• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Correlation of the mean activity coefficient of aqueous electrolyte solutions using an equation of state

    2016-05-26 09:28:46SeyedHosseinMazloumi
    Chinese Journal of Chemical Engineering 2016年10期

    Seyed Hossein Mazloumi*

    Chemical Engineering Department,Faculty of Engineering,Ferdowsi University of Mashhad,Mashhad,Iran

    1.Introduction

    Electrolyte solutions appear in many important chemical systems such as extraction,distillation,biological processes.To correctly design and optimize such processes,precise knowledge of thermo-physical properties of electrolyte solutions is necessary.Due to the presence of charged particles and their interactions between ions and molecular species,modeling of electrolyte solution is a difficult and challenging task.Thermodynamic modeling of electrolyte solutions can be carried out using activity coefficient models[1–10]or by equation of state approach[11–26].The main advantage of the latter method is that a residual Helmholtz energy model has implemented so many useful thermo-physical properties can be derived by proper thermodynamic relations.

    However it should be noted that the application of the EOS method for electrolyte solutions is almost a new approach and more complicated rather than the activity coefficient models.The species interactions in electrolytes that result into a more non-ideal solutions than non-electrolytes even at very low concentration,are different from the repulsive and dispersive(attractive)forces taken into account by most non-electrolyte EOS[23].In most electrolyte equations of state(eEOS),a non-electrolyte equation of sate is used as a base,and due to the presence of ions,some extra expressions such as a version of Mean Spherical Approximation(MSA)theory and the Born equation are added.The eEOSs of Planche and Renon[13],Jin and Donohue[14],Fürst and Renon[15],Wu and Prausnitz[16],Galindo et al.[17]Myers et al.[18],Clarke and Boishni[19],Cameretti et al.[20],Tan et al.[21],Liu et al.[22],Lin et al.[23],Kim and Lee[24],Inchekel et al.[25],and Haghtalab and Mazloumi[26]are some examples of published electrolyte equations of state.

    Haghtalab and Mazloumi[27]have developed two non-electrolyte equations of state based on a new coordination number model for square well fluids.The non-electrolyte non-cubic SW proposed in our previous work[27]has the advantage of usinga very accurate repulsive term of the Carnahan–Starling equation that is in very good agreement with simulation data.Also,the attractive part(dispersion)contribution of EOSs is usually empirical orpure correlation of simulation data,while the attractive part of the present EOS is expressed by an equation that has a theoretical backbone obtained from a square well potential function.The aim of this study is to extend the SWEOS to aqueous electrolyte solutions and to verify its capability in representation of the thermodynamic properties of electrolyte solutions.

    2.Thermodynamic Model

    To establish a formulation for a residual Helmholtz energy model,some authors[16,18,25]have used a thermodynamic cycle in which an electrolyte solution is created from an ideal gas mixture.The Born equation is used to uncharge the ions at temperature T and volume V at an ideal gas state resulting in a mixture including ungraded ions and solvent molecules.The repulsive and attractive interactions of various uncharged species are expressed by the non-cubic SWEOS in the step of isothermal compression of ideal gas mixture to liquid state at

    V.In the next step,the Born equation with a negative sign is again applied to charge the neutral ions.Finally the long range interactions of ions are expressed by the MSA equation.The total residual Helmholtz energy can be expressed as

    Table 1 The fitted parameters and the results of correlation of mean activity coefficients and prediction of osmotic coefficients of various aqueous electrolyte solutions by the new eEOS and comparisons with MSW EOS[18],the data were taken from Ref.[32]

    Table 1(continued)

    where the superscript id denotes the ideal gas mixture and the subscript Born,SW and MSA stand for the Born equation,square well equation of sate and mean spherical approximation,respectively.Having the residual Helmholtz energy,the equation of state in terms of compressibility factor can be derived by differentiating the total Helmholtz energy equation with respect to density.Also,the chemical potential equation can be obtained by the derivative of the total residual Helmholtz energy with respect to the mole number.

    The Born equation[28]for discharging and charging processes of ions in the thermodynamic cycle is expressed as

    where NAis the number,e is the unit of elementary charge,D0is the per-mittivityof the free space,D is the dielectric constant, n is the number of moles,zeiis the charge number of ion and σ is the diameter parameter.Depending on which expression is used for dielectric constant,the Born equation may or may not be contributed to the computation of the properties of electrolyte solutions.Using a dielectric constant dependent only on temperature,the Born equation has no effect on the calculation of compressibility factor.In addition,because of linear dependency of the Born equation to the mole number,the Born equation contribution to the chemical potential equation vanishes.

    The square-well equation of state that is composed of the Carnahan–Starling repulsive term and a square-well potential based attractive term [27] is expressed as

    where ntis the total number of moles,R is the gas constant,T is the absolute temperature,z is the maximum attainable coordination number,m is the orientational parameter,y=τV0/V,V0is the closed packed volume,V is the total volume andThe following mixing rules are used in this work,

    where ε is the square well potential depth,σ is the diameter of the particle,and λσ is the potential range.It should be noted that the summation is over all ionic and molecular species in Eqs.(4)–(7).

    In electrolyte EOSs,the long range contribution of ions to the total Helmholtz energy is often expressed by a version of MSA theory.In this work a simple and explicit version of primitive MSA is adopted for the electrostatic interaction of ions in the electrolyte solution[29],

    where κ is the Debye screening length,Γ is the MSA screening parameterandwhere summation is over ions.For consistency,the MSA that is derived in the McMillan–Mayer framework should be converted to the Lewis–Randall framework,however it has been shown that this incompatibility can be ignored[30],particularly the present model have a number of adjustable parameters which compensate the error[18].It should be noted that the MSA model has no effect on chemical potential of solvent molecule because the summations in the MSA term are over ions.So the total Helmholtz energy equation used in this work is expressed as,

    whereis the mean activity coefficient based on mole fraction and υ+and υ-are the number of cations and anions,respectively.The osmotic coefficient can be calculated as

    where Msis molecular weight of solvent and Cmis molality.

    3.Results and Discussion

    The new electrolyte EOS is applied for representation of the mean activity coefficient and osmotic coefficient of various strong aqueous electrolyte solutions at 25°C and 0.1 MPa.To do this, first,the parameters of the EOS for water should be determined.The experimental data of saturated vapor pressure and liquid density of water[31]at the reduced temperature of 0.44–0.94 are used to fi t the parameters of the EOS.So the values of 0.2803 nm,909.048 K and 1.286 are obtained for σ,ε/k and λ of water,respectively.The percentage of absolute average deviations(AADs)of the EOS for calculating saturated vapor pressure and liquid density of water are 0.71 and 1.13,respectively.

    The new eEOS has three adjustable parameters(σ,ε/k and λ)for each ion,so the number of fitted parameters for each strong aqueous electrolyte is six which is high.To reduce the number of parameters,the assumption of equality of parameters of cation and anion is used.Thus the adjustable parameters of the new eEOS per each electrolyte are σ,ε/k and λ that are obtained by correlating experimental data of the mean activity coefficient[32]of more than 130 strong aqueous electrolytes.To calculate the activity and osmotic coefficients of aqueous electrolytes at a given temperature and pressure, first the new pressure explicit equation of state is solved numerically to obtain the liquid volume of the mixture,then the chemical potential and fugacity coefficients of all species are calculated.After that the activity and osmotic coefficients are obtained using Eqs.(17)–(20).The fitted parameters and the AADs(=100/NP∑|γCalculated? γExperiment|/γExperiment)have been reported in Table 1.The overall AADs%of the new eEOS in correlating the mean activity coefficient of 59 uni-univalent electrolytes,9 uni-divalent electrolytes,45 di-univalent electrolytes,8 didivalent electrolytes and 11 tri-univalent electrolytes are 0.30,0.25,2.48,1.79 and 0.50,respectively.Also Table 1 gives a comparison of the results of the new eEOS with that of Myers et al.eEOS(MSW)[18].The overall AADs%of the MSW eEOS in correlating the mean activity coefficient of uni-univalent electrolytes,uni-divalent electrolytes,diunivalent electrolytes, di-divalent electrolytes and tri-univalent electrolytes are 0.42,0.24,4.66,1.80 and 0.32,respectively.As one can see,in two types of electrolytes,i.e.1:1 and 2:1,the new eEOS is better and in 3:1 electrolytes,the MSW is more accurate.In 1:2 and 2:2 electrolytes,the results are the same.However,the overall AADs for all 132 electrolytes are 1.13 for the new eEOS and 1.93 for MSW.Generally the new eEOS is more accurate than MWS eEOS[18],although both eEOSs represent the experimental data successfully.Also included in Table 1 are the results of the new eEOS in predicting the osmotic coefficient of various electrolytes.The overall AADs of the new eEOS in predicting the osmotic coefficients of uni-univalent,uni-divalent,diunivalent,di-divalent and tri-univalent electrolytes are 0.29,0.32,3.78,6.27 and 0.91,respectively.As one can see,the results of the new eEOS are quite satisfactory.

    Fig.1 shows the comparison of results of the new eEOS with experimental data in correlating the mean activity coefficient of four electrolytes.Shown in Fig.2 are the results of the new eEOS in predicting the osmotic coefficient of some electrolytes.As it can be observed,the agreement of the results of the present model and the experiments is very good.Plotted in Fig.3 is the application of the new eEOS to correlate the mean activity coefficient of a number of strong aqueous electrolyte solutions up to saturation molalities.As it can be seen,then ewe EOS is capable to represent the mean activity coefficient at high molality as well as low molality.It should be noted that the adjusted parameters for the electrolytes shown in Fig.3 are different from those listed in Table 1 because the range of molalities is different.

    Fig.1.Correlation of activity coefficients of some aqueous electrolytes.Solid lines represent the results of the new eEOS and the symbols are the experimental data[32].

    Fig.2.Prediction of osmotic coefficients of some aqueous electrolytes. Solid lines represent the results of the new eEOS and the symbols are the experimental data[32].

    Fig.3.Correlation of activity coefficient of some uni-univalent aqueous electrolytes up to saturation molalities. Solid lines represent the results of the new eEOS and the symbols arethe experimental data[33].

    To examine the capability of new eEOS for the other temperatures and pressures,four electrolytes,i.e.NaCl,NaBr,CaCl2and Na2SO4at temperature range of 0–100 °C have been chosen and listed in Table 2.The following temperature dependency is adopted for the eEOS parameters,

    The adjusted coefficients of Eq.(21)and the results of the eEOS in calculating activity coefficient,osmotic coefficient and solution density have been listed in Table 3 for four aqueous electrolytes.The parameters of eEOS for NaCl and NaBr solutions have been obtained during correlating experimental data of both mean activity coefficient and solution density. Thus the AADs% of the eEOS in correlating mean activity coefficients of these electrolytes are higher than those reported in Table 1. It should be noted that the results are still satisfactory and show the good qualification of the new eEOS for representation of the experimental data at high temperatures. Fig. 4 shows the results of the eEOS in correlating density of aqueous NaCl at temperatures of 303, 353 and 373 K and pressure 1 bar. Plotted in Figs. 5 and 6 are the results of the new eEOS in predicting the density and the mean activity coefficient, respectively,of aqueous NaCl at temperatures of 303, 353 and 373 K and pressure 200 bar. Fig. 7 shows the correlation of the mean activity coefficients of aqueous NaBr,CaCl2and Na2SO4at273K.The predictions of the osmotic coefficients of four aqueous electrolytes at temperature 273 K are represented by Fig.8.As one can see,the new eEOS has been successfully applied for representation of activity coefficient,osmotic coefficient and density of the electrolytes at a temperature range of 0–100 °C.

    4.Conclusions

    A new electrolyte equation of sate was introduced for electrolyte solution that is applicable over wide ranges of composition,temperature and pressure.It consists of four terms:the Carnahan–Starling repulsive term,a square-well potential based attractive term,an explicit Mean Spherical Approximation theory(MSA)and the Born term.However,in this work,the Born term vanishes in pressure and chemical potential equations because of the dependency of the dielectric constant on temperature only.Correlation of mean activity coefficient and prediction of osmotic coefficient of 132 strong aqueous electrolyte solutions at 25°C and 0.1 MPa were carried out successfully by the new eEOS.It is alsocapable to correlate the activity coefficient of some electrolytes up to saturation molalities.Moreover the extension of the new eEOS for correlation and prediction of mean activity coefficient,osmotic coefficient and solution density of some aqueous electrolytes at a temperature range of 0–100°Cand pressures up to20 MPa was done with satisfactory results.The results demonstrate that the new eEOS is capable for good representation of the studied thermodynamic properties of aqueous electrolyte solutions at a wide range of temperatures,pressure and composition.

    Table 2 The properties,temperature and molality ranges of various electrolytes used in this study

    Fig.4.Correlation of densities of aqueous NaCl at different temperatures and pressure 0.1 MPa.Solid lines represent the results of the new eEOS and the symbols are the experimental data[34].

    Fig.5.Prediction of densities of aqueous NaCl at different temperatures and pressure 20 MPa.Solid lines represent the results of the new eEOS and the symbols are the experimental data[34].

    Table 3 The coefficients of temperature dependent parameters of the present model and the percent of absolute average deviations from experimental data for different aqueous electrolytes

    Fig.6.Prediction of activity coefficients of aqueous NaCl at different temperatures and pressure 20 MPa.Solid lines represent the results of the new eEOS and the symbols are the experimental data[34].

    Fig.7.Correlation of activity coefficients of some aqueous electrolytes at temperature 273 K.Solid lines represent the results of the new eEOS and the symbols are the experimental data[35–37].

    Fig.8.Predictions of osmotic coefficients of some aqueous electrolytes at temperature 273 K.Solid lines represent the results of the new eEOS and the symbols are the experimental data[34–37].

    [1]K.S.Pitzer,Activity coefficients in Electrolyte Solutions,second ed.CRC Press,Boca Raton,FL,1991.

    [2]C.C.Chen,L.B.Evans,A local composition model for the excess Gibbs energy of aqueous electrolyte systems,AIChE J.32(1986)444–454.

    [3]A.Haghtalab,J.H.Vera,A nonrandom factor model for the excess Gibbs energy of electrolyte solutions,AIChE J.34(1988)803–813.

    [4]A.Haghtalab,S.H.Mazloumi,A nonelectrolyte local composition model and its application in the correlation of the mean activity coefficient of aqueous electrolyte solutions,Fluid Phase Equilib.275(2009)70–77.

    [5]A.Haghtalab,M.Dehghani tafti,Electrolyte UNIQUAC-NRF model to study the solubility of acid gases in alkanolamines,Ind.Eng.Chem.Res.46(2007)6053–6060.

    [6]A.Haghtalab,A.Shojaeian,Modeling solubility of acid gases in alkanolamines using the nonelectrolyte Wilson-nonrandom factor model,Fluid Phase Equilib.289(2010)6–14.

    [7]A.Haghtalab,K.Peyvandi,Generalized Electrolyte-UNIQUAC-NRF model for calculation of solubility and vapor pressure of multicomponent electrolytes solutions,J.Mol.Liq.165(2012)101–112.

    [8]M.R.Dehghani,H.Modarress,M.Monirfar,Measurement and modelling of mean activity coefficients of aqueous mixed electrolyte solution containing glycine,J.Chem.Thermodyn.38(2006)1049–1053.

    [9]A.Haghtalab,A.Shojaeian,S.H.Mazloumi,Nonelectrolyte NRTL-NRF model to study thermodynamics of strong and weak electrolyte solutions,J.Chem.Thermodyn.43(2011)354–363.

    [10]S.Kumar Dash,A.N.Samanta,S.S.Bandyopadhyay,(Vapour+liquid)equilibria(VLE)of CO2 in aqueous solutions of 2-amino-2-methyl-1-propanol:New data and modelling using eNRTL-equation,J.Chem.Thermodyn.4(2011)1278–1285.

    [11]P.W.J.Derks,J.A.Hogendoorn,G.F.Versteeg,Experimental and theoretical study of the solubility of carbon dioxide in aqueous blends of piperazine and N-methyldiethanolamine,J.Chem.Thermodyn.42(2010)151–163.

    [12]A.T.Zoghi,F.Feyzi,M.R.Dehghani,Modeling CO2solubility in aqueous N-methyldiethanolamine solution by electrolyte modified Peng–Robinson plus association equation of state,Ind.Eng.Chem.Res.51(2012)9875–9885.

    [13]H.Planche,H.Renon,Mean spherical approximation applied to a simple but nonprimitive model interaction for electrolyte solutions and polar substances,J.Phys.Chem.85(1981)3924–3929.

    [14]G.Jin,M.D.Donohue,An equation of state for electrolyte solutions.1.Aqueous systems containing strong electrolytes,Ind.Eng.Chem.Res.27(1988)1073–1084.

    [15]W.Fürst,H.Renon,Representation of excess properties of electrolyte solutions using a new equation of state,AIChE J.39(1993)335–343.

    [16]J.Z.Wu,J.M.Prausnitz,Phase equilibria for systems containing hydrocarbons,water,and salt:An extended Peng-Robinson equation of state,Ind.Eng.Chem.Res.37(1998)1634–1643.

    [17]A.Galindo,A.Gil-Villegas,G.Jackson,A.N.Burgess,SAFT-VRE:Phase behavior of electrolyte solutions with the statistical associating fluid theory for potentials of variable range,J.Phys.Chem.B 103(1999)10272–10281.

    [18]J.A.Myers,S.I.Sandler,R.H.Wood,An equation of state for electrolyte solutions covering wide range of temperature,pressure and composition,Ind.Eng.Chem.Res.41(2002)3282–3297.

    [19]M.A.Clarke,P.R.Bishnoi,Development of a new equation of state for mixed salt and mixed solvent systems,and application to vapour–liquid and solid(hydrate)–vapour–liquid equilibrium calculations,Fluid Phase Equilib.220(2004)21–35.

    [20]L.F.Cameretti,G.Sadowski,J.M.Mollerup,Modeling of aqueous electrolyte solutions with perturbed-chain statistical associated fluid theory,Ind.Eng.Chem.Res.44(2005)3355–3362.

    [21]S.P.Tan,H.Adidharma,M.Radosz,Statistical associating fluid theory coupled with restricted primitive model to represent aqueous strong electrolytes,Ind.Eng.Chem.Res.44(2005)4442–4452.

    [22]Z.Liu,W.Wang,Y.Li,An equation of state for electrolyte solutions by a combination of low-density expansion of nonprimitive mean spherical approximation and statistical associating fluid theory,Fluid Phase Equilib.227(2005)147–156.

    [23]Y.Lin,K.Thomsen,J.C.Hemptinne,Multicomponent equations of state for electrolytes,AIChE J.53(2007)989–1005.

    [24]Y.S.Kim,C.S.Lee,An electrolyte equation of state based on a hydrogen-bonding nonrandom lattice fluid model for concentrated electrolyte solutions,Ind.Eng.Chem.Res.47(2008)5102–5111.

    [25]R.Inchekel,J.Hemptinne,W.Fürst,The simultaneous representation of dielectric constant,volume and activity coefficients using an electrolyte equation of state,Fluid Phase Equilib.271(2008)19–27.

    [26]A.Haghtalab,S.H.Mazloumi,A square-well equation of state for aqueous strong electrolyte solutions,Fluid Phase Equilib.285(2009)96–104.

    [27]A.Haghtalab,S.H.Mazloumi,A new coordination number model for development of a square-well equation of state,Fluid Phase Equilib.280(2009)1–8.

    [28]M.Born,Volumenund hydratationswarme der ionen,Zeitschrift Zeitschrift für Physik 1(1920)45–49.

    [29]A.Harvey,T.W.Copeman,J.M.Prausnitz,Explicit approximation of the mean spherical approximation for electrolyte systems with unequal ion sizes,J.Phys.Chem.92(1988)6432–6436.

    [30]C.A.Haynes,J.Newman,On converting from the McMillan-Mayer framework I.Single-solvent system,Fluid Phase Equilib.145(1998)255–263.

    [31]R.H.Perry,D.W.Green,Perry’s Chemical Engineers’Handbook,sixth ed.McGraw-Hill,Tokyo,Japan,1988.

    [32]R.A.Robinson,R.H.Stokes,Electrolyte Solutions,seconded.Butter worths,London,1970.

    [33]W.J.Hamer,Y.C.Wu,Osmotic coefficients and mean activity coefficients of uniunivalent electrolytes in water at 25°C,J.Phys.Chem.Ref.Data 1(1972)1074–1099.

    [34]K.S.Pitzer,J.C.Peiper,R.H.Busey,Thermodynamic properties of aqueous sodium chloride solutions,J.Phys.Chem.Ref.Data 13(1984)1–102.

    [35]D.G.Archer,Thermodynamic properties of the NaBr+H2Osystem,J.Phys.Chem.Ref.Data 20(1991)509–555.

    [36]J.Ananthaswamy,G.Atklnson,Thermodynamics of concentrated electrolyte mixtures.5.A review of the thermodynamic properties of aqueous calcium chloride in the temperature range 273.15-373.15 K,J.Chem.Eng.Data 30(1985)120–128.

    [37]H.F.Holmes,R.E.Mesmer,Thermodynamics of aqueous solutions of the alkali metal sulfates,J.Solut.Chem.15(1986)495–517.

    亚洲精品国产av成人精品| 国产色视频综合| 国产欧美日韩一区二区精品| 久久人人爽av亚洲精品天堂| 国产日韩欧美视频二区| 国产成人系列免费观看| 久久国产精品大桥未久av| 成年人黄色毛片网站| 亚洲第一欧美日韩一区二区三区 | 91精品国产国语对白视频| 下体分泌物呈黄色| 自线自在国产av| 久久国产精品男人的天堂亚洲| 国产三级黄色录像| 狠狠婷婷综合久久久久久88av| 久久亚洲国产成人精品v| 中文字幕精品免费在线观看视频| 9色porny在线观看| 久久午夜综合久久蜜桃| 少妇精品久久久久久久| 久久精品aⅴ一区二区三区四区| 国产亚洲欧美在线一区二区| 亚洲黑人精品在线| 欧美日韩一级在线毛片| 自拍欧美九色日韩亚洲蝌蚪91| 91老司机精品| 啦啦啦视频在线资源免费观看| 美女扒开内裤让男人捅视频| 美女扒开内裤让男人捅视频| av天堂久久9| av天堂久久9| 亚洲欧美日韩高清在线视频 | 国产97色在线日韩免费| 精品久久久久久电影网| 国产亚洲欧美精品永久| 黑人欧美特级aaaaaa片| 正在播放国产对白刺激| 精品第一国产精品| 窝窝影院91人妻| xxxhd国产人妻xxx| 国产97色在线日韩免费| 狂野欧美激情性xxxx| 日本猛色少妇xxxxx猛交久久| 久久人人爽av亚洲精品天堂| 午夜91福利影院| 曰老女人黄片| 欧美日韩黄片免| 成年av动漫网址| 国产在线观看jvid| 亚洲中文字幕日韩| 一级黄色大片毛片| 下体分泌物呈黄色| 亚洲 国产 在线| av电影中文网址| 在线看a的网站| 视频区欧美日本亚洲| 国产精品av久久久久免费| av视频免费观看在线观看| 每晚都被弄得嗷嗷叫到高潮| 精品人妻一区二区三区麻豆| 日韩欧美一区视频在线观看| 久久亚洲国产成人精品v| 久久女婷五月综合色啪小说| 人成视频在线观看免费观看| 国产精品偷伦视频观看了| 三级毛片av免费| 色综合欧美亚洲国产小说| 国产人伦9x9x在线观看| 美女国产高潮福利片在线看| 欧美变态另类bdsm刘玥| 国产黄频视频在线观看| 欧美久久黑人一区二区| 999久久久国产精品视频| 十八禁高潮呻吟视频| www日本在线高清视频| 美女脱内裤让男人舔精品视频| 久久久精品免费免费高清| 日韩视频在线欧美| 午夜免费观看性视频| 国产欧美亚洲国产| 免费观看人在逋| 日韩大码丰满熟妇| 国产成人av教育| 免费久久久久久久精品成人欧美视频| 久久久久久久精品精品| 91九色精品人成在线观看| 狂野欧美激情性bbbbbb| 人人妻,人人澡人人爽秒播| 国产精品久久久av美女十八| 叶爱在线成人免费视频播放| √禁漫天堂资源中文www| 狂野欧美激情性bbbbbb| 成年人免费黄色播放视频| 午夜精品久久久久久毛片777| 亚洲精品久久午夜乱码| 久久精品国产a三级三级三级| 老司机影院毛片| 日韩大片免费观看网站| 国产视频一区二区在线看| 午夜福利,免费看| 久久久久久久久久久久大奶| 国内毛片毛片毛片毛片毛片| 亚洲av片天天在线观看| 搡老乐熟女国产| 搡老乐熟女国产| 亚洲中文字幕日韩| 黄色视频不卡| 国产区一区二久久| 亚洲精品国产av成人精品| 亚洲欧美色中文字幕在线| 纵有疾风起免费观看全集完整版| 青春草亚洲视频在线观看| 亚洲三区欧美一区| 国产精品九九99| 日韩有码中文字幕| 免费一级毛片在线播放高清视频 | 国产av精品麻豆| 久久性视频一级片| 99久久99久久久精品蜜桃| 亚洲精品一区蜜桃| 老鸭窝网址在线观看| 国产精品欧美亚洲77777| av免费在线观看网站| 日韩欧美一区视频在线观看| 精品熟女少妇八av免费久了| 欧美人与性动交α欧美软件| 黄片小视频在线播放| 国产欧美日韩一区二区精品| 美国免费a级毛片| 天天躁狠狠躁夜夜躁狠狠躁| 99国产精品一区二区蜜桃av | 国产区一区二久久| 在线 av 中文字幕| 欧美午夜高清在线| 在线观看免费午夜福利视频| 国产精品熟女久久久久浪| 亚洲精品久久成人aⅴ小说| 久久免费观看电影| 啦啦啦在线免费观看视频4| 嫩草影视91久久| 免费观看av网站的网址| 国产成人av激情在线播放| 国产高清视频在线播放一区 | a 毛片基地| 欧美午夜高清在线| 性少妇av在线| 少妇 在线观看| 一二三四社区在线视频社区8| 免费在线观看黄色视频的| 咕卡用的链子| 日韩欧美一区二区三区在线观看 | 精品乱码久久久久久99久播| 久久久精品国产亚洲av高清涩受| 97人妻天天添夜夜摸| 黄片小视频在线播放| 欧美日韩一级在线毛片| 欧美日韩av久久| 免费在线观看完整版高清| 国产一区二区三区av在线| 精品高清国产在线一区| 在线观看一区二区三区激情| 桃红色精品国产亚洲av| 国精品久久久久久国模美| 国产深夜福利视频在线观看| 欧美精品一区二区大全| 日日摸夜夜添夜夜添小说| 91成人精品电影| 日本a在线网址| 夫妻午夜视频| 韩国精品一区二区三区| 欧美在线一区亚洲| 热re99久久国产66热| 国产在线观看jvid| 最黄视频免费看| 人妻人人澡人人爽人人| 亚洲精品一二三| 国产国语露脸激情在线看| 夜夜骑夜夜射夜夜干| 人妻 亚洲 视频| 亚洲熟女精品中文字幕| 色老头精品视频在线观看| 国产免费av片在线观看野外av| 国产av又大| 欧美日韩国产mv在线观看视频| 国产真人三级小视频在线观看| 亚洲精品久久久久久婷婷小说| 在线观看免费高清a一片| 午夜影院在线不卡| 欧美日韩视频精品一区| 丝袜脚勾引网站| 日本精品一区二区三区蜜桃| 狂野欧美激情性xxxx| 少妇 在线观看| av有码第一页| 免费av中文字幕在线| 老司机靠b影院| 亚洲九九香蕉| 国产99久久九九免费精品| videos熟女内射| 汤姆久久久久久久影院中文字幕| 日韩免费高清中文字幕av| 国产又色又爽无遮挡免| 久久久精品国产亚洲av高清涩受| a级毛片黄视频| 老汉色av国产亚洲站长工具| 夫妻午夜视频| 无遮挡黄片免费观看| 男女边摸边吃奶| 国产免费视频播放在线视频| 久久精品熟女亚洲av麻豆精品| 久久九九热精品免费| 99九九在线精品视频| 80岁老熟妇乱子伦牲交| 精品国产一区二区久久| 国产亚洲一区二区精品| 男女之事视频高清在线观看| 一级毛片女人18水好多| 午夜影院在线不卡| 国产成人一区二区三区免费视频网站| 午夜两性在线视频| 肉色欧美久久久久久久蜜桃| 一级毛片女人18水好多| 日韩欧美一区二区三区在线观看 | 国产亚洲精品久久久久5区| 9色porny在线观看| 精品人妻在线不人妻| 欧美日韩一级在线毛片| 国产精品一二三区在线看| 免费观看人在逋| 黄色a级毛片大全视频| 91成人精品电影| 久久精品亚洲av国产电影网| 9热在线视频观看99| 女人久久www免费人成看片| 亚洲精品国产一区二区精华液| 韩国高清视频一区二区三区| 伊人亚洲综合成人网| 日日爽夜夜爽网站| kizo精华| 国产成人免费观看mmmm| 精品久久久精品久久久| 欧美亚洲日本最大视频资源| 亚洲精品一区蜜桃| 人人妻人人爽人人添夜夜欢视频| 精品久久久久久久毛片微露脸 | 一级,二级,三级黄色视频| 伦理电影免费视频| 国产在线观看jvid| 操出白浆在线播放| 丁香六月欧美| 国产精品麻豆人妻色哟哟久久| 国产91精品成人一区二区三区 | 99国产精品一区二区三区| 成年人午夜在线观看视频| 久久精品国产a三级三级三级| 人妻一区二区av| 久久久水蜜桃国产精品网| 日韩视频一区二区在线观看| 亚洲一卡2卡3卡4卡5卡精品中文| 国产99久久九九免费精品| 亚洲国产成人一精品久久久| 国产亚洲欧美在线一区二区| 操美女的视频在线观看| 国产精品久久久久成人av| 午夜影院在线不卡| 电影成人av| 久久ye,这里只有精品| 婷婷色av中文字幕| 亚洲精品美女久久久久99蜜臀| 制服诱惑二区| 久久国产亚洲av麻豆专区| 日本五十路高清| 日韩欧美免费精品| 欧美中文综合在线视频| 在线十欧美十亚洲十日本专区| 国产精品国产三级国产专区5o| 中文字幕高清在线视频| 国产又爽黄色视频| 两性夫妻黄色片| 咕卡用的链子| 亚洲第一av免费看| 视频在线观看一区二区三区| 真人做人爱边吃奶动态| 在线观看免费视频网站a站| 国产熟女午夜一区二区三区| av在线播放精品| 国产精品久久久av美女十八| 啪啪无遮挡十八禁网站| 久久人人爽av亚洲精品天堂| 精品人妻1区二区| 欧美在线一区亚洲| 啦啦啦视频在线资源免费观看| 国产在线观看jvid| 精品福利永久在线观看| 精品一区二区三区av网在线观看 | 日本av手机在线免费观看| 午夜视频精品福利| 成年美女黄网站色视频大全免费| 国产高清videossex| 男人舔女人的私密视频| 91av网站免费观看| 国产精品免费大片| 欧美 日韩 精品 国产| 叶爱在线成人免费视频播放| 少妇的丰满在线观看| 久久人人爽人人片av| 国产一区二区激情短视频 | 嫩草影视91久久| 天天操日日干夜夜撸| 久久人人爽av亚洲精品天堂| 精品人妻1区二区| 国产亚洲精品久久久久5区| 可以免费在线观看a视频的电影网站| 九色亚洲精品在线播放| av有码第一页| 欧美另类亚洲清纯唯美| 国产视频一区二区在线看| 99re6热这里在线精品视频| 免费看十八禁软件| 亚洲欧洲日产国产| 麻豆乱淫一区二区| videosex国产| 自拍欧美九色日韩亚洲蝌蚪91| 国产日韩欧美视频二区| 国产精品九九99| 老司机午夜福利在线观看视频 | 91精品国产国语对白视频| 欧美av亚洲av综合av国产av| 18在线观看网站| 国产av国产精品国产| 在线观看一区二区三区激情| 桃红色精品国产亚洲av| 丝袜美足系列| 精品国产一区二区三区四区第35| 国产黄频视频在线观看| 美国免费a级毛片| 另类亚洲欧美激情| 中文字幕人妻熟女乱码| 在线 av 中文字幕| 女人久久www免费人成看片| 黑人猛操日本美女一级片| 国产成人欧美| 国产精品九九99| 日本黄色日本黄色录像| 热99久久久久精品小说推荐| 成年美女黄网站色视频大全免费| 高清在线国产一区| 女人被躁到高潮嗷嗷叫费观| 91av网站免费观看| 久久午夜综合久久蜜桃| 99国产极品粉嫩在线观看| a级毛片在线看网站| 免费一级毛片在线播放高清视频 | 夜夜骑夜夜射夜夜干| 黄片小视频在线播放| 欧美黄色淫秽网站| 97人妻天天添夜夜摸| av有码第一页| 国产精品 欧美亚洲| 久久人人97超碰香蕉20202| 满18在线观看网站| 亚洲 欧美一区二区三区| 亚洲国产精品999| 久久影院123| 1024香蕉在线观看| 亚洲avbb在线观看| avwww免费| 99热网站在线观看| 精品国产超薄肉色丝袜足j| 日韩欧美免费精品| 中文字幕另类日韩欧美亚洲嫩草| 在线观看免费日韩欧美大片| 国产精品熟女久久久久浪| 日韩三级视频一区二区三区| 亚洲黑人精品在线| 一区在线观看完整版| 99久久综合免费| 一二三四社区在线视频社区8| 亚洲avbb在线观看| 精品亚洲成国产av| 人成视频在线观看免费观看| 免费一级毛片在线播放高清视频 | 国产成人免费无遮挡视频| 午夜免费观看性视频| 亚洲国产av影院在线观看| 午夜激情av网站| 国产亚洲欧美在线一区二区| 久久久国产一区二区| 亚洲精品中文字幕在线视频| 叶爱在线成人免费视频播放| 精品一区在线观看国产| 成人av一区二区三区在线看 | 我要看黄色一级片免费的| 精品乱码久久久久久99久播| 精品国产一区二区久久| 精品福利观看| 欧美激情极品国产一区二区三区| 自拍欧美九色日韩亚洲蝌蚪91| 99热全是精品| 亚洲性夜色夜夜综合| 国产精品 欧美亚洲| 伊人久久大香线蕉亚洲五| 成年美女黄网站色视频大全免费| 国产亚洲午夜精品一区二区久久| 久久久久久人人人人人| 亚洲性夜色夜夜综合| 亚洲欧洲精品一区二区精品久久久| 韩国精品一区二区三区| 电影成人av| 国产成人a∨麻豆精品| 巨乳人妻的诱惑在线观看| 亚洲熟女精品中文字幕| 国产成+人综合+亚洲专区| 欧美激情 高清一区二区三区| 精品国产一区二区久久| 国产精品99久久99久久久不卡| 老汉色av国产亚洲站长工具| 国产97色在线日韩免费| 亚洲五月色婷婷综合| 久久久水蜜桃国产精品网| 人妻久久中文字幕网| 成人av一区二区三区在线看 | 超碰成人久久| 美女高潮喷水抽搐中文字幕| 日韩一卡2卡3卡4卡2021年| 一级黄色大片毛片| 性高湖久久久久久久久免费观看| 欧美一级毛片孕妇| 国产精品一二三区在线看| 丝袜美腿诱惑在线| 一级毛片电影观看| tube8黄色片| 99国产综合亚洲精品| 欧美精品一区二区免费开放| 亚洲欧洲精品一区二区精品久久久| netflix在线观看网站| 动漫黄色视频在线观看| 啦啦啦免费观看视频1| 国产在线视频一区二区| 久9热在线精品视频| 中文字幕高清在线视频| 亚洲全国av大片| 国产在线视频一区二区| 成人手机av| 青青草视频在线视频观看| 国产精品熟女久久久久浪| 国产精品香港三级国产av潘金莲| 女性生殖器流出的白浆| 99精品久久久久人妻精品| 中文字幕色久视频| 超碰成人久久| 日韩 欧美 亚洲 中文字幕| 亚洲精华国产精华精| 精品国产乱子伦一区二区三区 | 日韩大码丰满熟妇| 啦啦啦视频在线资源免费观看| 亚洲欧美激情在线| 在线精品无人区一区二区三| 99热网站在线观看| 妹子高潮喷水视频| 亚洲精品久久久久久婷婷小说| 中文字幕av电影在线播放| 男女午夜视频在线观看| 久久99一区二区三区| 制服人妻中文乱码| 蜜桃国产av成人99| 中文字幕另类日韩欧美亚洲嫩草| 国产精品一区二区在线不卡| 黄网站色视频无遮挡免费观看| 成人免费观看视频高清| 午夜激情久久久久久久| 动漫黄色视频在线观看| 亚洲九九香蕉| 国产精品一区二区在线不卡| 亚洲 国产 在线| 国产成人精品久久二区二区91| 国产高清videossex| 欧美日韩亚洲高清精品| 久久人妻熟女aⅴ| 一级毛片电影观看| 精品亚洲乱码少妇综合久久| 18在线观看网站| videos熟女内射| 男女下面插进去视频免费观看| 欧美大码av| 99久久人妻综合| 永久免费av网站大全| 天堂8中文在线网| 女人高潮潮喷娇喘18禁视频| 国产亚洲精品久久久久5区| 日本猛色少妇xxxxx猛交久久| 欧美日韩亚洲高清精品| 精品国产乱码久久久久久男人| 免费av中文字幕在线| 国产欧美日韩一区二区三区在线| 日本a在线网址| 国产成人av激情在线播放| 亚洲精品一区蜜桃| 亚洲精品久久久久久婷婷小说| 成人18禁高潮啪啪吃奶动态图| 欧美 日韩 精品 国产| 男女免费视频国产| 久久久久久久久免费视频了| 纯流量卡能插随身wifi吗| 国产一区二区三区在线臀色熟女 | 国产精品免费大片| 日韩中文字幕欧美一区二区| 欧美日韩中文字幕国产精品一区二区三区 | 国产野战对白在线观看| 伊人久久大香线蕉亚洲五| 99国产精品一区二区蜜桃av | 日韩免费高清中文字幕av| 丝瓜视频免费看黄片| 俄罗斯特黄特色一大片| 久久ye,这里只有精品| 国产精品麻豆人妻色哟哟久久| 最近最新免费中文字幕在线| 热re99久久国产66热| 国产日韩欧美亚洲二区| 亚洲精品自拍成人| 中国国产av一级| 人人妻,人人澡人人爽秒播| 成年美女黄网站色视频大全免费| 一级毛片精品| 国产又爽黄色视频| 精品国产乱码久久久久久小说| 岛国在线观看网站| 国产精品久久久人人做人人爽| 国产区一区二久久| 久久久久国产精品人妻一区二区| 免费在线观看完整版高清| 亚洲精品国产一区二区精华液| 丝袜在线中文字幕| 中文字幕人妻丝袜制服| av一本久久久久| 热re99久久国产66热| 老汉色av国产亚洲站长工具| 少妇的丰满在线观看| 蜜桃国产av成人99| 日韩熟女老妇一区二区性免费视频| 在线av久久热| 老司机靠b影院| 国产精品久久久久久人妻精品电影 | 久久久久久久大尺度免费视频| 久久国产精品大桥未久av| 日本wwww免费看| 欧美成人午夜精品| 亚洲精品粉嫩美女一区| 自拍欧美九色日韩亚洲蝌蚪91| 亚洲国产成人一精品久久久| 精品国产乱码久久久久久男人| 亚洲精品久久午夜乱码| 男人添女人高潮全过程视频| 香蕉国产在线看| 亚洲一区中文字幕在线| videosex国产| 国产精品一区二区在线不卡| 欧美 日韩 精品 国产| 亚洲人成电影观看| 五月天丁香电影| 久久av网站| 精品欧美一区二区三区在线| 日韩一区二区三区影片| 欧美xxⅹ黑人| 啦啦啦在线免费观看视频4| 他把我摸到了高潮在线观看 | 男女边摸边吃奶| 国产免费视频播放在线视频| 老汉色av国产亚洲站长工具| 我的亚洲天堂| 亚洲av日韩精品久久久久久密| 啦啦啦在线免费观看视频4| 国产男女超爽视频在线观看| 久久精品国产综合久久久| 久久精品国产亚洲av高清一级| 下体分泌物呈黄色| 69av精品久久久久久 | 亚洲av成人一区二区三| 国产成人精品在线电影| 欧美 亚洲 国产 日韩一| 成年人免费黄色播放视频| 午夜免费鲁丝| 久久精品国产亚洲av香蕉五月 | 国产精品熟女久久久久浪| 一区二区日韩欧美中文字幕| 色综合欧美亚洲国产小说| 18禁观看日本| 亚洲人成电影免费在线| 国产精品国产三级国产专区5o| 视频在线观看一区二区三区| 久久精品国产综合久久久| 国产欧美日韩一区二区三 | 一本色道久久久久久精品综合| 一级黄色大片毛片| 男女边摸边吃奶| 欧美乱码精品一区二区三区| 99国产综合亚洲精品| 黄色怎么调成土黄色| 亚洲久久久国产精品| 久久久精品94久久精品| 国产av一区二区精品久久| 国产区一区二久久| 丁香六月天网| 99精品久久久久人妻精品| 涩涩av久久男人的天堂| 久久香蕉激情| 韩国高清视频一区二区三区| 欧美激情 高清一区二区三区| 中文字幕色久视频| 日韩一区二区三区影片| 免费高清在线观看视频在线观看| 久久精品国产综合久久久| 大陆偷拍与自拍| 黄色毛片三级朝国网站| kizo精华|