在线播放| 日韩中文字幕欧美一区二区 | 手机成人av网站| 另类亚洲欧美激情| 日韩一卡2卡3卡4卡2021年| 美女国产高潮福利片在线看| 在线天堂中文资源库| 最新在线观看一区二区三区 | 色网站视频免费| 久久久国产一区二区| 黄网站色视频无遮挡免费观看| 国产亚洲欧美在线一区二区| 国产片内射在线| 国产欧美日韩一区二区三区在线| 一级片免费观看大全| 久久精品久久精品一区二区三区| 午夜免费观看性视频| 欧美日韩一级在线毛片| 免费日韩欧美在线观看| 午夜福利,免费看| 美女主播在线视频| 色婷婷久久久亚洲欧美| 成年人免费黄色播放视频| 日本vs欧美在线观看视频| 丰满少妇做爰视频| 热99久久久久精品小说推荐| 99精品久久久久人妻精品| 王馨瑶露胸无遮挡在线观看| 成年动漫av网址| 日韩人妻精品一区2区三区| 亚洲国产精品一区三区| videos熟女内射| 人成视频在线观看免费观看| 精品一区二区三区av网在线观看 | 亚洲一区二区三区欧美精品| 中文字幕高清在线视频| 成人午夜精彩视频在线观看| 18禁黄网站禁片午夜丰满| 亚洲国产最新在线播放| 国产欧美日韩一区二区三 | 丝袜美腿诱惑在线| 中文字幕最新亚洲高清| 韩国精品一区二区三区| 天天躁夜夜躁狠狠久久av| 久久国产精品人妻蜜桃| 涩涩av久久男人的天堂| 国产精品成人在线| 亚洲国产最新在线播放| 久久亚洲国产成人精品v| 99香蕉大伊视频| 日韩免费高清中文字幕av| 久久久精品免费免费高清| 欧美精品一区二区免费开放| 女人爽到高潮嗷嗷叫在线视频| 男人添女人高潮全过程视频| 大香蕉久久成人网| 不卡av一区二区三区| 亚洲精品一二三| 国产成人一区二区三区免费视频网站 | 大码成人一级视频| 天堂俺去俺来也www色官网| 免费在线观看完整版高清| 一区二区三区精品91| 丁香六月欧美| 国产真人三级小视频在线观看| 嫁个100分男人电影在线观看 | 成年人免费黄色播放视频| 性少妇av在线| 国产亚洲av高清不卡| 男女床上黄色一级片免费看| av片东京热男人的天堂| 黄网站色视频无遮挡免费观看| 色94色欧美一区二区| av网站在线播放免费| 婷婷成人精品国产| 免费观看av网站的网址| 在线观看国产h片| 婷婷色av中文字幕| 男女之事视频高清在线观看 | 久久国产精品影院| 国产精品av久久久久免费| 久久国产精品人妻蜜桃| 日韩欧美一区视频在线观看| 国产成人免费观看mmmm| 自线自在国产av| 免费高清在线观看视频在线观看| 777久久人妻少妇嫩草av网站| 亚洲av电影在线进入| 亚洲精品国产色婷婷电影| 精品人妻1区二区| 欧美成狂野欧美在线观看| 2021少妇久久久久久久久久久| 亚洲国产日韩一区二区| 国产人伦9x9x在线观看| 午夜影院在线不卡| 精品国产一区二区久久| 欧美 日韩 精品 国产| 天天操日日干夜夜撸| 精品卡一卡二卡四卡免费| 国产不卡av网站在线观看| 最新在线观看一区二区三区 | 亚洲人成电影观看| 日本欧美国产在线视频| 女人久久www免费人成看片| 久久午夜综合久久蜜桃| avwww免费| 国产成人免费观看mmmm| 亚洲图色成人| 麻豆国产av国片精品| 亚洲欧美精品综合一区二区三区| 日本a在线网址| 亚洲成人手机| 国产欧美日韩精品亚洲av| 欧美中文综合在线视频| 国产日韩欧美在线精品| 少妇人妻 视频| 在线观看www视频免费| 亚洲黑人精品在线| 老司机深夜福利视频在线观看 | 国产国语露脸激情在线看| 国产一区二区三区综合在线观看| 色婷婷av一区二区三区视频| 在线亚洲精品国产二区图片欧美| 免费观看a级毛片全部| 中文字幕精品免费在线观看视频| 国产精品一区二区在线观看99| 制服人妻中文乱码| 午夜免费观看性视频| 首页视频小说图片口味搜索 | 久久久久国产一级毛片高清牌| 一级a爱视频在线免费观看| avwww免费| 中文字幕另类日韩欧美亚洲嫩草| 精品国产超薄肉色丝袜足j| 国产精品国产av在线观看| 国产成人精品久久二区二区91| 国产成人91sexporn| 亚洲国产最新在线播放| 免费少妇av软件| 久久人妻熟女aⅴ| 成人国语在线视频| 五月天丁香电影| 亚洲精品美女久久av网站| 久久精品久久久久久噜噜老黄| 精品久久久精品久久久| 精品亚洲成国产av| 狠狠婷婷综合久久久久久88av| 日韩中文字幕视频在线看片| a级毛片黄视频| 久久亚洲国产成人精品v| 别揉我奶头~嗯~啊~动态视频 | 中文字幕人妻熟女乱码| 99热网站在线观看| 下体分泌物呈黄色| 亚洲,欧美,日韩| 精品一区二区三区四区五区乱码 | 成年av动漫网址| 午夜福利免费观看在线| 国产欧美日韩综合在线一区二区| 欧美大码av| 亚洲国产精品成人久久小说| 亚洲少妇的诱惑av| 19禁男女啪啪无遮挡网站| 成人黄色视频免费在线看| 久久久国产一区二区| 国产亚洲av高清不卡| 深夜精品福利| 日本色播在线视频| 亚洲国产最新在线播放| 久久天堂一区二区三区四区| 久久ye,这里只有精品| 国产淫语在线视频| 日本猛色少妇xxxxx猛交久久| 搡老岳熟女国产| 一本—道久久a久久精品蜜桃钙片| 伊人久久大香线蕉亚洲五| 成人黄色视频免费在线看| 久久久精品区二区三区| 制服诱惑二区| 午夜视频精品福利| 少妇人妻 视频| 男人舔女人的私密视频| 精品一区二区三区四区五区乱码 | 成人手机av| 秋霞在线观看毛片| 只有这里有精品99| 精品国产超薄肉色丝袜足j| 亚洲精品久久久久久婷婷小说| 国产精品一区二区精品视频观看| 天天躁夜夜躁狠狠久久av| 手机成人av网站| 交换朋友夫妻互换小说| 国产精品99久久99久久久不卡| 交换朋友夫妻互换小说| 97精品久久久久久久久久精品| 一级片免费观看大全| 午夜激情av网站| 永久免费av网站大全| 国产精品久久久久成人av| 肉色欧美久久久久久久蜜桃| 老司机深夜福利视频在线观看 | 亚洲综合色网址| 日本欧美视频一区| 欧美日韩亚洲国产一区二区在线观看 | 一二三四社区在线视频社区8| 久久久久久久久免费视频了| 亚洲精品美女久久av网站| 看免费av毛片| 午夜福利免费观看在线| 国产在视频线精品| 亚洲av日韩在线播放| 又紧又爽又黄一区二区| 免费高清在线观看视频在线观看| 热re99久久精品国产66热6| 色精品久久人妻99蜜桃| 韩国高清视频一区二区三区| 免费观看a级毛片全部| 一区二区三区激情视频| 久久人妻福利社区极品人妻图片 | 亚洲精品一区蜜桃| 狠狠婷婷综合久久久久久88av| 精品欧美一区二区三区在线| 五月天丁香电影| 极品少妇高潮喷水抽搐| 国产成人精品久久二区二区91| 青春草亚洲视频在线观看| 美女福利国产在线| 国产日韩欧美亚洲二区| 狠狠婷婷综合久久久久久88av| 中文字幕色久视频| 欧美日韩av久久| 十八禁网站网址无遮挡| 菩萨蛮人人尽说江南好唐韦庄| 欧美日韩国产mv在线观看视频| 国产真人三级小视频在线观看| 只有这里有精品99| 女人爽到高潮嗷嗷叫在线视频| 亚洲视频免费观看视频| 日韩伦理黄色片| 婷婷色综合www| 国产真人三级小视频在线观看| 免费人妻精品一区二区三区视频| 精品国产国语对白av| 捣出白浆h1v1| 午夜免费鲁丝| 国产91精品成人一区二区三区 | 国产成人精品久久二区二区91| 国产精品熟女久久久久浪| 久久精品国产亚洲av高清一级| 下体分泌物呈黄色| 久久精品亚洲av国产电影网| 狠狠精品人妻久久久久久综合| 亚洲国产av影院在线观看| 国产亚洲精品第一综合不卡| 日韩av免费高清视频| 国产午夜精品一二区理论片| 久久久久久久精品精品| 欧美日本中文国产一区发布| 国产免费一区二区三区四区乱码| 中文字幕另类日韩欧美亚洲嫩草| 国产精品一区二区精品视频观看| 亚洲美女黄色视频免费看| 女人被躁到高潮嗷嗷叫费观| 桃花免费在线播放| 一区二区日韩欧美中文字幕| 欧美日韩视频高清一区二区三区二| 看免费成人av毛片| 欧美乱码精品一区二区三区| 99国产精品一区二区蜜桃av | 菩萨蛮人人尽说江南好唐韦庄| 91成人精品电影| av网站在线播放免费| 午夜免费男女啪啪视频观看| 久久久久久久精品精品| 国产日韩欧美在线精品| 一二三四社区在线视频社区8| 男女边吃奶边做爰视频| 狠狠精品人妻久久久久久综合| 国产精品国产三级专区第一集| 老司机深夜福利视频在线观看 | 天天添夜夜摸| 久久99热这里只频精品6学生| 欧美97在线视频| 欧美日韩一级在线毛片| 性色av一级| 日韩一本色道免费dvd| 老司机亚洲免费影院| 成人亚洲精品一区在线观看| 久久久精品94久久精品| 少妇精品久久久久久久| 1024视频免费在线观看| 亚洲国产最新在线播放| 黄色一级大片看看| 午夜免费鲁丝| 免费在线观看完整版高清| 久久久久国产一级毛片高清牌| 自线自在国产av| 操出白浆在线播放| 国产成人欧美| 国产黄频视频在线观看| 久久精品亚洲熟妇少妇任你| 精品少妇黑人巨大在线播放| www.精华液| 成年av动漫网址| 最黄视频免费看| 久久精品亚洲av国产电影网| 成年女人毛片免费观看观看9 | 91精品国产国语对白视频| 精品国产一区二区三区四区第35| 少妇人妻久久综合中文| 亚洲三区欧美一区| 人成视频在线观看免费观看| 高清欧美精品videossex| 久久国产精品大桥未久av| 国产人伦9x9x在线观看| 搡老岳熟女国产| 爱豆传媒免费全集在线观看| 天天躁夜夜躁狠狠躁躁| 久久精品久久久久久噜噜老黄| 亚洲欧美清纯卡通| 国产精品一区二区在线观看99| 国产av国产精品国产| 国产片内射在线| 韩国高清视频一区二区三区| 日本a在线网址| 精品卡一卡二卡四卡免费| 国产在线免费精品| 亚洲欧美日韩高清在线视频 | 国产成人欧美在线观看 | 男人舔女人的私密视频| av网站免费在线观看视频| 亚洲成人手机| 亚洲,欧美精品.| 一级毛片电影观看| 日韩欧美一区视频在线观看| 精品久久蜜臀av无| 新久久久久国产一级毛片| 亚洲欧洲国产日韩| 久久精品国产a三级三级三级| 中文字幕人妻熟女乱码| 欧美日韩亚洲高清精品| 别揉我奶头~嗯~啊~动态视频 | 亚洲伊人色综图| 精品久久久久久电影网| av线在线观看网站| 久久久精品国产亚洲av高清涩受| 亚洲激情五月婷婷啪啪| 老司机亚洲免费影院| 在线看a的网站| www日本在线高清视频| 男的添女的下面高潮视频| 9热在线视频观看99| 男女边摸边吃奶| 国产精品国产三级国产专区5o| 中国美女看黄片| 一级黄片播放器| 亚洲av成人精品一二三区| 成年动漫av网址| 国产av国产精品国产| 国产成人精品久久二区二区91| 老汉色∧v一级毛片| 中文字幕色久视频| 中文字幕人妻丝袜一区二区| 国语对白做爰xxxⅹ性视频网站| 婷婷色麻豆天堂久久| 丝瓜视频免费看黄片| 国产激情久久老熟女| 在线天堂中文资源库| 成年人午夜在线观看视频| 日本av免费视频播放| 国产精品久久久av美女十八| 午夜免费鲁丝| 高清黄色对白视频在线免费看| 热re99久久精品国产66热6| 首页视频小说图片口味搜索 | 欧美乱码精品一区二区三区| 亚洲欧美精品自产自拍| 黄色视频在线播放观看不卡| 18在线观看网站| 日韩中文字幕欧美一区二区 | 蜜桃在线观看..| 免费在线观看黄色视频的| 久久人人爽人人片av| 国产精品av久久久久免费| 欧美日韩国产mv在线观看视频| 国产免费现黄频在线看| 一本大道久久a久久精品| 国产精品久久久久久人妻精品电影 | 黄色一级大片看看| 日韩中文字幕视频在线看片| 男人舔女人的私密视频| 亚洲av成人精品一二三区| 亚洲 国产 在线| 国产国语露脸激情在线看| 精品亚洲乱码少妇综合久久| 日本vs欧美在线观看视频| 女性被躁到高潮视频| 精品免费久久久久久久清纯 | 国产精品99久久99久久久不卡| 纵有疾风起免费观看全集完整版| 国产精品一区二区精品视频观看| 又大又爽又粗| 国产一级毛片在线| 亚洲国产av新网站| 极品少妇高潮喷水抽搐| 午夜激情久久久久久久| 精品一品国产午夜福利视频| 在线观看国产h片| 老汉色av国产亚洲站长工具| 午夜激情久久久久久久| 午夜免费观看性视频| 亚洲精品乱久久久久久| 搡老岳熟女国产| 中国国产av一级| 午夜影院在线不卡| 中文字幕色久视频| 亚洲精品一二三| 国产av国产精品国产| 成人亚洲精品一区在线观看| 超碰成人久久| 久久免费观看电影| 晚上一个人看的免费电影| 首页视频小说图片口味搜索 | 成人亚洲精品一区在线观看| 我的亚洲天堂| 国产亚洲欧美在线一区二区| 丰满少妇做爰视频| 天天操日日干夜夜撸| 国产精品熟女久久久久浪| 99国产综合亚洲精品| 一本久久精品| 人成视频在线观看免费观看| av不卡在线播放| 香蕉丝袜av| 久久精品亚洲熟妇少妇任你| 一级,二级,三级黄色视频| 美女视频免费永久观看网站| 亚洲伊人久久精品综合| 亚洲国产毛片av蜜桃av| 自拍欧美九色日韩亚洲蝌蚪91| 免费看不卡的av| 亚洲色图综合在线观看| 国产欧美亚洲国产| 夜夜骑夜夜射夜夜干| 欧美精品一区二区大全| 在线观看www视频免费| 免费在线观看黄色视频的| 欧美精品高潮呻吟av久久| 国产激情久久老熟女| 免费在线观看完整版高清| 国产成人精品久久二区二区免费| 在线看a的网站| 亚洲精品在线美女| 老司机午夜十八禁免费视频|