• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Proposal and evaluation of a new norm index-based QSAR model to predict pEC50and pCC50activities of HEPT derivatives☆

    2016-05-26 09:28:48KanwalShahidQiangWangQingzhuJiaLeiLiXueCuiShuqianXiaPeishengMa
    Chinese Journal of Chemical Engineering 2016年10期

    Kanwal Shahid,Qiang Wang,*,Qingzhu Jia,Lei Li,Xue Cui,Shuqian Xia,Peisheng Ma

    1School of Chemical Engineering and Material Science,Tianjin University of Science and Technology,13St.TEDA,Tianjin 300457,China

    2School of Marine and Environment Science,Tianjin University of Science and Technology,13St.TEDA,Tianjin 300457,China

    3School of Chemical Engineering and Technology,Tianjin University,Tianjin 300072,China

    1.Introduction

    Being as a global epidemic, acquired immunodeficiency syndrome(AIDS) is considered as one of the worst diseases ever known to mankind[1]. AIDS is a collection of symptoms and infections resulting from the specific damage to the immune system caused by the human immunodeficiency virus (HIV) [2,3], which is a member of a retroviruses group. Retroviruses contain special single stranded RNAs (genetic materials of a virus) which target the host cells; once in the host cells, they use their own enzymes called as “Reverse transcriptase” to convert the virus RNA to proviral DNA. In the HIV life cycle, three enzymes are essential for replication of this virus inside the host cells, reverse transcriptase (RT), protease(PR) and integrase (IN). Theoretically, an anti-HIV agent may exert its activity by inhibiting a variety of steps in the life cycle of the virus;which is why, this stage of virus life cycle is considered to be one of the prime and promising targets for the development of anti-HIV drugs [4–6].

    In order to search for anti-HIV drugs with fewer side effects and high efficacy, modeling the biological activity to propose new candidate molecules is an important approach. So, over the last few years, the quantitative structure–activity relationship (QSAR) studies have been widely carried out for different series of HIV-1 inhibitors, such as HIV-1 RT inhibitors(RTIs) [7–9], HIV-1 IN inhibitors [10–12] and HIV-1 protease inhibitors [13].

    Certainly,a large number of compounds have already been synthesized to target various HIV-1-RT active sites,for example,HEPT derivatives(1-[(2-hydroxyethoxy)methyl]-6-(phenylthio)thymine)are some of those several proved potent HIV-NNRTIs(non-nucleoside inhibitors).Generally,in order to evaluate the performance of anti-HIV drugs,two important values,the required effective concentration to achieve 50%protection of MT-4 cells against the cytopathic effect of virus(EC50,expressed as–lgEC50,pEC50)and the required cytotoxic concentration to reduce visibility of 50%mock infected cell(CC50,expressed as–lgCC50,pCC50)were widely utilized,and some QSAR investigates have been successfully performed in this field[14–16].For instance,Bazoui et al. [17] employed multiple linear regression (MLR) and artificial neural network (ANN) approaches to develop two models for predicting pEC50of 95 HEPT derivatives, and their models were very satisfying with good statistical values (the squared correction coefficient R2of 0.83 and 0.85 in MLR and ANN model,respectively).In Chen et al.'s work[18],two nonlinear models based on Comparative Molecular Field Analysis(CoMFA)and Comparative Molecular Similarity Index Analysis(CoMSIA)were proposed for pEC50prediction of the data set of 88 compounds with R2of 0.926 and 0.954,respectively.Also,in Guo et al.'s investigation[19],by using the supervised stochastic resonance(SSR)approach,a QSAR model(R2=0.8858)was developed for predicting pEC50of 80 HEPT derivatives.

    Recently,based on the molecule's distance matrix and atom characters matrix,our group has proposed some norm index-based models which were successfully utilized for predicting different properties of compounds including the narcotic pollutants' aquatic toxicity[20],the pharmacological and toxicological activity of heterocyclic compounds[21],and high affinity 5-HT1Areceptor ligands of arylpiperazine derivatives[22].Our previous work suggested that this new approach might be capable to be further utilized in a large field.

    Therefore,this research work was carried out to satisfy two goals:(1)to propose a new norm index,(2)to develop a more accurate and stable structure–activity relationship model for biological activity prediction of HIV-1 inhibitors HEPT derivatives.

    2.Methods

    2.1.Data Sets

    This research work was carried out to predict the pEC50(134 compounds)and pCC50(39 compounds)activities of HEPT derivatives,and their general structure is shown in Fig.1;the observed and predicted values of pEC50and pCC50activities of these compounds are presented in Table S1 and Table S2(provided as Supporting Information),respectively[13,23–26].For both pEC50and pCC50prediction,the training set and test set were divided randomly as same as those of the reference work[13].

    Fig.1.The general structure of HEPT derivatives.

    The molecular structures were drawn using the free version of Hyperchem(http://www.hyper.com/)[27].The molecules were then pre-optimized using the molecular mechanics force field(MM+)calculations of the software. Energy minimization of the molecules was obtained by using ab-initio method. Among which, the charge distribution and the molecules' geometries were optimized by using ab initio methods at STO-3G level and a gradient norm limit of 4.184×109kJ·m?1was set for the purpose.

    2.2.Model Construction

    In order to illustrate the atom distribution and constituent of a molecule clearly and quantitatively,some step distance matrixes and a property matrix of a molecule have been proposed and used in our QSAR approach.Firstly,the step distance matrices of HEPT derivatives' structures were generated based on their chemical graphs.Here,the step distance matrix consisted of the adjacent step distance matrix,the interval step distance matrix and the interval jump step distance matrix shown as Eq.(1).Then,a property matrix including various atomic characters such as atomic weight,van der Waals radius,electronegativity and atom charge,were specially defined in order to improve the predictive effect of this method.In addition,it was obvious that information concerning atom/heteroatom connectivity patterns and hybrid electronic information in the molecule could be encoded by these atomic characters.

    The step distance matrices and the property matrix used in this research were shown as follows:

    where eiis atom i's electronegativity.

    Based on Eqs.(1)and(2),the extended distance matrices MD(including 10 matrices)were further de fined,then,some norm indexes of the above 10 MD matrices were also proposed and listed as in Table 1.In this work,three kinds of norm indexes are specially de fined:the norm(MD,1)means the largest column sum of matrix MD,the norm(MD,2)stands for the largest singular value of matrix MD,and the norm(MD,fro)is the Frobenius-norm of matrix MD.

    Table 1 Norm indexes of extended distance matrices MD and parameters of Eq.(3)

    According to these norm indexes,a multiple regression QSAR mathematical model was developed and expressed as Eq.(3):

    where,lg(1/C)stands for the two biological activities of pEC50or pCC50,b0is the constant,MDiis the descriptor and biis the corresponding regression coefficient of this MLR model.The individual values of all variables are also listed as in Table 1.During our modeling work,two arithmetic linear methods,MLR(multiple linear regression)and PLS(partial least-squares)approaches were used and surprising similar results have been obtained by using the two different regression methods.Therefore,all the prediction results provided in this work were just based on the MLR approach.

    2.3.Model Validation

    The quality of this model was determined by the statistical values of regression model,leave-one-out cross-validation(LOO-CV)and Y-randomization test.

    Table 2 Statistical results for prediction of pEC50and pCC50for HEPT derivatives based on this model and the references' models

    2.4.Applicability Domain(AD)

    The applicability domain (AD) determines the predictive power of the QSAR model.Verification of applicability domain is essential,especially if the model is to be used to screen new compounds.In this research work,the AD of the predictive model was verified by the leverage approach using a Williams graph[28],where the leverage values(h)were plotted against the training set's standard residual values.In this plot,the AD is established inside a calculated area(leverage threshold,defined as h*=3((N+1)/n))within±3 standard deviations.The compounds outside this area(i.e.the leverage of the compound is greater than leverage threshold,i.e.h>h*)are treated as outliers.The individual leverage threshold values are given with the relative plots[28,29].

    3.Results and Discussion

    3.1.Prediction Results of pEC50and pCC50

    The pEC50and pCC50prediction results of this model were listed in Table S1 and Table S2.And statistical metrics for the predictive model R2and ARD were summarized in Table 2.The predicted versus experimental values scatter diagram for this regression were presented in Figs.2 and 3.Figs.4 and 5 showed the plot of residuals versus experimental values.For convenient utilization of our model,the pEC50and pCC50prediction process were described in detail as Appendix A.

    Results in Fig.2 indicate that the predicted pEC50agrees well with the experimental results for 134 HEPT derivatives. Statistical metrics described that our model could give satisfactory prediction results of pEC50withof 0.774,respectively.Fig.4 showed that prediction residuals of our model for pEC50were between?1 and 1 for the most of HEPT derivatives except for three compounds.Also,by using Eq.(3),the pCC50values could be predicted well as shown in Fig.3 and our satisfactory prediction results could be testified by theand the lower prediction residuals as showed in Table 2 and Fig.5.

    Fig.2.The predicted vs.experimental pEC50values for 134 HEPT derivatives.

    Fig.3.The predicted vs.experimental pCC50values for 39 HEPT derivatives.

    Fig.5.Plot of the residual vs.experimental pCC50from this model.

    Also,in order to compare with other models,some reference methods[14,17,19,30,31]and their regression statistical results for pEC50and pCC50prediction were listed in Table 2.In case of pEC50,Table 2 showed that the predictive ability of our method(R2of 0.847)was better than MLR-based linear modeling method(R2of 0.83).While methods based on ANN,NN and SSR approaches[14,17,19]could give better prediction results with R2of 0.977,0.85 and 0.886,respectively.However,it was obvious that all the dataset considered in their works[14,17,19]had not been separated into training and test sets,which might limit the applicability of these methods to some degree;accordingly,the predictive capability of MLR-based linear modeling method was not good enough(Q2of 0.70).While for pCC50prediction,our model outperformed(R2of 0.815)the reference methods(R2=0.78–0.81)whether it was a linear or non-linear model.On the whole,the methodologies used in the other studies were very different;it is certain that each method had its merit,and these methods might have the optional application fields for pEC50and pCC50prediction for special HEPT derivatives with accuracy.What's more,it should be pointed that our method was a linear model and could be expressed concretely as a formula,which could be further used by others conveniently if comparing with these nonlinear methods(ANN and NN).

    3.2.Leave-one-out Cross-validation

    Being as a model validation technique,cross-validation approach is mainly utilized to estimate how accurately a predictive model will perform in practice.And the objective of cross-validation is to de fine a dataset to “test”the model in the training phase,in order to limit problems like over fitting during modeling work. For instance, the leave-one out cross-validation(LOO-CV)approach is a powerful general technique and widely applied for the model evaluation. Generally, during the LOOCV process,only one sample is used as the test set,and the remaining(N-1)samples are becoming the training set if the original dataset is of N samples.Then,N new models would be developed,accordingly,N statistical values of Q2(the squared correlation coefficient of LOO-CV)would be obtained.Lastly,the average of N statistical values of Q2would be set as the final LOO-CV validation result.

    where,Yobs,Ypredand Y stand for observed,predicted and the mean observed activities,respectively.

    The predictive ability of this model is validated by LOO-CV as shown in Table 2.And distributions of the relative derivation(RD)by LOO-CV and this model for pEC50and pCC50were presented as Figs.6 and 7.The higher Q2of0.787and0.846values for pEC50 and pCC50prediction obtained from LOO-CV suggested the reliability of our model.Also,from Figs.6 and 7,it was obvious that RD distributions for both LOO-CV prediction and our model prediction were very similar,which further demonstrated the stability of our norm-index-based model for prediction pEC50and pCC50for these HEPT derivatives.

    Fig.6.Distributions of the relative derivation(RD)by leave-one-out cross-validation and this model for pEC50.

    Fig.7.Distributions of the relative derivation(RD)by leave-one-out cross-validation and this model for pCC50.

    3.3.Y-randomization Test

    Usually,Y-randomization test technique was performed in order to avoid the possibility of chance correlation for the modeling work;and also,this approach was widely utilized to evaluate the robustness of QSAR model.The dependent variable vector(training set compounds)is shuffled randomly to create a new QSAR model using the independent variable matrix.Generally,the lower R2and Q2values of bothprediction and our model prediction were very similar,which further demonstrated the stability

    Table 3The Y-randomization test results to validate the model robustness to predict pEC50and pCC50

    In this work, five random shuffles of the y vector were carried out at 95%confidence level for each QSAR dataset and results were listed in Table 3.Results shown in Table 3 suggested that values of R2and Q2of these new random models were Significant lower than those of our original model both for pEC50and pCC50.Accordingly,our QSAR model is robust and there was not chance correlation during our modeling work.

    3.4.Applicability Domain(AD)

    The applicability domain of this proposed QSAR model forp EC50and pCC50was verified by the Williams graph and the plot of the diagonal values of the hat matrix(H)versus standardized residuals was shown as Figs.8 and 9.Results of Fig.8 described that most of the training set substances and test set were included in the AD of this model;only two training compounds(the compound Nos.of 61 and 100)and one test compound(the compound No.of 131)were identified and verified as structural outliers for pEC50prediction.As for pCC50prediction,all the 39 compounds were distributed in the AD of this model.Consequently,it could be deduced that this developed QSAR models could cover a large response and structural applicability domain both for pEC50and pCC50prediction of HEPT derivatives.

    4.Conclusions

    In this study, based on the norm indexes proposed by authors, a new QSAR model was developed for predicting the pEC50and pCC50activities of more than 150 HEPT derivatives(1-[(2-hydroxyethoxy)methyl]-6-(phenylthio)thymine).Results indicated that this new model could provide satisfactory results for prediction of pEC50and pCC50with theComparison results with reference methods demonstrated that this new method could result in improvements for predicting pEC50and pCC50of anti-HIV HEPT derivatives.Leave-one-out cross validation and Y-randomization test results suggested the reliability and stability of our model,and this model might be applied in a large response and structural domain by verified applicability domain.In summary,these validation results prove that this model might be potent and could be further used to study other activities of related HEPT derivatives.

    Fig.8.Applicability domain of our model for pEC50prediction of 134 HEPT derivatives.

    Fig.9.Applicability domain of our model for pCC50prediction of 39 HEPT derivatives.

    Appendix A

    Prediction for pEC50andpCC50of the first compound in Table S1 and Table S2:

    The structure of this compound is as follows:

    Firstly,four step distance matrices and a property matrix Meof this compound were generated based on it's chemical graph shown as Eqs.(1)and(2).Then,based on Eqs.(1)and(2),the extended distance matrices then,some norm indexes(including the norm(MD,1),the norm(MD,2)and the norm(MD,fro))of the above 10 MD matrices were calculated and listed in Table 4.

    Table 4Norm indexes values of the 10 extended distance matrices MD for the first compound in Table S1 and Table S2

    Based on parameters shown in Tables 1 and 4,the pEC50and pCC50of this compound was predicted by Eq.(3):

    The calculated pCC50result is 3.64,while the experimental pCC50is 3.52.

    Appendix B.Supplementary data

    The observed and predicted pEC50values of 134 HEPT derivatives are listed in Table S1,the observed and predicted pCC50values of 39 HEPT derivatives are listed in Table S2.Supplementary data to this article can be found online at doi:http://dx.doi.org/10.1016/j.cjche.2016.04.010.

    [1]http://www.unaids.org/en/dataanalysis.

    [2]M.Baba,H.Tanaka,E.De Clercq,R.Pauwels,J.Balzarini,D.Schols,H.Nakashima,C.F.Perno,R.Walker,T.Miyasaka,Highly specific inhibition of human immunodeficiency virus type 1 by a novel 6-substituted acyclouridine derivative,Biochem.Biophys.Res.Commun.165(1989)1375–1381.

    [3]World Health Organization,J.U.N.P.o.,UNICEF,Global HIV/AIDS response:Epidemic update and health sector progress towards universal access:Progress report 2011,World Health Organization,2011.

    [4]T.Miyasaka,H.Tanaka,M.Baba,H.Hayakawa,R.T.Walker,J.Balzarini,E.De Clercq,A novel lead for specific anti-HIV-1 agents:1-[(2-Hydroxyethoxy)methyl]-6-(phenylthio)thymine,J.Med.Chem.32(1989)2507–2509.

    [5]C.M.Bailey,T.J.Sullivan,P.Iyidogan,J.Tirado-Rives,R.Chung,J.Ruiz-Caro,E.Mohamed,W.Jorgensen,R.Hunter,K.S.Anderson,Bifunctional inhibition of human immunode fi ciency virus type 1 reverse transcriptase:Mechanism and proof-of-concept as a novel therapeutic design strategy,J.Med.Chem.56(2013)3959–3968.

    [6]K.M.Frey,D.E.Puleo,K.A.Spasov,M.Bollini,W.L.Jorgensen,K.S.Anderson,Structure-based evaluation of non-nucleoside inhibitors with improved potency and solubility that target HIV reverse transcriptase variants,J.Med.Chem.58(2015)2737–2745.

    [7]L.He,P.C.Jurs,Assessing the reliability of a QSAR model's predictions,J.Mol.Graph.Model.23(2005)503–523.

    [8]A.Golbraikh,A.Tropsha,Predictive QSAR modeling based on diversity sampling of experimental datasets for the training and test set selection,J.Comput.Aided Mol.Des.16(2002)357–369.

    [9]A.Golbraikh,A.Tropsha,Beware of q2!J.Mol.Graph.Model.20(2002)269–276.

    [10]A.Golbraikh,M.Shen,Z.Xiao,Y.-D.Xiao,K.-H.Lee,A.Tropsha,Rational selection of training and test sets for the development of validated QSAR models,J.Comput.Aided Mol.Des.17(2003)241–253.

    [11]S.Raic-Malic,D.Svedruzic,T.Gazivoda,A.Marunovic,A.Hergold-Brundic,A.Nagl,J.Balzarini,E.De Clercq,M.Mintas,Synthesis and antitumor activities of novel pyrimidine derivatives of 2,3-O,O-dibenzyl-6-deoxy-L-ascorbic acid and 4,5-didehydro-5,6-dideoxy-L-ascorbic acid,J.Med.Chem.43(2000)4806–4811.

    [12]L.Eriksson,J.Jaworska,A.P.Worth,M.T.Cronin,R.M.McDowell,P.Gramatica,Methods for reliability and uncertainty assessment and for applicability evaluations of classi fi cation-and regression-based QSARs,Environ.Health Perspect.111(2003)1361.

    [13]R.Garg,S.P.Gupta,H.Gao,M.S.Babu,A.K.Debnath,C.Hansch,Comparative quantitative structure–activity relationship studies on anti-HIV drugs,Chem.Rev.99(1999)3525–3602.

    [14]L.Douali,D.Villemin,D.Cherqaoui,Neural networks:Accurate nonlinear QSAR model for HEPT derivatives,J.Chem.Inf.Comput.Sci.43(2003)1200–1207.

    [15]V.P.Solov'ev,A.Varnek,Anti-HIV activity of HEPT,TIBO,and cyclic urea derivatives:Structure–property studies,focused combinatorial library generation,and hits selection using substructural molecular fragments method,J.Chem.Inf.Comput.Sci.43(2003)1703–1719.

    [16]Y.Akhlaghi,M.Kompany-Zareh,Application of radial basis function networks and successive projections algorithm in a QSAR study of anti-HIV activity for a large group of HEPT derivatives,J.Chemom.20(2006)1–12.

    [17]H.Bazoui,M.Zahouily,S.Boulajaaj,S.Sebti,D.Zakarya,QSAR for anti-HIV activity of HEPT derivatives,SAR QSAR Environ.Res.13(2002)567–577.

    [18]H.F.Chen,X.J.Yao,Q.Li,S.G.Yuan,A.Panaye,J.P.Doucet,B.T.Fan,Comparativestudy of non-nucleoside inhibitors with HIV-1 reverse transcriptase based on 3D-QSAR and docking,SAR QSAR Environ.Res.14(2003)455–474.

    [19]W.Guo,X.Hu,N.Chu,C.Yin,Quantitative structure–activity relationship studies on HEPTs by supervised stochastic resonance,Bioorg.Med.Chem.Lett.16(2006)2855–2859.

    [20]Q.Wang,Q.Jia,L.Yan,S.Xia,P.Ma,Quantitative structure–toxicity relationship of the aquatic toxicity for various narcotic pollutants using the norm indexes,Chemosphere 108(2014)383–387.

    [21]Z.C.Zhu,Q.Wang,Q.Z.Jia,S.Q.Xia,P.S.Ma,Structure–property relationship for the pharmacological and toxicological activity of heterocyclic compounds,Acta Phys.-Chim.Sin.30(2014)1086–1090.

    [22]Q.Jia,X.Cui,L.Li,Q.Wang,Y.Liu,S.Xia,P.Ma,A quantitative structure–activity relationship for high affinity 5-HT1A receptor ligands based on norm indexes,J.Phys.Chem.B 119(2015)15561–15567.

    [23]H.Tanaka,H.Takashima,M.Ubasawa,K.Sekiya,I.Nitta,M.Baba,S.Shigeta,R.T.Walker,E.De Clercq,T.Miyasaka,Synthesis and antiviral activity of deoxy analogs of I-[(2-hydroxyethoxy)methyl]-6-(phenylthio)thymine(HEPT)as potent and selective anti-HIV-1 agents,J.Med.Chem.35(1992)4713–4719.

    [24]M.Baba,S.Shigeta,H.Tanaka,T.Miyasaka,M.Ubasawa,K.Umezu,R.T.Walker,R.Pauwels,E.De Clercq,Highly potent and selective inhibition of HIV-1 replication by 6-phenylthiouracil derivatives,Antivir.Res.17(1992)245–264.

    [25](a)T.Miyasaka,H.Tanaka,M.Baba,H.Hayakawa,R.T.Walker,J.Balzarini,E.De Clercq,A novel lead for speci fi c anti-HIV-1 agents:1-[(2-Hydroxyet hoxy)methyl]-6-(phenylthio)thymine,J.Med.Chem.32(1989)2507–2509;

    (b)M.Baba,H.Tanaka,E.DeClercq,R.Pauwels,J.Balzarini,D.Schols,H.Nakashima,C.F.Perno,R.T.Walker,T.Miyasaka,Highly specific inhibition of human immunodeficiency firus type 1 by a novel substituted acyclouridine derivative,Biochem.Biophys.Res.Commun.165(1989)1375–1381;

    (c)M. Tanaka, M. Baba, M. Ubasawa, H. Takashima, K. Sekiya, I. Nitta, S. Shigeta, R.T.Walker, E. De Clercq, T.Miyasaka, Synthesis and anti-HIV activity of 2-,3-, and 4-substituted analogues of 1-[(2-hydroxyethoxy)methyl]-6-(phenylthio)thymine(HEPT), J. Med. Chem. 34 (1991) 1394–1399;

    (d)H.Tanaka,M.Baba,S.Saito,T.Miyasaka,H.Takashima,K.Sekiya,M.Ubasawa,I.Nitta,R.T.Walker,H.Nakashima,E.De Clercq,Specificanti-HIV-1“Acyclonucleosides”which cannot be phosphorylated:Synthesis of some deoxy analogues of 1-[(2-Hydroxyethoxy)methyll-6-(phenylthio)thymine,J.Med.Chem.34(1991)1508–1511;

    (e)H.Tanaka,M.Baba,H.Hayakawa,K.Haraguchi,T.Miyasaka,M.Ubasawa,H.Takashima,K.Sekiya,I.Nitta,R.T.Walker,E.De Clercq,Lithiation of uracilnucleosides and its application to the synthesis of a new class of anti-HIV-1 acyclonucleosides,Nucleosides Nucleotides 10(1991)397–400.

    [26]J.M.Luco,F.H.Ferretti,QSAR based on multiple linear regression and PLS methods for the anti-HIV activity of a large group of HEPT derivatives,J.Chem.Inf.Comput.Sci.37(1997)392–401.

    [27]Hyperchem.7.0.Hypercube,Inc.,http://www.hyper.com 2001.

    [28]P.Gramatica,Principles of QSAR models validation:Internal and external,QSAR Comb.Sci.26(2007)694–701.

    [29]P.Gramatica,E.Giani,E.Papa,Statistical external validation and consensus modeling:A QSPR case study for Koc prediction,J.Mol.Graph.Model.25(2007)755–766.

    [30]H.Bazoui,M.Zahouily,S.Sebti,S.Boulajaaj,D.Zakarya,Structure–cytotoxicity relationships for a series of HEPT derivatives,J.Mol.Model.8(2002)1–7.

    [31]V.K.Agrawal,J.Singh,K.Mishra,P.V.Khadikar,QSAR study on cytotoxic activities of a series of HEPT analogues,Lett.Drug Des.Discovery 3(2006)129–137.

    [32]C.Rücker,G.Rücker,M.Meringer,Y-randomization and its variants in QSPR/QSAR,J.Chem.Inf.Model.47(2007)2345–2357.

    [33]A.Tropsha,P.Gramatica,V.K.Gombar,The importance of being earnest:Validation is the absolute essential for successful application and interpretation of QSPR models,QSAR Comb.Sci.22(2003)69–77.

    久久久精品国产亚洲av高清涩受| 午夜福利影视在线免费观看| 欧美色欧美亚洲另类二区 | 黄色a级毛片大全视频| 色综合欧美亚洲国产小说| 成人亚洲精品av一区二区| 日韩一卡2卡3卡4卡2021年| 一本久久中文字幕| 午夜福利在线观看吧| av福利片在线| tocl精华| 18禁裸乳无遮挡免费网站照片 | 亚洲成av片中文字幕在线观看| 女人高潮潮喷娇喘18禁视频| 乱人伦中国视频| 中文字幕人成人乱码亚洲影| 亚洲熟妇中文字幕五十中出| АⅤ资源中文在线天堂| 欧美黄色片欧美黄色片| 欧美激情极品国产一区二区三区| 久久精品91无色码中文字幕| 操美女的视频在线观看| av电影中文网址| 成人永久免费在线观看视频| 亚洲电影在线观看av| 亚洲国产精品sss在线观看| 午夜福利一区二区在线看| 欧美老熟妇乱子伦牲交| 宅男免费午夜| 精品乱码久久久久久99久播| 黄色视频不卡| 18禁美女被吸乳视频| 女性生殖器流出的白浆| 亚洲精品国产精品久久久不卡| 成人三级黄色视频| 性欧美人与动物交配| 最新在线观看一区二区三区| 精品午夜福利视频在线观看一区| 最新美女视频免费是黄的| 日日爽夜夜爽网站| 国产亚洲精品综合一区在线观看 | 日韩中文字幕欧美一区二区| 伊人久久大香线蕉亚洲五| 黄色成人免费大全| 熟妇人妻久久中文字幕3abv| 亚洲国产精品久久男人天堂| 人人澡人人妻人| 精品卡一卡二卡四卡免费| 国产精品一区二区精品视频观看| 美国免费a级毛片| 精品国产国语对白av| 91九色精品人成在线观看| 精品久久久久久久人妻蜜臀av | 日本五十路高清| 一进一出抽搐gif免费好疼| 午夜影院日韩av| 国产主播在线观看一区二区| 天天躁狠狠躁夜夜躁狠狠躁| 国产精品影院久久| 999精品在线视频| 国产精品99久久99久久久不卡| 亚洲精品国产区一区二| 天天躁狠狠躁夜夜躁狠狠躁| 亚洲成人国产一区在线观看| 亚洲性夜色夜夜综合| 久久久久久久久久久久大奶| 免费在线观看完整版高清| 极品教师在线免费播放| 亚洲av第一区精品v没综合| 亚洲av熟女| 91国产中文字幕| 97超级碰碰碰精品色视频在线观看| 欧美大码av| 亚洲av片天天在线观看| 在线观看66精品国产| 日韩欧美国产一区二区入口| 久热这里只有精品99| 国产精品日韩av在线免费观看 | 久热爱精品视频在线9| 日本五十路高清| av在线播放免费不卡| av在线天堂中文字幕| 久久精品国产亚洲av高清一级| 青草久久国产| 欧美一级毛片孕妇| 99久久国产精品久久久| 可以免费在线观看a视频的电影网站| 91大片在线观看| 啦啦啦韩国在线观看视频| 亚洲一区二区三区不卡视频| 午夜视频精品福利| 国产一区二区三区视频了| 午夜视频精品福利| 夜夜看夜夜爽夜夜摸| 天天躁夜夜躁狠狠躁躁| 国产精品久久久久久亚洲av鲁大| 午夜福利18| 日韩精品免费视频一区二区三区| 天天躁夜夜躁狠狠躁躁| 好看av亚洲va欧美ⅴa在| www.熟女人妻精品国产| 欧美成狂野欧美在线观看| 黄频高清免费视频| 女生性感内裤真人,穿戴方法视频| 久久狼人影院| 成年女人毛片免费观看观看9| 久久久久久国产a免费观看| 国产99白浆流出| 久久久久久久久中文| 欧美丝袜亚洲另类 | 一区二区日韩欧美中文字幕| 欧美+亚洲+日韩+国产| 悠悠久久av| 日韩欧美国产一区二区入口| 黄网站色视频无遮挡免费观看| 国产精品久久久久久亚洲av鲁大| 日韩精品免费视频一区二区三区| 欧美激情极品国产一区二区三区| 午夜福利在线观看吧| 一区在线观看完整版| 夜夜夜夜夜久久久久| 久久久久精品国产欧美久久久| 国产精品亚洲美女久久久| 精品国产超薄肉色丝袜足j| 亚洲国产毛片av蜜桃av| 国产男靠女视频免费网站| 在线免费观看的www视频| 女性生殖器流出的白浆| 一级,二级,三级黄色视频| 久久久国产成人精品二区| 最近最新中文字幕大全电影3 | 免费搜索国产男女视频| 别揉我奶头~嗯~啊~动态视频| 我的亚洲天堂| 女同久久另类99精品国产91| 美女午夜性视频免费| 国产精品日韩av在线免费观看 | 天天一区二区日本电影三级 | 国产精品美女特级片免费视频播放器 | 一夜夜www| 国产伦人伦偷精品视频| 中亚洲国语对白在线视频| 欧美色视频一区免费| 国产精品一区二区免费欧美| 亚洲一区中文字幕在线| 亚洲三区欧美一区| 精品一品国产午夜福利视频| 欧美黄色片欧美黄色片| 一二三四社区在线视频社区8| 90打野战视频偷拍视频| 香蕉国产在线看| 美女扒开内裤让男人捅视频| 老司机福利观看| 国产成人精品久久二区二区免费| 一级黄色大片毛片| 麻豆久久精品国产亚洲av| 岛国视频午夜一区免费看| 亚洲精华国产精华精| 18禁黄网站禁片午夜丰满| 亚洲国产精品久久男人天堂| 欧美最黄视频在线播放免费| 亚洲欧美日韩另类电影网站| 日本五十路高清| 国产精品九九99| 大香蕉久久成人网| 精品午夜福利视频在线观看一区| 亚洲av电影不卡..在线观看| 国产99久久九九免费精品| 又黄又粗又硬又大视频| ponron亚洲| 午夜福利一区二区在线看| 亚洲精品中文字幕一二三四区| 欧美日韩一级在线毛片| 18美女黄网站色大片免费观看| 国产精品秋霞免费鲁丝片| 最新在线观看一区二区三区| 咕卡用的链子| 女同久久另类99精品国产91| 国产蜜桃级精品一区二区三区| 成在线人永久免费视频| a级毛片在线看网站| 欧美黄色淫秽网站| 久久国产精品人妻蜜桃| 国产午夜福利久久久久久| 亚洲久久久国产精品| 十八禁人妻一区二区| 午夜成年电影在线免费观看| 亚洲欧美日韩高清在线视频| 九色亚洲精品在线播放| 亚洲电影在线观看av| 两个人免费观看高清视频| 成在线人永久免费视频| 中文字幕人妻熟女乱码| 正在播放国产对白刺激| 又黄又粗又硬又大视频| 欧美一区二区精品小视频在线| 久久人人精品亚洲av| 亚洲熟妇中文字幕五十中出| 黄色视频不卡| 日本vs欧美在线观看视频| 国产精品 欧美亚洲| 午夜福利影视在线免费观看| 一进一出抽搐gif免费好疼| 在线天堂中文资源库| 久久久久国内视频| 精品午夜福利视频在线观看一区| 又黄又粗又硬又大视频| 亚洲欧美日韩无卡精品| 琪琪午夜伦伦电影理论片6080| 亚洲精品国产精品久久久不卡| 99国产综合亚洲精品| 欧美成狂野欧美在线观看| 国内久久婷婷六月综合欲色啪| 亚洲欧洲精品一区二区精品久久久| 欧美精品亚洲一区二区| 久久国产乱子伦精品免费另类| 久久中文字幕人妻熟女| 国产精品亚洲av一区麻豆| av电影中文网址| 久久人人97超碰香蕉20202| 久久中文看片网| 91成年电影在线观看| 国产成人精品久久二区二区91| 国产亚洲欧美在线一区二区| 久久久水蜜桃国产精品网| 久久久久久大精品| 一级作爱视频免费观看| 日韩欧美国产在线观看| 国产亚洲av高清不卡| 12—13女人毛片做爰片一| 亚洲久久久国产精品| 青草久久国产| 人妻丰满熟妇av一区二区三区| 久久久久久人人人人人| 国产男靠女视频免费网站| av在线天堂中文字幕| 精品国产一区二区久久| 国产1区2区3区精品| 精品久久久久久久人妻蜜臀av | 好男人电影高清在线观看| 国产精品香港三级国产av潘金莲| 99国产精品一区二区蜜桃av| aaaaa片日本免费| 操美女的视频在线观看| 久久久久久亚洲精品国产蜜桃av| 99久久国产精品久久久| 夜夜爽天天搞| 一级作爱视频免费观看| 午夜老司机福利片| 国产亚洲欧美98| 美女扒开内裤让男人捅视频| 亚洲在线自拍视频| 国产伦一二天堂av在线观看| 国产精品一区二区精品视频观看| 亚洲国产高清在线一区二区三 | 最近最新免费中文字幕在线| 精品欧美国产一区二区三| 18美女黄网站色大片免费观看| 大香蕉久久成人网| 禁无遮挡网站| 欧美日韩福利视频一区二区| 国产97色在线日韩免费| 九色国产91popny在线| 日本黄色视频三级网站网址| 99精品欧美一区二区三区四区| 欧美乱妇无乱码| 啦啦啦韩国在线观看视频| 久久人人97超碰香蕉20202| 免费看a级黄色片| 18禁美女被吸乳视频| 亚洲国产精品久久男人天堂| 一区二区三区激情视频| 久久精品aⅴ一区二区三区四区| 99riav亚洲国产免费| 麻豆一二三区av精品| 韩国av一区二区三区四区| 久久人人97超碰香蕉20202| 精品乱码久久久久久99久播| 日本一区二区免费在线视频| 一边摸一边抽搐一进一出视频| 一级a爱片免费观看的视频| 91成年电影在线观看| 18禁黄网站禁片午夜丰满| 久久久久国产精品人妻aⅴ院| 亚洲av成人不卡在线观看播放网| 一个人观看的视频www高清免费观看 | 黑丝袜美女国产一区| 国产单亲对白刺激| 国产亚洲精品综合一区在线观看 | 国产精品亚洲美女久久久| 国产xxxxx性猛交| 大香蕉久久成人网| 淫妇啪啪啪对白视频| 亚洲 国产 在线| 99在线人妻在线中文字幕| 好男人在线观看高清免费视频 | 女警被强在线播放| 国产亚洲精品综合一区在线观看 | 搡老熟女国产l中国老女人| 午夜a级毛片| 一级作爱视频免费观看| 欧美激情久久久久久爽电影 | 久久青草综合色| 国产男靠女视频免费网站| 欧美在线一区亚洲| 亚洲精品国产色婷婷电影| 91老司机精品| 亚洲精品一区av在线观看| 国内毛片毛片毛片毛片毛片| 国产精品 欧美亚洲| 97碰自拍视频| 88av欧美| 久久中文字幕一级| a级毛片在线看网站| bbb黄色大片| 亚洲欧洲精品一区二区精品久久久| 麻豆一二三区av精品| 在线十欧美十亚洲十日本专区| 亚洲 欧美 日韩 在线 免费| 一级毛片精品| 亚洲色图av天堂| 村上凉子中文字幕在线| 一区二区日韩欧美中文字幕| 香蕉丝袜av| 国产麻豆成人av免费视频| 国产单亲对白刺激| 操美女的视频在线观看| 国产高清videossex| 久久精品国产综合久久久| 级片在线观看| 一本久久中文字幕| 丰满人妻熟妇乱又伦精品不卡| 久久精品亚洲精品国产色婷小说| 999久久久精品免费观看国产| 欧美精品亚洲一区二区| 十八禁网站免费在线| 久久久久久亚洲精品国产蜜桃av| 男男h啪啪无遮挡| 动漫黄色视频在线观看| 啦啦啦韩国在线观看视频| 女同久久另类99精品国产91| 国产xxxxx性猛交| 国产精品av久久久久免费| 午夜精品久久久久久毛片777| 久久影院123| 国产精品99久久99久久久不卡| 亚洲国产毛片av蜜桃av| videosex国产| 欧美色视频一区免费| 九色国产91popny在线| 国产精品免费视频内射| 免费少妇av软件| 亚洲性夜色夜夜综合| 黄色片一级片一级黄色片| 夜夜躁狠狠躁天天躁| 欧美成人午夜精品| 午夜a级毛片| 满18在线观看网站| 首页视频小说图片口味搜索| 成人精品一区二区免费| 老熟妇仑乱视频hdxx| 十八禁网站免费在线| 黄片大片在线免费观看| √禁漫天堂资源中文www| 欧美绝顶高潮抽搐喷水| 国产野战对白在线观看| 国产一区二区三区在线臀色熟女| 别揉我奶头~嗯~啊~动态视频| 欧美一级a爱片免费观看看 | 免费女性裸体啪啪无遮挡网站| 亚洲免费av在线视频| 在线观看舔阴道视频| 乱人伦中国视频| videosex国产| 午夜老司机福利片| 男男h啪啪无遮挡| www.自偷自拍.com| 露出奶头的视频| 99久久国产精品久久久| 国产成人免费无遮挡视频| 欧美一区二区精品小视频在线| 一二三四社区在线视频社区8| 香蕉国产在线看| 看免费av毛片| 午夜视频精品福利| 国产精品九九99| 人人妻人人澡人人看| 精品高清国产在线一区| 大型黄色视频在线免费观看| 琪琪午夜伦伦电影理论片6080| bbb黄色大片| 亚洲中文日韩欧美视频| 天天躁夜夜躁狠狠躁躁| 色综合站精品国产| 国内精品久久久久久久电影| 亚洲av片天天在线观看| 免费看a级黄色片| 香蕉丝袜av| 亚洲欧美精品综合久久99| 久久伊人香网站| 国产精品电影一区二区三区| 国产成+人综合+亚洲专区| 一二三四在线观看免费中文在| 变态另类成人亚洲欧美熟女 | 少妇被粗大的猛进出69影院| 99精品欧美一区二区三区四区| 一个人免费在线观看的高清视频| 日日干狠狠操夜夜爽| 高清毛片免费观看视频网站| 很黄的视频免费| 色尼玛亚洲综合影院| 一级毛片精品| 老熟妇乱子伦视频在线观看| ponron亚洲| 男女做爰动态图高潮gif福利片 | 久久久水蜜桃国产精品网| 亚洲七黄色美女视频| 免费久久久久久久精品成人欧美视频| 黄色成人免费大全| 欧美黑人欧美精品刺激| 久9热在线精品视频| 精品国产国语对白av| 搡老岳熟女国产| 午夜福利在线观看吧| 97碰自拍视频| 色播亚洲综合网| 丰满的人妻完整版| 中文字幕人妻熟女乱码| 757午夜福利合集在线观看| 国产精品一区二区三区四区久久 | 午夜免费成人在线视频| av网站免费在线观看视频| 19禁男女啪啪无遮挡网站| 大香蕉久久成人网| 久久 成人 亚洲| 人人妻人人澡欧美一区二区 | 国产片内射在线| 亚洲一区二区三区色噜噜| 如日韩欧美国产精品一区二区三区| √禁漫天堂资源中文www| 妹子高潮喷水视频| 成人免费观看视频高清| 精品久久蜜臀av无| 一级a爱视频在线免费观看| 国产成年人精品一区二区| 午夜老司机福利片| 欧美激情久久久久久爽电影 | 久久久久国产一级毛片高清牌| 麻豆成人av在线观看| 国产一区二区激情短视频| 可以免费在线观看a视频的电影网站| 久久国产精品影院| 午夜福利,免费看| 老司机午夜十八禁免费视频| 美女国产高潮福利片在线看| 欧美黑人欧美精品刺激| av片东京热男人的天堂| 九色亚洲精品在线播放| 在线天堂中文资源库| 精品久久蜜臀av无| 999久久久精品免费观看国产| 国产一区二区三区在线臀色熟女| 美女扒开内裤让男人捅视频| 久久婷婷成人综合色麻豆| 欧美日韩乱码在线| 九色国产91popny在线| 女人高潮潮喷娇喘18禁视频| 国产精品 国内视频| 日日夜夜操网爽| av在线播放免费不卡| 欧美人与性动交α欧美精品济南到| 99国产精品一区二区三区| 午夜福利,免费看| 国产成人欧美在线观看| 黄网站色视频无遮挡免费观看| 国产精品精品国产色婷婷| 级片在线观看| 91成人精品电影| 1024视频免费在线观看| 精品高清国产在线一区| 国产蜜桃级精品一区二区三区| 国产国语露脸激情在线看| 成年版毛片免费区| 在线天堂中文资源库| 亚洲精品国产一区二区精华液| 99久久久亚洲精品蜜臀av| 高清黄色对白视频在线免费看| 黄片播放在线免费| 婷婷精品国产亚洲av在线| 色精品久久人妻99蜜桃| 看黄色毛片网站| 一区二区日韩欧美中文字幕| 黄色片一级片一级黄色片| 欧美不卡视频在线免费观看 | 久久草成人影院| 国产亚洲精品久久久久久毛片| 久久中文字幕人妻熟女| 黑人欧美特级aaaaaa片| 国产野战对白在线观看| 欧美乱妇无乱码| 久久久久国产精品人妻aⅴ院| 日韩三级视频一区二区三区| 亚洲avbb在线观看| ponron亚洲| 在线观看午夜福利视频| 成人永久免费在线观看视频| www.999成人在线观看| 成人亚洲精品av一区二区| 18禁观看日本| 视频在线观看一区二区三区| 国产熟女xx| 国产精品免费一区二区三区在线| 免费看十八禁软件| 久久午夜综合久久蜜桃| 亚洲中文字幕日韩| 亚洲七黄色美女视频| 伦理电影免费视频| 日本黄色视频三级网站网址| 日日干狠狠操夜夜爽| 丝袜美足系列| 88av欧美| www.精华液| 亚洲美女黄片视频| 国产欧美日韩综合在线一区二区| 在线观看免费视频日本深夜| 51午夜福利影视在线观看| 黄色毛片三级朝国网站| 亚洲第一青青草原| 色av中文字幕| 精品人妻1区二区| 99精品久久久久人妻精品| 亚洲中文字幕日韩| 久久亚洲真实| 又黄又粗又硬又大视频| 亚洲中文av在线| 亚洲在线自拍视频| 少妇被粗大的猛进出69影院| 中出人妻视频一区二区| 最好的美女福利视频网| 国产极品粉嫩免费观看在线| 精品一区二区三区视频在线观看免费| av网站免费在线观看视频| 午夜福利影视在线免费观看| 成人亚洲精品一区在线观看| 精品一区二区三区av网在线观看| 两个人免费观看高清视频| 91麻豆av在线| 村上凉子中文字幕在线| 美女 人体艺术 gogo| 99久久久亚洲精品蜜臀av| 一本久久中文字幕| 亚洲欧美精品综合一区二区三区| 亚洲七黄色美女视频| 国产亚洲精品一区二区www| 国产精品爽爽va在线观看网站 | 如日韩欧美国产精品一区二区三区| 黄色成人免费大全| 男女下面插进去视频免费观看| 国产精品亚洲美女久久久| 黄色视频,在线免费观看| 色综合婷婷激情| 久久久久久国产a免费观看| 日韩大尺度精品在线看网址 | 免费久久久久久久精品成人欧美视频| 久久久国产欧美日韩av| 无人区码免费观看不卡| 日本免费一区二区三区高清不卡 | 久热爱精品视频在线9| 国产精品久久久久久人妻精品电影| 亚洲最大成人中文| 搡老妇女老女人老熟妇| 成人永久免费在线观看视频| 亚洲av电影在线进入| 国产成人免费无遮挡视频| 啦啦啦 在线观看视频| 一级毛片女人18水好多| 国产精品一区二区三区四区久久 | 国产精品久久视频播放| 精品福利观看| 亚洲国产精品成人综合色| 美女国产高潮福利片在线看| 69av精品久久久久久| 国产主播在线观看一区二区| 午夜久久久在线观看| 亚洲成人精品中文字幕电影| 免费不卡黄色视频| 日韩免费av在线播放| 欧美日韩福利视频一区二区| 少妇粗大呻吟视频| 久久久久久国产a免费观看| 脱女人内裤的视频| 国产欧美日韩精品亚洲av| 怎么达到女性高潮| АⅤ资源中文在线天堂| 高潮久久久久久久久久久不卡| 国产精品二区激情视频| 午夜免费鲁丝| 久久久水蜜桃国产精品网| 欧美色视频一区免费| 国产精品一区二区精品视频观看| 18禁裸乳无遮挡免费网站照片 | 丝袜在线中文字幕| 麻豆国产av国片精品| 亚洲精品中文字幕在线视频| 久99久视频精品免费| 不卡一级毛片| 午夜a级毛片| 日本在线视频免费播放| 国产高清激情床上av| 伦理电影免费视频| 亚洲av美国av| 99精品在免费线老司机午夜| 视频区欧美日本亚洲| 91精品国产国语对白视频| 亚洲狠狠婷婷综合久久图片|