• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    CA/RDX復合材料超臨界CO2間歇法微孔發(fā)泡研究

    2016-05-27 07:11:00楊偉濤應三九
    火炸藥學報 2016年2期

    楊偉濤,應三九

    (1.西安近代化學研究所,陜西 西安 710065;2.南京理工大學化工學院,江蘇 南京 210094)

    ?

    CA/RDX復合材料超臨界CO2間歇法微孔發(fā)泡研究

    楊偉濤1,應三九2

    (1.西安近代化學研究所,陜西 西安 710065;2.南京理工大學化工學院,江蘇 南京 210094)

    摘要:以醋酸纖維素(CA)為黏結(jié)劑,黑索今(RDX)為含能組分,通過超臨界二氧化碳(SC-CO2)間歇法發(fā)泡技術制備了微孔可燃復合材料CA/RDX。采用重量法研究了SC-CO2在該復合材料中的吸收與解吸收過程,同時利用Fickian擴散定律,研究了SC-CO2的擴散系數(shù)。采用掃描電子顯微鏡(SEM)研究了發(fā)泡溫度和飽和壓力對該材料內(nèi)部形貌的影響規(guī)律。結(jié)果表明,CO2的吸收量與擴散系數(shù)隨著飽和壓力的提高而增加,在20MPa,40℃飽和條件下達到最大飽和量11.16%。RDX和CA界面降低了微孔異相成核能壘,因此增加了微孔成核速率,微孔產(chǎn)生于RDX和CA界面間的微裂紋并逐步長大成為完整的氣泡;在微孔成核后,微孔尺寸隨飽和溫度與發(fā)泡溫度差(ΔT)的增加而增大;由于CO2解吸收過程中擴散系數(shù)隨飽和壓力的增加而增加,因此飽和壓力對泡孔形貌的影響不明顯。

    關鍵詞:微孔可燃復合材料;醋酸纖維素;超臨界CO2;SC-CO2;吸收解吸收行為;微孔發(fā)泡

    Introduction

    Cellulose acetate (CA) plays an important role in the field of regenerated fibers, and it can be produced from a few kinds of cheap and renewable materials, such as wood, cotton and recycled paper. CA is widely used for various applications, for instance, films, separation membrane, textiles, cigarette filters and coating. CA was also used in the ammunition field as an inert binder for crystalline explosives[1-2]. To date, it is a novel and effective idea to combine foamed CA binder-based composites with SC-CO2foaming technique. CA and crystalline explosives remain their known chemical properties and SC-CO2foaming grants the material porous structure and also new behavior. Foamed CA bonded composites have several advantages, such as light weight, heat insulation and high burning rate. This kind of foamed composites has great application potential in combustible cartridge cases and caseless ammunition[3-5].

    SC-CO2is an inexpensive, safe and environmentally benign foaming agent[6-7]. Environment-friendly techniques can be used to prepare microcellular foams using SC-CO2. SC-CO2has many advantageous properties, such as a tuneable solvent power, the plasticization of glassy polymers (as a consequence of glass transition temperature depression) and enhanced diffusion rates. Especially, the use of CO2has increased greatly in the last few years due to the low critical conditions of CO2(31.1℃ and 7.1MPa). Meanwhile, the microcellular foaming process using SC-CO2allows an easy and complete separation from the polymer. The materials used to produce microcellular foams include polystyrene, polypropylene, polycarbonate, poly(methyl methacrylate) and so forth. In general, four steps are needed to prepare foamed materials: (1) sorption of SC-CO2;(2) cell nucleation;(3) cell growth;(4) stabilization of foam structures[8-9]. One of the key processes to control the porous structure is the nucleation and growth of gas cells dispersed throughout the polymer. The resulting structure depends on a balance between several mechanisms, such as diffusion of CO2in the polymer, the solubility and the plasticization effect, which depends intrinsically on the polymer and the saturation conditions.

    But semi-crystalline polymers are considered difficult to foam due to lower gas solubility and the fact that the crystalline portions prevent the nucleation of bubbles[10]. As a result, the foamed structure is hard to achieve unless the objects were quenched from the melt so that the foamability of these materials was enhanced[11-12]. Also, the use of high temperature is not appropriate in fabrication of objects containing explosives.

    Consequently, this work is focused on a two-step foaming process in which the CA bonded RDX composites are previously saturated under SC-CO2and foamed by a change of temperature. The microcellular processing technique employed in this study utilizes temperatures below the melting point such that the foaming process occurs while the CA is in a semi-crystalline state. Firstly, the solubility and diffusivity of CO2in the objects were investigated before foaming. Secondly, the foaming conditions of fabricating CA based combustible composites were explored and the inner foamed structures were investigated and discussed. Particular emphasis is given to the influence of the foaming temperature on the foam morphology.

    1Experimental

    1.1 Materials

    The microcellular combustible objects were formulated based on RDX and CA. CA was supplied by Xi′an North Hui′an Chemical Industries Co., Ltd. Ethanol (AR, Nanjing Chemical Reagent Co., Ltd) and acetone (AR, Sinopharm Chemical Reagent Co., Ltd) were used as received. Average particle size of RDX is about 10 μm.

    1.2Preparation of CA/RDX composites

    CA (mass fraction of 35%) and RDX (mass fraction of 65%) particles were incorporated in a sigma blade mixer using acetone as solvent to obtain dough. The dough was extruded in a vertical hydraulic press. The extruded composites were dried until the volatile content was decreased to less than 0.5 percent.

    1.3Microcellular foaming process

    The solid composites were foamed by the two-step foaming process as shown in Figure 1. Sheet samples with 12.9mm×50mm×1mm were placed into the high pressure vessel. Then, the pressure was quenched. Lastly, the samples were heated for 1min.

    Fig.1 Foaming equipments and foaming process using SC-CO2

    1.4Sorption and Desorption Behaviour of SC-CO2in CA/RDX Sheet

    The method of analyzing the sorption and desorption data, i.e. the gravimetric method, was described at length by previous investigators[13-14]. Figure 2 presents the schematic illustration of the sorption and desorption process and mass-loss analysis. For the purpose of this test, the specimens were pressurized in a pressure vessel wih CO2at saturation temperature,Tsat, and saturation pressure,Psat. After various sorption times (ts), the vessel was rapidly vented and the specimen was transferred to the electronic balance (Sartorius TE124S) under room temperature at atmospheric pressure for the desorption measurement. The first data as recorded at 30s. The weight of specimen (m) was recorded at an interval of 10s.

    Fig.2 Schematic illustration of sorption and desorption process and mass-loss analysis

    Since the ratio of thickness to length of specimen is very small, edge effects are negligible. A reasonable assumption of Fickian diffusion was applied and the governing equation was the basic mass transfer equation for a plane sheet system:

    (1)

    whereCis the concentration andDis the diffusivity. One-dimensional diffusion along the thicknessLof the planar sample and constant diffusivity were assumed in this study. With proper initial and boundary conditions and the application of the Laplace transform method, the following analytical solution was obtained:

    (2)

    whereMtis the amount of sorption into the planar specimen at timet, and can be expressed as the weight percentage of CO2per unit weight of specimen.M∞is equilibrium sorption amount.

    The solution of Eq. (2) can be introduced to the desorption process after simplifying the equation for the desorption process:

    Md/M∞=-4 (Dd/π)0.5(td0.5/L)

    (3)

    In the desorption process, the plot ofMd/M∞as a function of (t0.5/L) yields essentially a straight line with a slope of 4(Dd/π)0.5, which is readily solved forDd. Simultaneously, the amount of sorption of CO2into CA/RDX sheet,Ms, was estimated by extrapolating the measured desorption weight fraction,Md, to the zero desorption time.

    Simplification of Eq. (2) by truncating at the first term in the summation yields the following form for the sorption process:

    ln(1-Ms/M∞) =-(Dsπ2/L2)ts+ln(π2/8)

    (4)

    The sorption coefficient can be calculated by Eq.(4). The relationship of ln(1-Ms/M∞) andtsis linear, by whichDscan be obtained from the slope of the plot.

    1.5Characterization of foam morphology

    A QUANTA FEG 250 scanning electron microscope (SEM) was used to characterize the inner structures. The tested samples were immersed in liquid nitrogen and freeze-fractured.

    2Results and Discussion

    2.1Sorption course of SC-CO2into CA/RDX Sheet

    The measured desorption mass fraction,Md, to the desorption time at 40℃ and 15MPa was shown in Figure 3. The linear relationship betweenMdandtd0.5indicates that the assumption of Fickian diffusion is acceptable. TheMsvalues at various sorption times,ts, are determined from the intercepts, and a sorption curve is then generated.

    Fig. 3 The desorption curves of SC-CO2 in CA binder-based sample (Ts=40℃, Ps=15MPa)

    Fig. 4 The dissolved SC-CO2 in CA binder-based sample (Ts=40℃, Ps=15MPa)

    Fig. 5 ln(1-Ms/M∞)-ts/L2 curves and sorption coefficient of CA binder-based sample

    Figure 4 shows the sorption curve where the sorption amountMswas plotted againstts. As we can see from Figure 4,Msincreased rapidly in the initial 1h, and increased slowly after 1h to equilibrium. An equilibrium uptake of 9.95% CO2is absorbed within 7h. Figure 5 is ln(1-Ms/M∞)-ts/L2from which the sorption diffusivity can be obtained. Because there are two sorption modes before and after 1h sorption time, two sorption coefficient were 0.2379mm2/h and 0.0187mm2/h, respectively. The decrease ofDsindicated that after CO2had penetrated the specimen, the diffusivity was weakened.The desorption data at different pressures are shown in Figure 6(a). The equilibrium sorption amountsM∞and diffusion coefficient at different pressures are shown in Figure 6(b). As the figures indicates, theM∞values and the desorption coefficient in Figure 6(b) increased with the increase of pressure. Although theM∞increased with pressures, the increasing ofDdresulted in more CO2escaping from the matrix during the period from the vessel to heating bath.

    Fig.6 Desorption curves, M∞ and Dd for samples at different saturation pressures

    Figure 7 presents desorption curves, sorption amounts and desorption coefficient at different temperatures. As Figure 7 indicates, the sorption amount decreased with the increase of saturation temperature, and in contrast, the desorption coefficient increased with temperature. It means that when we saturated the sample at high temperature, less CO2amount was obtained, and CO2more easily escaped from the matrix. For this reason, a high saturation temperature is usually not adopted in the two-step foaming process.

    Fig.7 Desorption curves, M∞ and Dd for samples atdifferent saturation temperatures

    2.2Characterization of inner structure

    The objects containing 65% RDX were saturated at 40℃ and 15MPa for 10h, and then foamed at different foaming temperatures(Tf). Figure 8 shows the effect of temperature

    on the inner structures. When samples were heated at a temperature under 100℃, there were microcracks around the RDX particles. When samples were heated at higher temperatures (110, 120, 130 and 140℃), microcracks expanded and developed into micropores. The pore size increased roughly with the increasing of foaming temperature.

    Significantly, when pure CA saturated at 15MPa and 40℃ was foamed at 140℃, no cracks or pores were generated (also shown in Figure 8). RDX particles provide heterogeneous nucleation sites for the microfoaming process and decreased the foaming temperature matrix need to nucleation. According to the classical nucleation theory, lowering the interfacial energy and reducing the energy barrier can increase the nucleation rate[15]. At the same saturating pressure and temperature, the interfacial energy could be considered constant. The presence of an CA/RDX interface can sharply reduce the activation energy barrier to nucleation, thereby increasing the nucleation rate. This type of nucleation is defined as heterogeneous nucleation. Once the heterogeneous nucleation occurred, the driving force for cell growth is directly related to the ΔT(the increased temperature from saturation temperature to foaming temperature).

    Unlike amorphous polymers, semi-crystalline polymers have sufficiently high mechanical properties (such as modulus and tensile strength) to maintain their structural integrity when the samples are heated. As a result, the materials do not flow rapidly enough, as compared to the diffusion of gas out of the polymer chains. The temperature of the semi-crystalline polymers must be raised above their melting points before the chains have enough mobility to accommodate growth. Hence, when samples was foamed under 100℃, the mobility of chains is not enough to ensure the nucleation developing to micropores. As a result, there are only microcracks around RDX particles.

    Fig. 8 SEM images of specimens foamed at different foaming temperatures

    The increasing saturation pressure causes an increase in the sorption amount of CO2, which affects the plasticization of the polymer binder. The plasticization is weakened with the diffusion of gas into pores. The pores stop growing due to the vitrification of polymer. Simultaneously, the pressure difference between inside and outside of the sample was also bigger when the saturation pressure is higher. Figure 9 shows the effect of saturation pressure on the morphology of foamed samples. As Figure 9 shows, it seems the size of micropores increased with pressure, resulting from the increased CO2uptake amount. But the effect of pressure is not as impressive as foaming temperatures. In the foaming process, the heterogeneous nucleation rate could be recognized as invariable[14], the increasing diffusion coefficient weakened the effect of saturation pressures on the CO2content at the moment when samples were dipped in oil bath, although the sorption amount when samples in vessel is higher at high pressures.

    Fig. 9 SEM images of specimens foamed at various saturation pressures (Ts = 40℃, Tf = 110℃)

    3Conclusions

    (1) This study provided an available route, i.e. the two-step foaming process, to fabricate microcellular combustible objects which were composed of semi-crystalline polymer binders with a high melting point.

    (2)The solubility and diffusivity of SC-CO2increased with increased pressures. The heterogeneous nucleation appeared around RDX particles and translated from cracks to pores at higher temperatures when the objects were still in solid-state.

    (3) Heterogeneous nucleation reduced the activation energy, revealing an effective route to fabricate porous materials which are hard to foam.

    References:

    [1]Pillai A G S, Joshi M M, Barve A M, et al. Cellulose

    acetate binder-based LOVA gun propellant for tank guns[J]. Defence Science Journal, 2013, 49(2): 141-149.

    [2]Sanghavi R R, Kamale P J, Shaikh M A R, et al. HMX based enhanced energy LOVA gun propellant[J]. Journal of Hazardous Materials, 2007, 143(1/2): 532-534.

    [3]Bhnlein-Mau J, Krber H. Technology of foamed propellants[J]. Propellants, Explosives, Pyrotechnics,2009, 34(3): 239-244.

    [4]Bhnlein-Mau J, Eberhardt A, Fischer T S. Foamed Propellants[J]. Propellants, Explosives, Pyrotechnics, 2002, 27(3): 156-160.

    [5]Yang W, Li Y, Ying S. Fabrication, thermoanalysis, and performance evaluation studies on RDX-based microcellular combustible objects[J]. Propellants, Explosives, Pyrotechnics, 2014, 39: 568-573.

    [6]Ruiz J A R, Marc-Tallon J, Pedros M, et al. Micro and nano cellular amorphous polymers (PMMA, PS) in supercritical CO2assisted by nanostructured CO2-philic block copolymers - one step foaming process[J]. Journal of Supercritical Fluids, 2011, 58(1): 168-176.

    [7]Ruiz J A R, Marc-Tallon J, Pedros M, et al. Two-step micro cellular foaming of amorphous polymers in supercritical CO2[J]. The Journal of Supercritical Fluids, 2011, 57(1): 87-94.

    [8]Kazarian S G. Polymer processing with supercritical fluids[J]. Polymer Science Series Cc/C of Vysokomolekuliarnye Soedineniia, 2000, 42(1): 78-101.

    [9]Goel S K, Beckman E J. Generation of microcellular polymeric foams using supercritical carbon dioxide. I: Effect of pressure and temperature on nucleation[J]. Polymer Engineering and Science, 1994,34(14): 1137-1147.

    [10] Kumar V. Microcellular polymers: novel materials for the 21st century[J]. Cellular Polymers, 1993, 12(3): 207-223.

    [11] Park C B, Cheung L K. A study of cell nucleation in the extrusion of polypropylene foams[J]. Polymer Engineering and Science, 1997, 37(1):1-10.

    [12] Zheng W G, Lee Y H, Park C B. Use of nanoparticles for improving the foaming behaviors of linear PP[J]. Journal of Applied Polymer Science, 2010, 117(5): 2972-2979.

    [13] Tang M, Du T B, Chen Y P. Sorption and diffusion of supercritical carbon dioxide in polycarbonate[J]. The Journal of Supercritical Fluids, 2004, 28(2): 207-218.

    [14] Muth O, Hirth T, Vogel H. Investigation of sorption and diffusion of supercritical carbon dioxide into poly (vinyl chloride)[J]. The Journal of Supercritical Fluids, 2001, 19(3): 299-306.

    [15]Colton, J S, Suh N P. Nucleation of microcellular foam: theory and practice[J]. Polymer Engineering and Science, 1987, 27(7): 500-503.

    CLC number:TJ55;TB33Document Code:AArticle ID:1007-7812(2016)02-0022-05

    Microcellular Foaming of CA/RDX Composites in a Batch Supercritical CO2Process

    YANG Wei-tao1, YING San-jiu2

    (1. Xi′an Modern Chemistry Research Institute, Xi′an 710065, China; 2. School of Chemical Engineering, Nanjing University of Science and Technology, Nanjing 210094, China)

    Abstract:Microcellular combustible composites CA/RDX, based on cellulose acetate (CA) as binder and RDX as energetic component, were fabricated by the two-step microcellular foaming in supercritical CO2. The sorption and desorption behaviour of SC-CO2 in the composites were investigated by a weighing process, and the diffusivity was analyzed by Fickian diffusion. Scanning Electron Microscopy (SEM) was used to investigate the influence of foaming temperature and saturation pressure on the foamed structures. The results indicate that the CO2 sorption amount increases with the sorption pressure and the largest sorption amount reached to 11.16% at 20 MPa and 40℃, with a corresponding increase in sorption diffusivity. The presence of a RDX/CA interface can reduce the activation energy barrier to nucleation, thereby increasing the nucleation rate. The micropores generate from microcracks between RDX particles and the CA binder, and develope into viable bubbles. Once the nucleation has occurred, the driving force for cell growth is directly related to the increased temperature from saturation temperature to foaming temperature(ΔT). The pore size increases with ΔT. Simultaneously, the effect of saturation pressure is not evident as the foaming temperature, for the effect of pressure, was weakened by an increased diffusion coefficient.

    Keywords:microcellular combustible composite; cellulose acetate; supercritical CO2 (SC-CO2); sorption and desorption behavior; microcellular foaming

    DOI:10.14077/j.issn.1007-7812.2016.02.004

    Received date:2015-11-11;Revised date:2015-11-19

    Biography:YANG Wei-tao(1987- ), male, research field: application of energetic materials.E-mail:njyangweitao@163.com

    美女视频免费永久观看网站| 久热久热在线精品观看| 成年av动漫网址| 日韩在线高清观看一区二区三区| 亚洲第一区二区三区不卡| 69精品国产乱码久久久| 欧美性感艳星| 狂野欧美白嫩少妇大欣赏| 午夜影院在线不卡| 高清午夜精品一区二区三区| 少妇人妻 视频| 日韩强制内射视频| a 毛片基地| 高清毛片免费看| 日日摸夜夜添夜夜添av毛片| 边亲边吃奶的免费视频| 爱豆传媒免费全集在线观看| av天堂久久9| 亚洲四区av| 内地一区二区视频在线| 国产又色又爽无遮挡免| 成年美女黄网站色视频大全免费 | 日韩不卡一区二区三区视频在线| 黑人猛操日本美女一级片| 亚洲国产最新在线播放| 熟妇人妻不卡中文字幕| 女性生殖器流出的白浆| 国产极品粉嫩免费观看在线 | 精品久久久精品久久久| 国产精品蜜桃在线观看| 日韩一区二区视频免费看| 成年美女黄网站色视频大全免费 | 99久久精品国产国产毛片| 国产深夜福利视频在线观看| 国产在线免费精品| 精品国产乱码久久久久久小说| 一级毛片久久久久久久久女| 日韩一区二区三区影片| 国产伦精品一区二区三区四那| 黄色怎么调成土黄色| 秋霞在线观看毛片| 18+在线观看网站| 男女边摸边吃奶| 精品久久国产蜜桃| a 毛片基地| 久久狼人影院| 亚洲精品aⅴ在线观看| 一级毛片 在线播放| 一级二级三级毛片免费看| 国产精品99久久99久久久不卡 | 亚洲欧美日韩卡通动漫| 校园人妻丝袜中文字幕| 久久97久久精品| 亚洲成人手机| 日韩亚洲欧美综合| 99久久精品热视频| 成人国产av品久久久| 日日摸夜夜添夜夜爱| 亚洲高清免费不卡视频| 丝袜脚勾引网站| 亚洲成人一二三区av| 精品人妻一区二区三区麻豆| 国产成人午夜福利电影在线观看| 亚洲经典国产精华液单| 免费人妻精品一区二区三区视频| 美女国产视频在线观看| 天堂8中文在线网| 国产在视频线精品| 亚洲国产毛片av蜜桃av| 我的老师免费观看完整版| 亚洲自偷自拍三级| 啦啦啦中文免费视频观看日本| 精品熟女少妇八av免费久了| 免费少妇av软件| 亚洲国产看品久久| 精品人妻熟女毛片av久久网站| 国产精品av久久久久免费| 母亲3免费完整高清在线观看| 国产麻豆69| 好男人电影高清在线观看| 无遮挡黄片免费观看| 欧美激情 高清一区二区三区| 日本精品一区二区三区蜜桃| 日韩熟女老妇一区二区性免费视频| 男女免费视频国产| 一区在线观看完整版| 99国产精品一区二区蜜桃av | 青草久久国产| 成人黄色视频免费在线看| 69精品国产乱码久久久| 久久久久久亚洲精品国产蜜桃av| 丰满人妻熟妇乱又伦精品不卡| 亚洲欧美清纯卡通| 黄色 视频免费看| 美女午夜性视频免费| 岛国毛片在线播放| 亚洲av欧美aⅴ国产| 99久久精品国产亚洲精品| 久久热在线av| √禁漫天堂资源中文www| 国产一区二区 视频在线| 另类精品久久| 日韩熟女老妇一区二区性免费视频| 免费不卡黄色视频| 色老头精品视频在线观看| 国产主播在线观看一区二区| 超色免费av| 免费在线观看日本一区| 嫩草影视91久久| 国产av精品麻豆| 国产97色在线日韩免费| 成年人午夜在线观看视频| h视频一区二区三区| 麻豆av在线久日| 久久午夜综合久久蜜桃| 黄色 视频免费看| 国产精品一区二区在线观看99| 一本—道久久a久久精品蜜桃钙片| 热99国产精品久久久久久7| 久久狼人影院| 青草久久国产| 精品卡一卡二卡四卡免费| 精品人妻1区二区| 中文字幕另类日韩欧美亚洲嫩草| 久久久久国产一级毛片高清牌| 老司机亚洲免费影院| 午夜免费观看性视频| 十八禁人妻一区二区| 我的亚洲天堂| 国产亚洲精品第一综合不卡| 男女免费视频国产| 久久综合国产亚洲精品| 久久精品国产a三级三级三级| 叶爱在线成人免费视频播放| 久久久国产一区二区| 亚洲欧美日韩另类电影网站| 男女床上黄色一级片免费看| 国产麻豆69| 成年人午夜在线观看视频| 亚洲成人国产一区在线观看| 精品国产乱码久久久久久小说| 天天躁日日躁夜夜躁夜夜| 国产精品麻豆人妻色哟哟久久| 欧美在线一区亚洲| 亚洲情色 制服丝袜| 天天躁夜夜躁狠狠躁躁| 日本a在线网址| 欧美少妇被猛烈插入视频| 精品国产超薄肉色丝袜足j| 大香蕉久久网| 可以免费在线观看a视频的电影网站| 国产精品一区二区精品视频观看| 欧美黑人欧美精品刺激| 亚洲av男天堂| 日韩一区二区三区影片| 日韩视频一区二区在线观看| 熟女少妇亚洲综合色aaa.| 一级a爱视频在线免费观看| 亚洲久久久国产精品| 国产一区二区在线观看av| 99国产精品一区二区三区| 国产欧美日韩一区二区三 | 一级a爱视频在线免费观看| www.999成人在线观看| 日韩一卡2卡3卡4卡2021年| 热99国产精品久久久久久7| 蜜桃在线观看..| 欧美人与性动交α欧美精品济南到| 亚洲av成人一区二区三| 男女无遮挡免费网站观看| 汤姆久久久久久久影院中文字幕| 在线观看免费高清a一片| 欧美av亚洲av综合av国产av| 久久精品成人免费网站| 国产成人a∨麻豆精品| 国产日韩欧美在线精品| 两性夫妻黄色片| 丰满少妇做爰视频| 免费在线观看完整版高清| 免费在线观看黄色视频的| 99国产精品一区二区三区| 欧美老熟妇乱子伦牲交| 99热网站在线观看| 国产精品一二三区在线看| 国产三级黄色录像| 2018国产大陆天天弄谢| 狂野欧美激情性bbbbbb| 久久精品熟女亚洲av麻豆精品| 亚洲成av片中文字幕在线观看| 岛国在线观看网站| 18禁观看日本| 宅男免费午夜| 亚洲黑人精品在线| 狂野欧美激情性xxxx| 亚洲精品国产av成人精品| 久久人人97超碰香蕉20202| 欧美激情 高清一区二区三区| 最新的欧美精品一区二区| av一本久久久久| 国产精品一区二区精品视频观看| 精品一品国产午夜福利视频| 狠狠狠狠99中文字幕| 亚洲第一欧美日韩一区二区三区 | 午夜91福利影院| 亚洲专区字幕在线| 国产三级黄色录像| 成年人黄色毛片网站| 正在播放国产对白刺激| 亚洲国产精品成人久久小说| 一区福利在线观看| 天天操日日干夜夜撸| 女人精品久久久久毛片| 女人爽到高潮嗷嗷叫在线视频| 精品人妻1区二区| 人人妻人人澡人人爽人人夜夜| 国产av又大| av在线播放精品| 久久久久久久大尺度免费视频| 一区福利在线观看| 国产精品免费视频内射| 无遮挡黄片免费观看| 国产精品九九99| 欧美成狂野欧美在线观看| av一本久久久久| 亚洲欧美日韩另类电影网站| 热99久久久久精品小说推荐| 日韩人妻精品一区2区三区| 国产激情久久老熟女| 男人爽女人下面视频在线观看| 美女中出高潮动态图| 永久免费av网站大全| 高清av免费在线| 色老头精品视频在线观看| 亚洲精品久久成人aⅴ小说| 精品免费久久久久久久清纯 | 18在线观看网站| 91精品国产国语对白视频| 欧美在线黄色| 亚洲熟女精品中文字幕| 色婷婷久久久亚洲欧美| 久久亚洲精品不卡| 国产在线免费精品| 18在线观看网站| 国产片内射在线| 久久国产精品影院| 日韩熟女老妇一区二区性免费视频| 午夜激情久久久久久久| 久久久久久久大尺度免费视频| 亚洲av日韩在线播放| 青青草视频在线视频观看| 无遮挡黄片免费观看| 成年人黄色毛片网站| 夜夜骑夜夜射夜夜干| 中文字幕人妻丝袜一区二区| 中文字幕色久视频| 日韩欧美国产一区二区入口| 汤姆久久久久久久影院中文字幕| 欧美人与性动交α欧美软件| 国产精品二区激情视频| 国产男女内射视频| 精品人妻1区二区| 桃红色精品国产亚洲av| 在线 av 中文字幕| 99精国产麻豆久久婷婷| 50天的宝宝边吃奶边哭怎么回事| 亚洲国产看品久久| 桃花免费在线播放| 老汉色∧v一级毛片| 亚洲av欧美aⅴ国产| 国产成人精品久久二区二区免费| 欧美午夜高清在线| 中文精品一卡2卡3卡4更新| 欧美 日韩 精品 国产| 久久免费观看电影| 超碰成人久久| 精品久久久久久久毛片微露脸 | 丝袜喷水一区| 一进一出抽搐动态| 国产亚洲一区二区精品| 中亚洲国语对白在线视频| 在线观看舔阴道视频| 欧美黑人欧美精品刺激| 中国国产av一级| 波多野结衣av一区二区av| 操出白浆在线播放| 亚洲熟女毛片儿| 国产成人精品久久二区二区91| 久久精品国产综合久久久| 欧美黄色片欧美黄色片| av网站在线播放免费| 国产深夜福利视频在线观看| tocl精华| 亚洲精品成人av观看孕妇| 亚洲欧美精品自产自拍| 99久久综合免费| 黄片小视频在线播放| 亚洲综合色网址| 男人舔女人的私密视频| 欧美人与性动交α欧美精品济南到| 亚洲专区国产一区二区| 少妇裸体淫交视频免费看高清 | 美女高潮喷水抽搐中文字幕| 可以免费在线观看a视频的电影网站| 久久人人97超碰香蕉20202| 欧美成狂野欧美在线观看| 真人做人爱边吃奶动态| 巨乳人妻的诱惑在线观看| 三上悠亚av全集在线观看| 97在线人人人人妻| 五月开心婷婷网| 精品一区二区三区四区五区乱码| 精品国产国语对白av| 男女无遮挡免费网站观看| 亚洲av国产av综合av卡| 看免费av毛片| 精品亚洲成国产av| 欧美精品一区二区大全| 国产精品一区二区在线不卡| 蜜桃国产av成人99| 黄色视频,在线免费观看| 国产激情久久老熟女| 女人被躁到高潮嗷嗷叫费观| 俄罗斯特黄特色一大片| 国产激情久久老熟女| 婷婷成人精品国产| 91av网站免费观看| 青青草视频在线视频观看| av天堂在线播放| 精品福利永久在线观看| 一区二区三区四区激情视频| 美女午夜性视频免费| 日韩熟女老妇一区二区性免费视频| 日本黄色日本黄色录像| 成人国产av品久久久| 三级毛片av免费| 日日爽夜夜爽网站| 中文字幕最新亚洲高清| 丰满饥渴人妻一区二区三| 国产一区二区三区在线臀色熟女 | 免费在线观看黄色视频的| 欧美乱码精品一区二区三区| 午夜福利一区二区在线看| 免费观看a级毛片全部| 热99国产精品久久久久久7| 久久av网站| 热99re8久久精品国产| 两性午夜刺激爽爽歪歪视频在线观看 | 亚洲国产欧美一区二区综合| 高清在线国产一区| 黑人巨大精品欧美一区二区蜜桃| 精品免费久久久久久久清纯 | 亚洲黑人精品在线| 免费在线观看日本一区| 美女午夜性视频免费| 麻豆国产av国片精品| 欧美 亚洲 国产 日韩一| 亚洲第一青青草原| 桃花免费在线播放| 久久人人爽人人片av| 90打野战视频偷拍视频| 男女国产视频网站| 国产野战对白在线观看| 中国美女看黄片| 国精品久久久久久国模美| 欧美黑人精品巨大| 午夜老司机福利片| 午夜91福利影院| 夜夜骑夜夜射夜夜干| 1024香蕉在线观看| 日本撒尿小便嘘嘘汇集6| 老熟妇乱子伦视频在线观看 | 精品国产一区二区三区四区第35| 欧美+亚洲+日韩+国产| 国产精品.久久久| 日韩制服骚丝袜av| 亚洲欧美精品综合一区二区三区| 免费在线观看完整版高清| 成人国语在线视频| 国产视频一区二区在线看| 久久精品人人爽人人爽视色| 欧美一级毛片孕妇| 国产成人欧美| 免费观看人在逋| 欧美中文综合在线视频| 老熟妇仑乱视频hdxx| 欧美精品人与动牲交sv欧美| 9色porny在线观看| 国产精品影院久久| 后天国语完整版免费观看| 亚洲欧美日韩另类电影网站| 免费高清在线观看视频在线观看| 狂野欧美激情性bbbbbb| 又大又爽又粗| 欧美成人午夜精品| 国产精品成人在线| 婷婷色av中文字幕| tocl精华| 亚洲国产成人一精品久久久| 亚洲人成电影免费在线| 成人国产一区最新在线观看| 日本wwww免费看| 伊人久久大香线蕉亚洲五| 一进一出抽搐动态| 国产精品麻豆人妻色哟哟久久| 国产97色在线日韩免费| 国产精品久久久av美女十八| 精品欧美一区二区三区在线| 一区福利在线观看| 精品第一国产精品| 亚洲av美国av| 日日摸夜夜添夜夜添小说| 日本黄色日本黄色录像| 免费久久久久久久精品成人欧美视频| 免费在线观看影片大全网站| 国产av精品麻豆| 亚洲欧美日韩高清在线视频 | 亚洲 国产 在线| 亚洲激情五月婷婷啪啪| 99久久99久久久精品蜜桃| 精品乱码久久久久久99久播| 国产男人的电影天堂91| 国产高清视频在线播放一区 | a 毛片基地| 国产精品一区二区在线观看99| 成人影院久久| 精品人妻一区二区三区麻豆| 如日韩欧美国产精品一区二区三区| 无限看片的www在线观看| 高清视频免费观看一区二区| 婷婷丁香在线五月| 午夜精品国产一区二区电影| 一级片免费观看大全| 热99国产精品久久久久久7| 国产欧美亚洲国产| 男女国产视频网站| 丝袜喷水一区| 黄色片一级片一级黄色片| 在线观看www视频免费| 国产福利在线免费观看视频| 在线观看免费高清a一片| 午夜福利一区二区在线看| 国产成人免费观看mmmm| 中文字幕制服av| 久久久久久久久久久久大奶| 亚洲精品国产av成人精品| 成年人免费黄色播放视频| 国产精品一区二区在线不卡| 国产日韩欧美在线精品| bbb黄色大片| 一区二区三区激情视频| 永久免费av网站大全| 男男h啪啪无遮挡| 国产精品久久久人人做人人爽| 亚洲欧美成人综合另类久久久| 亚洲精品在线美女| 汤姆久久久久久久影院中文字幕| 超碰成人久久| 国产成人精品在线电影| 两个人看的免费小视频| 久久精品aⅴ一区二区三区四区| 日韩免费高清中文字幕av| 亚洲成av片中文字幕在线观看| 午夜免费成人在线视频| 欧美变态另类bdsm刘玥| 99国产精品一区二区蜜桃av | 欧美日韩中文字幕国产精品一区二区三区 | 巨乳人妻的诱惑在线观看| 欧美午夜高清在线| 亚洲av国产av综合av卡| 国产精品一区二区在线不卡| 亚洲五月色婷婷综合| 亚洲成人国产一区在线观看| 久久香蕉激情| 亚洲国产精品成人久久小说| 精品乱码久久久久久99久播| 中文字幕人妻熟女乱码| 亚洲精品国产色婷婷电影| 一区二区三区激情视频| 亚洲成av片中文字幕在线观看| 中文字幕人妻熟女乱码| 夜夜骑夜夜射夜夜干| av视频免费观看在线观看| 超色免费av| 啦啦啦视频在线资源免费观看| tube8黄色片| a级毛片在线看网站| 我的亚洲天堂| 国产在线一区二区三区精| 国产伦人伦偷精品视频| 欧美另类一区| 国产高清视频在线播放一区 | 色视频在线一区二区三区| 在线观看一区二区三区激情| 成年人黄色毛片网站| 99久久99久久久精品蜜桃| 日本91视频免费播放| 天天操日日干夜夜撸| 黄片播放在线免费| 女人高潮潮喷娇喘18禁视频| 国产免费福利视频在线观看| 国产高清videossex| 亚洲精品国产区一区二| 大香蕉久久网| 国产男人的电影天堂91| 亚洲三区欧美一区| 大香蕉久久网| 777米奇影视久久| 亚洲精品在线美女| 俄罗斯特黄特色一大片| 男女国产视频网站| 黑人巨大精品欧美一区二区蜜桃| 男女之事视频高清在线观看| 精品第一国产精品| 男女午夜视频在线观看| 男女边摸边吃奶| 真人做人爱边吃奶动态| 美国免费a级毛片| 啦啦啦免费观看视频1| 亚洲激情五月婷婷啪啪| 丁香六月欧美| 午夜福利视频在线观看免费| 亚洲国产欧美一区二区综合| 丰满迷人的少妇在线观看| 久久久久久久国产电影| 丝袜美腿诱惑在线| 日韩中文字幕视频在线看片| 老熟妇乱子伦视频在线观看 | 久久亚洲国产成人精品v| 两性夫妻黄色片| 精品少妇内射三级| 精品一区二区三卡| 久久精品成人免费网站| 精品国内亚洲2022精品成人 | 三上悠亚av全集在线观看| 午夜福利在线免费观看网站| 大片电影免费在线观看免费| 国产深夜福利视频在线观看| 男女边摸边吃奶| 国产成人免费无遮挡视频| 国产日韩欧美在线精品| 一区在线观看完整版| 亚洲午夜精品一区,二区,三区| 久久中文看片网| 中文字幕色久视频| 亚洲中文字幕日韩| 中文字幕另类日韩欧美亚洲嫩草| 欧美另类一区| 精品亚洲乱码少妇综合久久| 免费看十八禁软件| 人妻人人澡人人爽人人| 精品乱码久久久久久99久播| 老司机午夜福利在线观看视频 | 免费在线观看黄色视频的| 欧美精品亚洲一区二区| 久久人妻福利社区极品人妻图片| 人人妻人人添人人爽欧美一区卜| 青春草视频在线免费观看| 久久久精品国产亚洲av高清涩受| 国产精品一二三区在线看| 久久人妻熟女aⅴ| 亚洲成人手机| 亚洲久久久国产精品| 男女高潮啪啪啪动态图| 天天躁狠狠躁夜夜躁狠狠躁| 国产极品粉嫩免费观看在线| 国产精品一二三区在线看| 国产成人精品久久二区二区91| 女人爽到高潮嗷嗷叫在线视频| 捣出白浆h1v1| 天堂8中文在线网| 在线永久观看黄色视频| 久久久国产一区二区| 亚洲伊人色综图| 别揉我奶头~嗯~啊~动态视频 | 黄频高清免费视频| 大片免费播放器 马上看| 日本精品一区二区三区蜜桃| 多毛熟女@视频| 久久狼人影院| 日韩大片免费观看网站| 99久久人妻综合| 亚洲一卡2卡3卡4卡5卡精品中文| 亚洲精品成人av观看孕妇| 欧美精品人与动牲交sv欧美| 99国产精品一区二区三区| 丝袜美腿诱惑在线| 女人爽到高潮嗷嗷叫在线视频| 欧美激情高清一区二区三区| 国产成+人综合+亚洲专区| 日韩视频一区二区在线观看| netflix在线观看网站| 99精国产麻豆久久婷婷| 日韩免费高清中文字幕av| 中文字幕另类日韩欧美亚洲嫩草| 午夜福利影视在线免费观看| 人人妻人人澡人人爽人人夜夜| 国产成人免费无遮挡视频| 老汉色av国产亚洲站长工具| 国产日韩一区二区三区精品不卡| a级片在线免费高清观看视频| 丰满人妻熟妇乱又伦精品不卡| 青春草视频在线免费观看| 大片电影免费在线观看免费| 欧美97在线视频| 精品欧美一区二区三区在线| 欧美av亚洲av综合av国产av| e午夜精品久久久久久久| 国产日韩欧美亚洲二区| 精品久久久久久电影网| 老熟女久久久| 一区二区av电影网| 好男人电影高清在线观看| 在线观看免费午夜福利视频| 91字幕亚洲| 人人妻人人澡人人看|