• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Proposal and evaluation of a new norm index-based QSAR model to predict pEC50and pCC50activities of HEPT derivatives☆

    2016-05-26 09:28:48KanwalShahidQiangWangQingzhuJiaLeiLiXueCuiShuqianXiaPeishengMa
    Chinese Journal of Chemical Engineering 2016年10期

    Kanwal Shahid,Qiang Wang,*,Qingzhu Jia,Lei Li,Xue Cui,Shuqian Xia,Peisheng Ma

    1School of Chemical Engineering and Material Science,Tianjin University of Science and Technology,13St.TEDA,Tianjin 300457,China

    2School of Marine and Environment Science,Tianjin University of Science and Technology,13St.TEDA,Tianjin 300457,China

    3School of Chemical Engineering and Technology,Tianjin University,Tianjin 300072,China

    1.Introduction

    Being as a global epidemic, acquired immunodeficiency syndrome(AIDS) is considered as one of the worst diseases ever known to mankind[1]. AIDS is a collection of symptoms and infections resulting from the specific damage to the immune system caused by the human immunodeficiency virus (HIV) [2,3], which is a member of a retroviruses group. Retroviruses contain special single stranded RNAs (genetic materials of a virus) which target the host cells; once in the host cells, they use their own enzymes called as “Reverse transcriptase” to convert the virus RNA to proviral DNA. In the HIV life cycle, three enzymes are essential for replication of this virus inside the host cells, reverse transcriptase (RT), protease(PR) and integrase (IN). Theoretically, an anti-HIV agent may exert its activity by inhibiting a variety of steps in the life cycle of the virus;which is why, this stage of virus life cycle is considered to be one of the prime and promising targets for the development of anti-HIV drugs [4–6].

    In order to search for anti-HIV drugs with fewer side effects and high efficacy, modeling the biological activity to propose new candidate molecules is an important approach. So, over the last few years, the quantitative structure–activity relationship (QSAR) studies have been widely carried out for different series of HIV-1 inhibitors, such as HIV-1 RT inhibitors(RTIs) [7–9], HIV-1 IN inhibitors [10–12] and HIV-1 protease inhibitors [13].

    Certainly,a large number of compounds have already been synthesized to target various HIV-1-RT active sites,for example,HEPT derivatives(1-[(2-hydroxyethoxy)methyl]-6-(phenylthio)thymine)are some of those several proved potent HIV-NNRTIs(non-nucleoside inhibitors).Generally,in order to evaluate the performance of anti-HIV drugs,two important values,the required effective concentration to achieve 50%protection of MT-4 cells against the cytopathic effect of virus(EC50,expressed as–lgEC50,pEC50)and the required cytotoxic concentration to reduce visibility of 50%mock infected cell(CC50,expressed as–lgCC50,pCC50)were widely utilized,and some QSAR investigates have been successfully performed in this field[14–16].For instance,Bazoui et al. [17] employed multiple linear regression (MLR) and artificial neural network (ANN) approaches to develop two models for predicting pEC50of 95 HEPT derivatives, and their models were very satisfying with good statistical values (the squared correction coefficient R2of 0.83 and 0.85 in MLR and ANN model,respectively).In Chen et al.'s work[18],two nonlinear models based on Comparative Molecular Field Analysis(CoMFA)and Comparative Molecular Similarity Index Analysis(CoMSIA)were proposed for pEC50prediction of the data set of 88 compounds with R2of 0.926 and 0.954,respectively.Also,in Guo et al.'s investigation[19],by using the supervised stochastic resonance(SSR)approach,a QSAR model(R2=0.8858)was developed for predicting pEC50of 80 HEPT derivatives.

    Recently,based on the molecule's distance matrix and atom characters matrix,our group has proposed some norm index-based models which were successfully utilized for predicting different properties of compounds including the narcotic pollutants' aquatic toxicity[20],the pharmacological and toxicological activity of heterocyclic compounds[21],and high affinity 5-HT1Areceptor ligands of arylpiperazine derivatives[22].Our previous work suggested that this new approach might be capable to be further utilized in a large field.

    Therefore,this research work was carried out to satisfy two goals:(1)to propose a new norm index,(2)to develop a more accurate and stable structure–activity relationship model for biological activity prediction of HIV-1 inhibitors HEPT derivatives.

    2.Methods

    2.1.Data Sets

    This research work was carried out to predict the pEC50(134 compounds)and pCC50(39 compounds)activities of HEPT derivatives,and their general structure is shown in Fig.1;the observed and predicted values of pEC50and pCC50activities of these compounds are presented in Table S1 and Table S2(provided as Supporting Information),respectively[13,23–26].For both pEC50and pCC50prediction,the training set and test set were divided randomly as same as those of the reference work[13].

    Fig.1.The general structure of HEPT derivatives.

    The molecular structures were drawn using the free version of Hyperchem(http://www.hyper.com/)[27].The molecules were then pre-optimized using the molecular mechanics force field(MM+)calculations of the software. Energy minimization of the molecules was obtained by using ab-initio method. Among which, the charge distribution and the molecules' geometries were optimized by using ab initio methods at STO-3G level and a gradient norm limit of 4.184×109kJ·m?1was set for the purpose.

    2.2.Model Construction

    In order to illustrate the atom distribution and constituent of a molecule clearly and quantitatively,some step distance matrixes and a property matrix of a molecule have been proposed and used in our QSAR approach.Firstly,the step distance matrices of HEPT derivatives' structures were generated based on their chemical graphs.Here,the step distance matrix consisted of the adjacent step distance matrix,the interval step distance matrix and the interval jump step distance matrix shown as Eq.(1).Then,a property matrix including various atomic characters such as atomic weight,van der Waals radius,electronegativity and atom charge,were specially defined in order to improve the predictive effect of this method.In addition,it was obvious that information concerning atom/heteroatom connectivity patterns and hybrid electronic information in the molecule could be encoded by these atomic characters.

    The step distance matrices and the property matrix used in this research were shown as follows:

    where eiis atom i's electronegativity.

    Based on Eqs.(1)and(2),the extended distance matrices MD(including 10 matrices)were further de fined,then,some norm indexes of the above 10 MD matrices were also proposed and listed as in Table 1.In this work,three kinds of norm indexes are specially de fined:the norm(MD,1)means the largest column sum of matrix MD,the norm(MD,2)stands for the largest singular value of matrix MD,and the norm(MD,fro)is the Frobenius-norm of matrix MD.

    Table 1 Norm indexes of extended distance matrices MD and parameters of Eq.(3)

    According to these norm indexes,a multiple regression QSAR mathematical model was developed and expressed as Eq.(3):

    where,lg(1/C)stands for the two biological activities of pEC50or pCC50,b0is the constant,MDiis the descriptor and biis the corresponding regression coefficient of this MLR model.The individual values of all variables are also listed as in Table 1.During our modeling work,two arithmetic linear methods,MLR(multiple linear regression)and PLS(partial least-squares)approaches were used and surprising similar results have been obtained by using the two different regression methods.Therefore,all the prediction results provided in this work were just based on the MLR approach.

    2.3.Model Validation

    The quality of this model was determined by the statistical values of regression model,leave-one-out cross-validation(LOO-CV)and Y-randomization test.

    Table 2 Statistical results for prediction of pEC50and pCC50for HEPT derivatives based on this model and the references' models

    2.4.Applicability Domain(AD)

    The applicability domain (AD) determines the predictive power of the QSAR model.Verification of applicability domain is essential,especially if the model is to be used to screen new compounds.In this research work,the AD of the predictive model was verified by the leverage approach using a Williams graph[28],where the leverage values(h)were plotted against the training set's standard residual values.In this plot,the AD is established inside a calculated area(leverage threshold,defined as h*=3((N+1)/n))within±3 standard deviations.The compounds outside this area(i.e.the leverage of the compound is greater than leverage threshold,i.e.h>h*)are treated as outliers.The individual leverage threshold values are given with the relative plots[28,29].

    3.Results and Discussion

    3.1.Prediction Results of pEC50and pCC50

    The pEC50and pCC50prediction results of this model were listed in Table S1 and Table S2.And statistical metrics for the predictive model R2and ARD were summarized in Table 2.The predicted versus experimental values scatter diagram for this regression were presented in Figs.2 and 3.Figs.4 and 5 showed the plot of residuals versus experimental values.For convenient utilization of our model,the pEC50and pCC50prediction process were described in detail as Appendix A.

    Results in Fig.2 indicate that the predicted pEC50agrees well with the experimental results for 134 HEPT derivatives. Statistical metrics described that our model could give satisfactory prediction results of pEC50withof 0.774,respectively.Fig.4 showed that prediction residuals of our model for pEC50were between?1 and 1 for the most of HEPT derivatives except for three compounds.Also,by using Eq.(3),the pCC50values could be predicted well as shown in Fig.3 and our satisfactory prediction results could be testified by theand the lower prediction residuals as showed in Table 2 and Fig.5.

    Fig.2.The predicted vs.experimental pEC50values for 134 HEPT derivatives.

    Fig.3.The predicted vs.experimental pCC50values for 39 HEPT derivatives.

    Fig.5.Plot of the residual vs.experimental pCC50from this model.

    Also,in order to compare with other models,some reference methods[14,17,19,30,31]and their regression statistical results for pEC50and pCC50prediction were listed in Table 2.In case of pEC50,Table 2 showed that the predictive ability of our method(R2of 0.847)was better than MLR-based linear modeling method(R2of 0.83).While methods based on ANN,NN and SSR approaches[14,17,19]could give better prediction results with R2of 0.977,0.85 and 0.886,respectively.However,it was obvious that all the dataset considered in their works[14,17,19]had not been separated into training and test sets,which might limit the applicability of these methods to some degree;accordingly,the predictive capability of MLR-based linear modeling method was not good enough(Q2of 0.70).While for pCC50prediction,our model outperformed(R2of 0.815)the reference methods(R2=0.78–0.81)whether it was a linear or non-linear model.On the whole,the methodologies used in the other studies were very different;it is certain that each method had its merit,and these methods might have the optional application fields for pEC50and pCC50prediction for special HEPT derivatives with accuracy.What's more,it should be pointed that our method was a linear model and could be expressed concretely as a formula,which could be further used by others conveniently if comparing with these nonlinear methods(ANN and NN).

    3.2.Leave-one-out Cross-validation

    Being as a model validation technique,cross-validation approach is mainly utilized to estimate how accurately a predictive model will perform in practice.And the objective of cross-validation is to de fine a dataset to “test”the model in the training phase,in order to limit problems like over fitting during modeling work. For instance, the leave-one out cross-validation(LOO-CV)approach is a powerful general technique and widely applied for the model evaluation. Generally, during the LOOCV process,only one sample is used as the test set,and the remaining(N-1)samples are becoming the training set if the original dataset is of N samples.Then,N new models would be developed,accordingly,N statistical values of Q2(the squared correlation coefficient of LOO-CV)would be obtained.Lastly,the average of N statistical values of Q2would be set as the final LOO-CV validation result.

    where,Yobs,Ypredand Y stand for observed,predicted and the mean observed activities,respectively.

    The predictive ability of this model is validated by LOO-CV as shown in Table 2.And distributions of the relative derivation(RD)by LOO-CV and this model for pEC50and pCC50were presented as Figs.6 and 7.The higher Q2of0.787and0.846values for pEC50 and pCC50prediction obtained from LOO-CV suggested the reliability of our model.Also,from Figs.6 and 7,it was obvious that RD distributions for both LOO-CV prediction and our model prediction were very similar,which further demonstrated the stability of our norm-index-based model for prediction pEC50and pCC50for these HEPT derivatives.

    Fig.6.Distributions of the relative derivation(RD)by leave-one-out cross-validation and this model for pEC50.

    Fig.7.Distributions of the relative derivation(RD)by leave-one-out cross-validation and this model for pCC50.

    3.3.Y-randomization Test

    Usually,Y-randomization test technique was performed in order to avoid the possibility of chance correlation for the modeling work;and also,this approach was widely utilized to evaluate the robustness of QSAR model.The dependent variable vector(training set compounds)is shuffled randomly to create a new QSAR model using the independent variable matrix.Generally,the lower R2and Q2values of bothprediction and our model prediction were very similar,which further demonstrated the stability

    Table 3The Y-randomization test results to validate the model robustness to predict pEC50and pCC50

    In this work, five random shuffles of the y vector were carried out at 95%confidence level for each QSAR dataset and results were listed in Table 3.Results shown in Table 3 suggested that values of R2and Q2of these new random models were Significant lower than those of our original model both for pEC50and pCC50.Accordingly,our QSAR model is robust and there was not chance correlation during our modeling work.

    3.4.Applicability Domain(AD)

    The applicability domain of this proposed QSAR model forp EC50and pCC50was verified by the Williams graph and the plot of the diagonal values of the hat matrix(H)versus standardized residuals was shown as Figs.8 and 9.Results of Fig.8 described that most of the training set substances and test set were included in the AD of this model;only two training compounds(the compound Nos.of 61 and 100)and one test compound(the compound No.of 131)were identified and verified as structural outliers for pEC50prediction.As for pCC50prediction,all the 39 compounds were distributed in the AD of this model.Consequently,it could be deduced that this developed QSAR models could cover a large response and structural applicability domain both for pEC50and pCC50prediction of HEPT derivatives.

    4.Conclusions

    In this study, based on the norm indexes proposed by authors, a new QSAR model was developed for predicting the pEC50and pCC50activities of more than 150 HEPT derivatives(1-[(2-hydroxyethoxy)methyl]-6-(phenylthio)thymine).Results indicated that this new model could provide satisfactory results for prediction of pEC50and pCC50with theComparison results with reference methods demonstrated that this new method could result in improvements for predicting pEC50and pCC50of anti-HIV HEPT derivatives.Leave-one-out cross validation and Y-randomization test results suggested the reliability and stability of our model,and this model might be applied in a large response and structural domain by verified applicability domain.In summary,these validation results prove that this model might be potent and could be further used to study other activities of related HEPT derivatives.

    Fig.8.Applicability domain of our model for pEC50prediction of 134 HEPT derivatives.

    Fig.9.Applicability domain of our model for pCC50prediction of 39 HEPT derivatives.

    Appendix A

    Prediction for pEC50andpCC50of the first compound in Table S1 and Table S2:

    The structure of this compound is as follows:

    Firstly,four step distance matrices and a property matrix Meof this compound were generated based on it's chemical graph shown as Eqs.(1)and(2).Then,based on Eqs.(1)and(2),the extended distance matrices then,some norm indexes(including the norm(MD,1),the norm(MD,2)and the norm(MD,fro))of the above 10 MD matrices were calculated and listed in Table 4.

    Table 4Norm indexes values of the 10 extended distance matrices MD for the first compound in Table S1 and Table S2

    Based on parameters shown in Tables 1 and 4,the pEC50and pCC50of this compound was predicted by Eq.(3):

    The calculated pCC50result is 3.64,while the experimental pCC50is 3.52.

    Appendix B.Supplementary data

    The observed and predicted pEC50values of 134 HEPT derivatives are listed in Table S1,the observed and predicted pCC50values of 39 HEPT derivatives are listed in Table S2.Supplementary data to this article can be found online at doi:http://dx.doi.org/10.1016/j.cjche.2016.04.010.

    [1]http://www.unaids.org/en/dataanalysis.

    [2]M.Baba,H.Tanaka,E.De Clercq,R.Pauwels,J.Balzarini,D.Schols,H.Nakashima,C.F.Perno,R.Walker,T.Miyasaka,Highly specific inhibition of human immunodeficiency virus type 1 by a novel 6-substituted acyclouridine derivative,Biochem.Biophys.Res.Commun.165(1989)1375–1381.

    [3]World Health Organization,J.U.N.P.o.,UNICEF,Global HIV/AIDS response:Epidemic update and health sector progress towards universal access:Progress report 2011,World Health Organization,2011.

    [4]T.Miyasaka,H.Tanaka,M.Baba,H.Hayakawa,R.T.Walker,J.Balzarini,E.De Clercq,A novel lead for specific anti-HIV-1 agents:1-[(2-Hydroxyethoxy)methyl]-6-(phenylthio)thymine,J.Med.Chem.32(1989)2507–2509.

    [5]C.M.Bailey,T.J.Sullivan,P.Iyidogan,J.Tirado-Rives,R.Chung,J.Ruiz-Caro,E.Mohamed,W.Jorgensen,R.Hunter,K.S.Anderson,Bifunctional inhibition of human immunode fi ciency virus type 1 reverse transcriptase:Mechanism and proof-of-concept as a novel therapeutic design strategy,J.Med.Chem.56(2013)3959–3968.

    [6]K.M.Frey,D.E.Puleo,K.A.Spasov,M.Bollini,W.L.Jorgensen,K.S.Anderson,Structure-based evaluation of non-nucleoside inhibitors with improved potency and solubility that target HIV reverse transcriptase variants,J.Med.Chem.58(2015)2737–2745.

    [7]L.He,P.C.Jurs,Assessing the reliability of a QSAR model's predictions,J.Mol.Graph.Model.23(2005)503–523.

    [8]A.Golbraikh,A.Tropsha,Predictive QSAR modeling based on diversity sampling of experimental datasets for the training and test set selection,J.Comput.Aided Mol.Des.16(2002)357–369.

    [9]A.Golbraikh,A.Tropsha,Beware of q2!J.Mol.Graph.Model.20(2002)269–276.

    [10]A.Golbraikh,M.Shen,Z.Xiao,Y.-D.Xiao,K.-H.Lee,A.Tropsha,Rational selection of training and test sets for the development of validated QSAR models,J.Comput.Aided Mol.Des.17(2003)241–253.

    [11]S.Raic-Malic,D.Svedruzic,T.Gazivoda,A.Marunovic,A.Hergold-Brundic,A.Nagl,J.Balzarini,E.De Clercq,M.Mintas,Synthesis and antitumor activities of novel pyrimidine derivatives of 2,3-O,O-dibenzyl-6-deoxy-L-ascorbic acid and 4,5-didehydro-5,6-dideoxy-L-ascorbic acid,J.Med.Chem.43(2000)4806–4811.

    [12]L.Eriksson,J.Jaworska,A.P.Worth,M.T.Cronin,R.M.McDowell,P.Gramatica,Methods for reliability and uncertainty assessment and for applicability evaluations of classi fi cation-and regression-based QSARs,Environ.Health Perspect.111(2003)1361.

    [13]R.Garg,S.P.Gupta,H.Gao,M.S.Babu,A.K.Debnath,C.Hansch,Comparative quantitative structure–activity relationship studies on anti-HIV drugs,Chem.Rev.99(1999)3525–3602.

    [14]L.Douali,D.Villemin,D.Cherqaoui,Neural networks:Accurate nonlinear QSAR model for HEPT derivatives,J.Chem.Inf.Comput.Sci.43(2003)1200–1207.

    [15]V.P.Solov'ev,A.Varnek,Anti-HIV activity of HEPT,TIBO,and cyclic urea derivatives:Structure–property studies,focused combinatorial library generation,and hits selection using substructural molecular fragments method,J.Chem.Inf.Comput.Sci.43(2003)1703–1719.

    [16]Y.Akhlaghi,M.Kompany-Zareh,Application of radial basis function networks and successive projections algorithm in a QSAR study of anti-HIV activity for a large group of HEPT derivatives,J.Chemom.20(2006)1–12.

    [17]H.Bazoui,M.Zahouily,S.Boulajaaj,S.Sebti,D.Zakarya,QSAR for anti-HIV activity of HEPT derivatives,SAR QSAR Environ.Res.13(2002)567–577.

    [18]H.F.Chen,X.J.Yao,Q.Li,S.G.Yuan,A.Panaye,J.P.Doucet,B.T.Fan,Comparativestudy of non-nucleoside inhibitors with HIV-1 reverse transcriptase based on 3D-QSAR and docking,SAR QSAR Environ.Res.14(2003)455–474.

    [19]W.Guo,X.Hu,N.Chu,C.Yin,Quantitative structure–activity relationship studies on HEPTs by supervised stochastic resonance,Bioorg.Med.Chem.Lett.16(2006)2855–2859.

    [20]Q.Wang,Q.Jia,L.Yan,S.Xia,P.Ma,Quantitative structure–toxicity relationship of the aquatic toxicity for various narcotic pollutants using the norm indexes,Chemosphere 108(2014)383–387.

    [21]Z.C.Zhu,Q.Wang,Q.Z.Jia,S.Q.Xia,P.S.Ma,Structure–property relationship for the pharmacological and toxicological activity of heterocyclic compounds,Acta Phys.-Chim.Sin.30(2014)1086–1090.

    [22]Q.Jia,X.Cui,L.Li,Q.Wang,Y.Liu,S.Xia,P.Ma,A quantitative structure–activity relationship for high affinity 5-HT1A receptor ligands based on norm indexes,J.Phys.Chem.B 119(2015)15561–15567.

    [23]H.Tanaka,H.Takashima,M.Ubasawa,K.Sekiya,I.Nitta,M.Baba,S.Shigeta,R.T.Walker,E.De Clercq,T.Miyasaka,Synthesis and antiviral activity of deoxy analogs of I-[(2-hydroxyethoxy)methyl]-6-(phenylthio)thymine(HEPT)as potent and selective anti-HIV-1 agents,J.Med.Chem.35(1992)4713–4719.

    [24]M.Baba,S.Shigeta,H.Tanaka,T.Miyasaka,M.Ubasawa,K.Umezu,R.T.Walker,R.Pauwels,E.De Clercq,Highly potent and selective inhibition of HIV-1 replication by 6-phenylthiouracil derivatives,Antivir.Res.17(1992)245–264.

    [25](a)T.Miyasaka,H.Tanaka,M.Baba,H.Hayakawa,R.T.Walker,J.Balzarini,E.De Clercq,A novel lead for speci fi c anti-HIV-1 agents:1-[(2-Hydroxyet hoxy)methyl]-6-(phenylthio)thymine,J.Med.Chem.32(1989)2507–2509;

    (b)M.Baba,H.Tanaka,E.DeClercq,R.Pauwels,J.Balzarini,D.Schols,H.Nakashima,C.F.Perno,R.T.Walker,T.Miyasaka,Highly specific inhibition of human immunodeficiency firus type 1 by a novel substituted acyclouridine derivative,Biochem.Biophys.Res.Commun.165(1989)1375–1381;

    (c)M. Tanaka, M. Baba, M. Ubasawa, H. Takashima, K. Sekiya, I. Nitta, S. Shigeta, R.T.Walker, E. De Clercq, T.Miyasaka, Synthesis and anti-HIV activity of 2-,3-, and 4-substituted analogues of 1-[(2-hydroxyethoxy)methyl]-6-(phenylthio)thymine(HEPT), J. Med. Chem. 34 (1991) 1394–1399;

    (d)H.Tanaka,M.Baba,S.Saito,T.Miyasaka,H.Takashima,K.Sekiya,M.Ubasawa,I.Nitta,R.T.Walker,H.Nakashima,E.De Clercq,Specificanti-HIV-1“Acyclonucleosides”which cannot be phosphorylated:Synthesis of some deoxy analogues of 1-[(2-Hydroxyethoxy)methyll-6-(phenylthio)thymine,J.Med.Chem.34(1991)1508–1511;

    (e)H.Tanaka,M.Baba,H.Hayakawa,K.Haraguchi,T.Miyasaka,M.Ubasawa,H.Takashima,K.Sekiya,I.Nitta,R.T.Walker,E.De Clercq,Lithiation of uracilnucleosides and its application to the synthesis of a new class of anti-HIV-1 acyclonucleosides,Nucleosides Nucleotides 10(1991)397–400.

    [26]J.M.Luco,F.H.Ferretti,QSAR based on multiple linear regression and PLS methods for the anti-HIV activity of a large group of HEPT derivatives,J.Chem.Inf.Comput.Sci.37(1997)392–401.

    [27]Hyperchem.7.0.Hypercube,Inc.,http://www.hyper.com 2001.

    [28]P.Gramatica,Principles of QSAR models validation:Internal and external,QSAR Comb.Sci.26(2007)694–701.

    [29]P.Gramatica,E.Giani,E.Papa,Statistical external validation and consensus modeling:A QSPR case study for Koc prediction,J.Mol.Graph.Model.25(2007)755–766.

    [30]H.Bazoui,M.Zahouily,S.Sebti,S.Boulajaaj,D.Zakarya,Structure–cytotoxicity relationships for a series of HEPT derivatives,J.Mol.Model.8(2002)1–7.

    [31]V.K.Agrawal,J.Singh,K.Mishra,P.V.Khadikar,QSAR study on cytotoxic activities of a series of HEPT analogues,Lett.Drug Des.Discovery 3(2006)129–137.

    [32]C.Rücker,G.Rücker,M.Meringer,Y-randomization and its variants in QSPR/QSAR,J.Chem.Inf.Model.47(2007)2345–2357.

    [33]A.Tropsha,P.Gramatica,V.K.Gombar,The importance of being earnest:Validation is the absolute essential for successful application and interpretation of QSPR models,QSAR Comb.Sci.22(2003)69–77.

    别揉我奶头 嗯啊视频| 熟女av电影| 免费观看在线日韩| 亚洲欧美日韩无卡精品| 久久影院123| 国产免费一区二区三区四区乱码| 久久ye,这里只有精品| 亚洲人成网站在线观看播放| 一级爰片在线观看| 成人亚洲精品av一区二区| 亚洲成人一二三区av| 香蕉精品网在线| 亚洲精品456在线播放app| 超碰97精品在线观看| 国产爽快片一区二区三区| 老师上课跳d突然被开到最大视频| 在线观看一区二区三区激情| 少妇的逼水好多| 日韩国内少妇激情av| 肉色欧美久久久久久久蜜桃 | 国内精品美女久久久久久| 久久精品久久久久久噜噜老黄| 精品一区在线观看国产| 国产中年淑女户外野战色| 男人添女人高潮全过程视频| 1000部很黄的大片| 国产精品三级大全| 国产精品99久久99久久久不卡 | 久久ye,这里只有精品| 丝袜脚勾引网站| 国产精品麻豆人妻色哟哟久久| 亚洲成色77777| av免费观看日本| 在线观看国产h片| 亚洲成人久久爱视频| 亚洲三级黄色毛片| 免费观看av网站的网址| 亚洲美女视频黄频| 午夜老司机福利剧场| 亚洲人成网站在线播| 内射极品少妇av片p| 久久99精品国语久久久| 夫妻午夜视频| 日韩一区二区三区影片| av在线亚洲专区| 国产极品天堂在线| 少妇裸体淫交视频免费看高清| 少妇熟女欧美另类| 亚洲,欧美,日韩| 国产精品国产三级专区第一集| 国产亚洲午夜精品一区二区久久 | 国产精品无大码| 亚洲国产欧美人成| 国产精品一二三区在线看| 人人妻人人看人人澡| 午夜福利高清视频| 一边亲一边摸免费视频| 午夜激情福利司机影院| av在线亚洲专区| 亚洲成人精品中文字幕电影| 一二三四中文在线观看免费高清| 99热这里只有精品一区| 成人亚洲精品一区在线观看 | 各种免费的搞黄视频| 一区二区三区四区激情视频| 男插女下体视频免费在线播放| 欧美少妇被猛烈插入视频| 新久久久久国产一级毛片| 男插女下体视频免费在线播放| 亚洲精品日本国产第一区| 秋霞在线观看毛片| 亚洲美女搞黄在线观看| 亚洲,欧美,日韩| 午夜福利在线在线| 国产精品久久久久久精品电影| 亚洲av男天堂| www.av在线官网国产| 99久久九九国产精品国产免费| 国产黄片美女视频| 全区人妻精品视频| 男人舔奶头视频| 亚洲欧美精品专区久久| 国产伦精品一区二区三区视频9| 中文精品一卡2卡3卡4更新| 国产亚洲最大av| 卡戴珊不雅视频在线播放| 国内精品宾馆在线| 啦啦啦啦在线视频资源| 丝袜喷水一区| 大香蕉久久网| 午夜日本视频在线| 亚洲一级一片aⅴ在线观看| 少妇猛男粗大的猛烈进出视频 | 男的添女的下面高潮视频| 色哟哟·www| 亚洲精品成人av观看孕妇| kizo精华| 在线观看一区二区三区| 国产精品熟女久久久久浪| tube8黄色片| 国产有黄有色有爽视频| 亚洲内射少妇av| 国产中年淑女户外野战色| 人人妻人人爽人人添夜夜欢视频 | 黄色配什么色好看| 国产成人免费观看mmmm| 日韩 亚洲 欧美在线| 中文资源天堂在线| 黄片wwwwww| 国产免费一区二区三区四区乱码| 久久久精品免费免费高清| 久久精品人妻少妇| av在线播放精品| 高清毛片免费看| 美女脱内裤让男人舔精品视频| 丰满人妻一区二区三区视频av| 国内精品宾馆在线| 亚洲在线观看片| 日韩av在线免费看完整版不卡| 久久综合国产亚洲精品| 尤物成人国产欧美一区二区三区| 国产爱豆传媒在线观看| 免费观看性生交大片5| 国产欧美日韩一区二区三区在线 | 在线免费十八禁| 在线播放无遮挡| 精华霜和精华液先用哪个| 亚洲aⅴ乱码一区二区在线播放| 亚洲精品乱码久久久v下载方式| av.在线天堂| 久久久国产一区二区| 99热6这里只有精品| 尾随美女入室| 亚洲综合色惰| 男人爽女人下面视频在线观看| 欧美老熟妇乱子伦牲交| 在线观看一区二区三区| 水蜜桃什么品种好| 成人亚洲精品一区在线观看 | 在线观看免费高清a一片| 午夜免费鲁丝| 国产视频内射| 亚洲人成网站高清观看| 欧美日本视频| 交换朋友夫妻互换小说| 日韩不卡一区二区三区视频在线| 亚洲最大成人av| 国内精品宾馆在线| 高清在线视频一区二区三区| 国产探花极品一区二区| 亚洲激情五月婷婷啪啪| 久久久国产一区二区| 亚洲欧美清纯卡通| 国产爽快片一区二区三区| 麻豆成人av视频| 亚洲一区二区三区欧美精品 | 高清毛片免费看| 99re6热这里在线精品视频| 日韩人妻高清精品专区| 自拍欧美九色日韩亚洲蝌蚪91 | 亚洲天堂av无毛| 成人漫画全彩无遮挡| 简卡轻食公司| 国产一区有黄有色的免费视频| 三级经典国产精品| 亚洲精品日韩av片在线观看| 91久久精品国产一区二区三区| 一本一本综合久久| 国产日韩欧美亚洲二区| 久久久久久久久久久免费av| 精品人妻视频免费看| 国产视频首页在线观看| 人妻少妇偷人精品九色| 国产色爽女视频免费观看| 亚洲经典国产精华液单| 免费观看a级毛片全部| 听说在线观看完整版免费高清| 国产亚洲av嫩草精品影院| 美女高潮的动态| 又黄又爽又刺激的免费视频.| 精品酒店卫生间| 91aial.com中文字幕在线观看| 少妇 在线观看| 亚洲美女搞黄在线观看| 大香蕉久久网| 精品久久久久久久久亚洲| 国产精品精品国产色婷婷| 99热这里只有是精品在线观看| 亚洲三级黄色毛片| av在线蜜桃| 久久精品国产自在天天线| 2018国产大陆天天弄谢| 69人妻影院| 国产精品一区二区性色av| 神马国产精品三级电影在线观看| av国产免费在线观看| 18禁裸乳无遮挡动漫免费视频 | 秋霞伦理黄片| 日本-黄色视频高清免费观看| 国产成人91sexporn| av国产精品久久久久影院| 成人鲁丝片一二三区免费| 国产又色又爽无遮挡免| 91久久精品电影网| 日日撸夜夜添| 禁无遮挡网站| 亚洲精品一区蜜桃| www.av在线官网国产| 男女下面进入的视频免费午夜| 国产黄片视频在线免费观看| 特大巨黑吊av在线直播| 久久久久久久久久久免费av| 久久久成人免费电影| 一二三四中文在线观看免费高清| 97精品久久久久久久久久精品| 久久精品综合一区二区三区| 色播亚洲综合网| 春色校园在线视频观看| 麻豆精品久久久久久蜜桃| 少妇的逼水好多| 少妇人妻一区二区三区视频| 久久韩国三级中文字幕| 久久97久久精品| 国产美女午夜福利| 国产v大片淫在线免费观看| 我的女老师完整版在线观看| 久久久久精品久久久久真实原创| 久久99热这里只频精品6学生| 国产乱人偷精品视频| 一级毛片电影观看| 青青草视频在线视频观看| 韩国av在线不卡| 国产成人精品一,二区| 欧美区成人在线视频| 少妇人妻久久综合中文| av国产久精品久网站免费入址| 观看免费一级毛片| 免费观看在线日韩| 中文精品一卡2卡3卡4更新| 男人爽女人下面视频在线观看| 成人一区二区视频在线观看| 国产永久视频网站| 成人特级av手机在线观看| 国产视频内射| 中国美白少妇内射xxxbb| 欧美三级亚洲精品| 久久99热这里只频精品6学生| 免费少妇av软件| 3wmmmm亚洲av在线观看| 精品人妻熟女av久视频| 高清午夜精品一区二区三区| 亚洲,一卡二卡三卡| 精品一区二区三卡| 成人国产av品久久久| 欧美+日韩+精品| 免费不卡的大黄色大毛片视频在线观看| 韩国高清视频一区二区三区| 久久久亚洲精品成人影院| 97热精品久久久久久| 亚洲性久久影院| 午夜激情久久久久久久| 亚洲精品国产av蜜桃| 午夜福利高清视频| 久久久色成人| 一级毛片黄色毛片免费观看视频| 亚洲精品影视一区二区三区av| 中国美白少妇内射xxxbb| 大码成人一级视频| videos熟女内射| 黄片无遮挡物在线观看| 男人和女人高潮做爰伦理| 国产精品.久久久| 精品一区在线观看国产| 国产欧美日韩精品一区二区| 亚洲精品乱久久久久久| 欧美极品一区二区三区四区| 亚洲熟女精品中文字幕| 日本黄色片子视频| 亚洲精品久久久久久婷婷小说| 国产在视频线精品| 老司机影院毛片| 成人漫画全彩无遮挡| 亚洲三级黄色毛片| 国产一区亚洲一区在线观看| av黄色大香蕉| 国产精品av视频在线免费观看| 一级毛片我不卡| 可以在线观看毛片的网站| 亚洲激情五月婷婷啪啪| 国产精品国产三级国产av玫瑰| 老司机影院成人| 国产精品国产av在线观看| 午夜福利在线在线| 亚洲精品乱码久久久久久按摩| av在线app专区| 十八禁网站网址无遮挡 | 80岁老熟妇乱子伦牲交| 久久久久久久久久久免费av| 街头女战士在线观看网站| 国产高清国产精品国产三级 | 久热久热在线精品观看| h日本视频在线播放| 免费电影在线观看免费观看| 亚洲国产色片| 91精品一卡2卡3卡4卡| 日韩精品有码人妻一区| 国语对白做爰xxxⅹ性视频网站| 成人欧美大片| 免费观看a级毛片全部| 久久久久九九精品影院| 久热这里只有精品99| 深夜a级毛片| 一区二区三区乱码不卡18| 免费人成在线观看视频色| 免费观看a级毛片全部| 99热全是精品| 亚洲精品自拍成人| 简卡轻食公司| 国产爱豆传媒在线观看| 黄色视频在线播放观看不卡| 午夜福利网站1000一区二区三区| 热99国产精品久久久久久7| 国产老妇女一区| 一区二区三区四区激情视频| 久久久久国产网址| 91在线精品国自产拍蜜月| 亚洲性久久影院| 狂野欧美激情性xxxx在线观看| 黄色欧美视频在线观看| 亚洲av福利一区| 免费黄频网站在线观看国产| 国产欧美另类精品又又久久亚洲欧美| 成人美女网站在线观看视频| 午夜激情久久久久久久| 精品视频人人做人人爽| 男女边吃奶边做爰视频| 午夜免费观看性视频| 高清av免费在线| 日韩视频在线欧美| 精品久久久久久久久av| 国产欧美日韩精品一区二区| 丰满乱子伦码专区| 亚洲欧美成人精品一区二区| 激情 狠狠 欧美| 看黄色毛片网站| 高清av免费在线| 日韩视频在线欧美| 精品久久国产蜜桃| 日韩欧美一区视频在线观看 | 国产精品av视频在线免费观看| 亚洲av不卡在线观看| 哪个播放器可以免费观看大片| 日韩一区二区三区影片| 91aial.com中文字幕在线观看| 青春草国产在线视频| 婷婷色麻豆天堂久久| 午夜爱爱视频在线播放| 亚洲精品亚洲一区二区| 久久99热6这里只有精品| 欧美亚洲 丝袜 人妻 在线| 久久人人爽人人片av| 天天躁夜夜躁狠狠久久av| 水蜜桃什么品种好| 男女边摸边吃奶| 狂野欧美激情性bbbbbb| 2022亚洲国产成人精品| 女人被狂操c到高潮| 黄片无遮挡物在线观看| 特大巨黑吊av在线直播| 日本wwww免费看| 久久精品国产亚洲av天美| 在线观看一区二区三区| 高清在线视频一区二区三区| 日韩大片免费观看网站| 国产一区有黄有色的免费视频| 亚洲av免费在线观看| 免费少妇av软件| 久久人人爽人人爽人人片va| 秋霞伦理黄片| 中国国产av一级| 国产伦理片在线播放av一区| 啦啦啦中文免费视频观看日本| 99re6热这里在线精品视频| 黄色怎么调成土黄色| 在线精品无人区一区二区三 | 男人狂女人下面高潮的视频| 久久精品久久久久久噜噜老黄| 中文字幕免费在线视频6| 日韩中字成人| av黄色大香蕉| 国产男人的电影天堂91| 国产成人a区在线观看| 免费不卡的大黄色大毛片视频在线观看| 国产高清三级在线| 国产成人福利小说| 日韩成人伦理影院| 亚洲,一卡二卡三卡| 白带黄色成豆腐渣| 最近手机中文字幕大全| 亚洲av欧美aⅴ国产| 少妇人妻精品综合一区二区| 免费看a级黄色片| 婷婷色av中文字幕| 黄片wwwwww| 久久久久久久国产电影| av免费在线看不卡| 欧美潮喷喷水| 偷拍熟女少妇极品色| 十八禁网站网址无遮挡 | 青春草亚洲视频在线观看| 国产成人一区二区在线| 少妇猛男粗大的猛烈进出视频 | 狂野欧美白嫩少妇大欣赏| 日韩人妻高清精品专区| 欧美3d第一页| 日本wwww免费看| 在线观看人妻少妇| 精品久久国产蜜桃| 伦精品一区二区三区| 亚洲色图综合在线观看| 99视频精品全部免费 在线| 亚洲欧美清纯卡通| 日韩人妻高清精品专区| 男人狂女人下面高潮的视频| 久久久成人免费电影| 日本一本二区三区精品| 一级毛片电影观看| 亚洲在久久综合| 久久韩国三级中文字幕| 国产午夜福利久久久久久| 好男人在线观看高清免费视频| 久久精品人妻少妇| 久热久热在线精品观看| 国产精品一及| 成人一区二区视频在线观看| 一级毛片久久久久久久久女| 黄色日韩在线| 午夜福利视频1000在线观看| 22中文网久久字幕| 日本黄色片子视频| 亚洲美女视频黄频| 中文字幕久久专区| 久久人人爽av亚洲精品天堂 | 精品久久久久久电影网| 联通29元200g的流量卡| 欧美一区二区亚洲| .国产精品久久| 日韩亚洲欧美综合| 2022亚洲国产成人精品| 成年av动漫网址| 97超视频在线观看视频| 免费看不卡的av| 少妇裸体淫交视频免费看高清| 国产精品.久久久| 99久久精品国产国产毛片| 在线观看av片永久免费下载| 干丝袜人妻中文字幕| 国产精品av视频在线免费观看| 久久久久久久亚洲中文字幕| 久久久精品94久久精品| 黄色配什么色好看| 大香蕉97超碰在线| 国产亚洲5aaaaa淫片| 久久久久性生活片| 边亲边吃奶的免费视频| 日韩免费高清中文字幕av| 久久精品久久精品一区二区三区| 真实男女啪啪啪动态图| 直男gayav资源| 国产精品国产三级专区第一集| 国产淫片久久久久久久久| 91狼人影院| 精品国产露脸久久av麻豆| 国产精品女同一区二区软件| 久久精品熟女亚洲av麻豆精品| 日日撸夜夜添| 狠狠精品人妻久久久久久综合| 国产 一区精品| 久久精品久久久久久久性| freevideosex欧美| 少妇 在线观看| 午夜福利高清视频| 老司机影院成人| 天堂中文最新版在线下载 | 色视频www国产| 亚洲av国产av综合av卡| 中文乱码字字幕精品一区二区三区| 午夜福利在线观看免费完整高清在| 王馨瑶露胸无遮挡在线观看| 黄色日韩在线| 精品久久久久久久末码| 黄色日韩在线| 最近手机中文字幕大全| 国产有黄有色有爽视频| 水蜜桃什么品种好| 少妇丰满av| 国产免费又黄又爽又色| 午夜亚洲福利在线播放| 插逼视频在线观看| 人妻系列 视频| 视频区图区小说| 国产淫语在线视频| av在线播放精品| 日本-黄色视频高清免费观看| 久久久久性生活片| 精品一区二区免费观看| 久久这里有精品视频免费| 色视频在线一区二区三区| 色网站视频免费| 久久精品夜色国产| 日韩伦理黄色片| 免费少妇av软件| 18禁在线播放成人免费| 一级毛片黄色毛片免费观看视频| 少妇 在线观看| 日日啪夜夜撸| 亚洲成人一二三区av| 99久久精品热视频| 小蜜桃在线观看免费完整版高清| av在线天堂中文字幕| 色5月婷婷丁香| 亚洲精品久久午夜乱码| 在线看a的网站| 久热久热在线精品观看| 国产成人精品婷婷| 久久久久国产网址| 亚洲欧美中文字幕日韩二区| 久久精品久久久久久噜噜老黄| 免费人成在线观看视频色| 一区二区三区四区激情视频| 亚洲精品aⅴ在线观看| 女的被弄到高潮叫床怎么办| 亚洲国产欧美在线一区| 中文资源天堂在线| 亚洲综合精品二区| 黄片无遮挡物在线观看| 国产成人精品一,二区| 天美传媒精品一区二区| 在线看a的网站| 晚上一个人看的免费电影| 又粗又硬又长又爽又黄的视频| 亚洲国产日韩一区二区| 丝袜脚勾引网站| 视频区图区小说| 欧美变态另类bdsm刘玥| 国产成人a∨麻豆精品| 久久久亚洲精品成人影院| 亚洲图色成人| 在线观看国产h片| 三级男女做爰猛烈吃奶摸视频| 狂野欧美激情性bbbbbb| 免费av毛片视频| 91精品一卡2卡3卡4卡| 日韩免费高清中文字幕av| 亚洲成人精品中文字幕电影| 欧美一级a爱片免费观看看| 啦啦啦中文免费视频观看日本| 午夜福利网站1000一区二区三区| 狠狠精品人妻久久久久久综合| 国国产精品蜜臀av免费| 网址你懂的国产日韩在线| 亚洲精品第二区| 一级毛片 在线播放| 麻豆成人av视频| 久久久色成人| 最新中文字幕久久久久| 人人妻人人看人人澡| 插阴视频在线观看视频| 国产精品福利在线免费观看| 丝袜喷水一区| 久久97久久精品| 久久久亚洲精品成人影院| 久久精品国产鲁丝片午夜精品| 国产精品精品国产色婷婷| 日本-黄色视频高清免费观看| 欧美 日韩 精品 国产| 大片电影免费在线观看免费| 精品酒店卫生间| 99热6这里只有精品| 99热网站在线观看| 特级一级黄色大片| 久久久色成人| 少妇人妻 视频| 日韩成人伦理影院| 久久久色成人| 少妇人妻 视频| 尾随美女入室| 麻豆成人午夜福利视频| 国产精品秋霞免费鲁丝片| 日日摸夜夜添夜夜添av毛片| 在现免费观看毛片| 亚洲av成人精品一二三区| 日韩成人伦理影院| 国产老妇伦熟女老妇高清| 欧美bdsm另类| 午夜视频国产福利| 男插女下体视频免费在线播放| 婷婷色综合大香蕉| 免费看不卡的av| 国产精品熟女久久久久浪| 视频区图区小说| av在线亚洲专区| 午夜爱爱视频在线播放| 国产精品一及| 黄色配什么色好看| 久久人人爽人人片av| 在线观看三级黄色| 免费大片黄手机在线观看| 99热6这里只有精品| 国产一区亚洲一区在线观看| 成年版毛片免费区| 久久精品国产亚洲网站| 中文精品一卡2卡3卡4更新| 久久女婷五月综合色啪小说 | 在线观看av片永久免费下载|