• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Removal of Reactive Red 198 from aqueous solution by combined method multi-walled carbon nanotubes and zero-valent iron:Equilibrium,kinetics,and thermodynamic

    2016-05-26 09:28:45SudabehPourfadakariNaderYousefiAmirHosseinMahvi
    Chinese Journal of Chemical Engineering 2016年10期

    Sudabeh Pourfadakari,Nader Youse fi,Amir Hossein Mahvi,3,4,*

    1Department of Environmental Health Engineering,School of Health,Shiraz University of Medical Sciences,Shiraz,Iran

    2Department of Environmental Health Engineering,School of Public Health,Tehran University of Medical Sciences,Tehran,Iran

    3Center for Solid Waste Research,Institute for Environmental Research,Tehran University of Medical Sciences,Tehran,Iran

    4National Institute of Health Research,Tehran University of Medical Sciences,Tehran,Iran

    1.Introduction

    When Marvene organic dye was synthesized by Perkins in 1875,dying industries were quickly developed[1].In general,both natural and synthetic dyes are widely utilized in textile,leather,printing,cosmetics,and other industries[2].Overall,dyes are classified into three categories of anionic(acidic,reactive,and direct),cationic(basic),and non-ionic(disperse)dyes.[3].Reactive dyes which are among the major synthetic dyes are widely used in textile industries.In addition,they are one of the most problematic dyes since they have high solubility in water and are found in high concentrations in wastewater[4,5].Also,it is estimated that 20%–30%of the overall dyes used worldwide are reactive dyes[6].The precipitation of colored wastewater can extinguish the water body and kill the aquatic animals.Still,some dyes contain toxic and carcinogenic compounds and are hazardous to human health.Therefore,it is necessary to remove the existing dyes from the sewage systems of textile industries[5,7,8].Because of their complex structure,synthetic dyes cannot be effectively degraded using biological methods[8].Asa result,dyes are treated through physical and chemical methods,such as coagulation, flocculation,oxidation,membrane filtration,ion exchange,ozone generation,precipitation,chemical oxidation,enzymes or a combination of these methods.At any rate,using such methods involves certain limitations,such as high costs for utilization,production of hazardous byproducts,and excessive energy consumption[9–12].The adsorption method is extensively used for the treatment of colored wastewater and relies on various natural and synthetic(non)-organic adsorbents,including activated carbon,raw coal,natural zeolite,fugitive dust,and clay.Among these adsorbents,activated carbon is commonly utilized for removing the organic compounds[13].Considering these shortcomings, researchers have focused on optimal adsorbents with high adsorption capacity. Carbon nanotubes, divided into two groups of single-walled carbon nanotubes (SWCNTs) and multi-walled carbon nanotubes (MWCNTs), are used as a new small sized adsorbent with a hollowed and stratified structure. This shows a higher capacity for adsorption compared to the activated carbon. Also,it can remove dyes and other pollutants from waste water [14–16]. In recent years, studies have concentrated on the decomposition of organic pollutants through new treatment methods using zero-valent iron (ZVI) powder [17]. ZVI is one of the most abundant types of metal on earth and is given priority because of its strong synthetic tendency, inexpensiveness,and high effectiveness in decomposing different insecticides(DDT, DDD), halogenated organic compounds, aromatics, surfactants,and azo dyes [18,19]. ZVI (as a powder) is a strong remediation, is oxidized in aqueous environments, and produces free electrons which act as remediating factors and help remediate organic compounds [17,20].Considering the advantages of ZVI and MWCNTs, the main purpose of the present study is to investigate the efficiency of the kinetic process of ZVI/MWCNTs to remove Reactive Red 198 from aqueous environments.

    2.Material and Methods

    2.1.Material

    The Reactive Red198(above95%purity)was bought from Hamedan Alvan Sabet Company and used with no further treatment.This dye is widely used for the dyeing of cellulose and cotton and commonly used in several industries such as textile dyeing and printing.Characteristics and chemical structures of RR198 are presented in Table 1.In addition,iron powder with above 98%purity and effective particle size of150μ was bought from Merck Company,Germany and used in the experiments without any further treatment.Besides,MWCNTs with above 95%purity,1–30 nm diameter,specific surface area of 270 m2·g?1,and electrical conductivity of 1500 s·m?1were prepared by the ResearchInstitute of Petroleum Industry and used without any further treatment as the adsorbent.Transmission electron microscopy(TEM)and scanning electron microscopy(SEM)images of MWCNTs have been shown in Fig.1.

    Table 1 The properties of the dye used in the study

    Other chemicals used in the study also had the laboratory purity of Merck.To prepare the dye solution, first the stock solution of 500 mg·L?1concentration was prepared out of the RR198 using deionized water.Then,the experimental solutions were daily prepared from the stock solution in 20,50,100,and 200 mg·L?1concentrations.

    2.2.Methods

    The present applied research was carried out at a laboratory scale.To perform the experiments,laboratory jars(250 ml)were used.In addition,hydrochloric acid and caustic were used in order to organize pH.In order to remove the dye in this study,the effect of the following variables was investigated:pH in the range of(3–10),temperature(283–303 K),contact time(5–120 min),ZVI dose(200–5000 mg·L?1),and dose of MWCNTs(100–600 mg·L?1).After mixing was performed by Erlen shaker(model 430R)at 150 r·min?1,the samples were centrifuged at 4000 r·min?1for 10 min and passed through 0.2 μm filter papers.The maximum rate of dye adsorption at the wavelength of 518nm was measured by the UV/Vis spectrophotometer(German Hatch—DR5000)according to the standard method[21,22].Besides,the concentration of the remaining dye was determined through the calibration curve.

    The adsorption capacity of the adsorbent and the removal efficiency was respectively calculated using the following equations:

    where:Re,is the removal efficiency,qt,the amount of the adsorbed dye(mg·g?1),C0,the initial concentration of dye in the solution(mg·L?1),Ct,concentration of the dye remaining in the solution(mg·L?1),V,volume(L),and m,the dose of the adsorbent used(g).

    3.Results and Discussion

    3.1.The effect of pH

    pH is an important parameter in the adsorption process.The effect of pH on dye removal was assessed at 5000 mg·L?1iron powder,100 mg·L?1initial dye concentration,600 mg·L?1adsorbent dose,and different contact times(5–120 min)at 303 K.The effect of the primary pH on the rate of dye adsorption is illustrated in Fig.2.According to Fig.2,as pH increased from 3 to10,during 120 min,the dye removal efficiency decreased from 99.78%to 89.7%.This might be due to the increase in the H+ions in the environment,decrease in the OH?,and increase in the positive ions on the surface of the adsorbent.This process will lead to the electrostatic force among the dye molecules(negatively charged)and the surface of the adsorbent(positively charged).In other words,the charge on the surface of the adsorbent is affected by the pH of the solution[23].In acidic solutions, the iron powder turns into Fe2+,while two free electrons are produced and sedimentation of Fe(OH)3does not take place.This shows that iron powder is solved faster in lower pH levels.On the other hand,in acidic environments,the surface of the iron powder is continuously cleaned and will accordingly produce more free electrons and enhance the efficiency of the dye removal process[24].Machado et al.[25]conducted a study on removing the reactive red M-2BE by MWCNTs and activated carbon and showed that the highest removal efficiency was achieved at pH=2,which is caused by the electrostatic reaction between the adsorbents and dye molecules in the acidic pH. Also, this result is confirmed by Yao et al.[26].

    3.2.The effect of contact time

    As far as time is concerned, the effect of the reaction between the adsorbent and adsorbate is among the most important parameters affecting the adsorption process.Fig.3 illustrates the effect of time on the efficiency of removing the RR198 at pH=3 for different dye concentrations by using 600 mg·L?1MWCNTs and 5000 mg·L?1zero-valent iron,at 303 K by increasing the contact time from 60 to 120 min,in dye concentration of 100 mg·L?1,RR198 dye removal efficiency reached 99.68%from 96.8%.The results showed that adsorption of the RR198dye followed a fast process at the preliminary stages and the longer the process,the higher the removal percentage.However,the adsorption reaches equilibrium after 100 min.This happens because at the primary stages,a great number of activated sites on the surface of the adsorbent are not yet occupied,but as time passes,the remaining empty sites are rigidly filled with dye molecules.Shahryari et al.[27]in a research on the adsorption of Methylene blue through CNTs,found that the rate of Methylene blue adsorption was primarily rapid,whereas it gradually dropped until it reached the equilibrium time of 120 min.

    Fig.1.SEM(a)and TEM(b)images of the MWCNTs.

    Fig.2.The effect of pH on the adsorption of RR198 using ZVI/MWCNTs at(dose of iron powder=5000 mg·L?1;MWCNTs=600 mg·L?1,dye concentration=100 mg·L?1).

    Fig.3.The effect of the equilibrium time on the adsorption process of RR198 using mixed method at pH=3 in different dye concentrations(dose of iron powder=5000 mg·L?1;MWCNTs=600 mg·L?1).

    3.3.The effect of adsorbent dose

    One of the parameters affecting the adsorption process is the amount of the adsorbent.In order to determine the effect of the doses of iron powder and MWCNTs on the dye removal,different iron powder doses were added to different doses of MWCNTs at pH=3 and 100 mg·L?1initial dye concentration at the equilibrium time.The results are presented in Fig.4.According to this figure,higher doses can lead to an increase in the efficiency of the dye removal process;such a way that in200mg·L?1iron powder and100mg·L?1MWCNTs,the efficiency reached 37.48%and in 5000 mg·L?1iron powder and 600 mg·L?1MWCNTs,the removal efficiency reached 99.16%.To describe the process more clearly,the model of the multivariate linear regression was drawn using MATLAB software for the ZVI/MWCNT method and according to Fig.5,the best fitness was related to the linear regression coefficient with R2>0.9756.This research showed that an increase in the adsorbent dose could enhance the removal efficiency.Also,according to Fig.6 by increasing the dose of MWCNTs from 100 to 600 mg·L?1in 100 mg·L?1dye concentration and 5000 mg·L?1iron powder dose,the dye removal efficiency reached 99.12%from 95.65%.Due to the fact that by increasing the dose of MWCNTs from 100 to 600 mg·L?1in constant dose of iron powder,only 3.47%increase was observed in dye removal efficiency(from 95.65%to 99.12%),this process can be effective in dye removal.In other words,high efficiency can be obtained in low doses of carbon nanotubes in the presence of iron particles and higher doses of MWCNTs are not required.In order for better understanding of the effect of MWCNT dose on dye removal efficiency,multivariate linear regression model was drawn for various adsorbent doses using MATLAB software,the best fitness was related to(R2=0.98).As can be seen in Fig.7,by increasing the iron powder dose from 200 to 5000 mg·L?1at MWCNT dose of 600 mg·L?1and dye concentration of 100 mg·L?1,RR198 dye removal efficiency increased from 82.93%to 99.16%.Overall,these results indicated that by increasing the dose of iron powder,the efficiency of the process increased,as well.Therefore,an increase of iron powder dose has a considerable effect on dye removal.Furthermore,a multivariate linear regression model was drawn in order to determine the effect of iron powder dose on the efficiency of dye removal, the best fitness was related to(R2=0.95).The most important factor here is that increasing the ZVI dose will increase the primary matter producing free electrons.As a result,the rate of free electron production will increase which subsequently enhances the removal efficiency.In general,iron powder reaction depends on the surface area;the smaller the surface area and the larger the particles surface area,the higher the reactivity of the particles will be[28].With an increase in the adsorbent CNT dose,the adsorption sites and the surface are extended and more activated sites will be available.The results of the study carried out by Gong et al.[29]showed that by increasing the MMWCNT dose from 0.3 to 0.9 g·L?1,MB,NR,and BCB dyes removal efficiency reached from 30%to 99.1%,17.11%to 98.33%,and17.6%to98.8%,respectively.In the higher dose of the adsorbent(0.9g·L?1),on the other hand, the dye adsorption process reached its equilibrium and the rate of dye removal remained approximately constant. This is due to the fact that the high dose of the adsorbent increases the viscosity and stops the diffusion of the dye molecules on the surface of the MWCNTs.

    Fig.4.The effect of different dosages of ZVI and MWCNTs on the efficiency of the removal process(pH=3;contact time=100 min;dye concentration=100 mg·L?1).

    Fig.5.Modeling the multivariate linear regression of RR198 through the mixed method(contact time=100 min;pH=3)different doses of ZVI/MWCNTs in 100 mg·L?1dye concentration.

    Fig.6.The effect of MWCNT dosage on the adsorption efficiency at pH=3,5000 mg·L?1 ZVI,different dye concentration,and equilibrium time,and multivariate linear regression model for RR198 dye.

    Fig.7.The effect of zero-valent iron on the adsorption efficiency at pH=3,600 mg·L?1 MWCNTs,different dye concentrations,and equilibrium time and multivariate linear regression model for RR198 dye.

    3.4.The effect of initial dye concentration

    Initial dye concentration is one of the main parameters of dye removal.As Fig.8 depicts,by decreasing the initial dye concentration,dye removal efficiency increased.At 5000 mg·L?1dose of iron powder and 600 mg·L?1dose of MWCNTs in the combined method,by increasing the initial dye concentration from20 to200mg·L?1,the dye removal efficiency decreased from 100%to 98.63%,while the adsorption capacity increased from 3.57 to 35.22 mg·L?1.This is due to the fact that in lower concentrations,there are a larger number of unsaturated places on the adsorbent surface for adsorbing the dye.By increasing the dye concentration,however,these places are reduced and repulsive forces between the adsorbed dye molecules on the adsorbent surface increase[30].Natarajan et al.[31]performed a study on Rhoda mine Blue dye removal and showed that by increasing the initial dye concentration,the removal efficiency reduced from 96%to 51%.An increase in the adsorption capacity by the increase in the initial dye concentration is due to the increase in the force resulting from dye concentration gradient for overcoming the resistance toward mass transfer between liquid and solid phases.

    Fig.8.The effect of initial dye concentration on the adsorption efficiency at 600 mg·L?1 MWCNTs,5000 mg·L?1zero-valent iron,pH=3,and equilibrium time.

    3.5.The effect of temperature

    To determine the effect of temperature on the rate of dye removal at different temperatures(283–303 K),constant doses of ZVI and MWCNTs were added to different concentrations(20–200 mg·L?1)at the acidic pH at the equilibrium time.According to Fig.9,by increasing the temperature from 283 to 303 K in 100 mg·L?1concentration,the removal efficiency increased from 89.44%to 99.11%.Also,the adsorption capacity increased from 15.97 mg·g?1to 17.69 mg·g?1.This occurs because in an endothermic process,as the temperature increases,the motion of the dye ions increases and the adsorption capacity of the adsorbent is enhanced[32].The results of the study by Dizge et al.[33]showed that as the temperature increased from 293 K to 323 K,the efficiency of the dye removal process was enhanced,as well.In the study by Fan et al.[34]on methylene orange removal,by increasing the temperature from 293 to 313 K,dye removal efficiency increased from 72.2%to 98.3%and higher temperatures decreased the required time for dye removal.(See Fig.10.)

    Fig.9.The effect of the temperature on the equilibrium capacity of the adsorption process through the mixed method in different dye concentrations(pH=3;contact time=100 min;constant ZVI/MWCNT dosage).

    3.6.The isotherm of adsorption

    To describe the mutual behavior of the adsorbent and the adsorbate and predict the adsorption capacity of the adsorbent,the isotherm equitation plays a key role as it is one of the fundamental parameters of designing the system[35].The three models,Temkin,Langmuir,and Freundlich,are used to describe the behavior of RR198 adsorption in the mixed ZVI/MWCNTs method.In addition,the experiments were performed by changing the initial dye concentration from 20 to 200 mg·L?1at temperature of 293 K,and the equilibrium time of 100 min.The results and isothermal equations presented in Table 2 indicate that Freundlich isotherm(R2=0.996 at 293 K)is better correlated with the other isotherms under investigation.Besides,by increasing the dye equilibrium concentration,the adsorption equilibrium capacity increased and maximum adsorption capacity of ZVI was obtained 33.88 mg·g?1.

    Table 2 Linear equations and the results of the isotherm calculations[36,37]

    3.7.Kinetic studies

    Kinetic studies are used for designing and modeling the processes and the reactions performed in the reactor.These studies also provide important information about the mechanism of RR198 adsorption onto ZVI/MWCNTs which is necessary to depict the adsorption rate of the adsorbate and control the residual time of the whole adsorption process.In this research,pseudo- first-order,pseudo-second-order,and intra-particle diffusion models were utilized.[38,39].

    A,pseudo- first-order equation:

    where qeand qtare the amounts of dye adsorbed on the adsorbent at equilibrium and at the time of t,respectively(mg·g?1),k1is the equilibrium rate constant of pseudo- first-order(min?1),and t is the contact time(min).The slope and intercept of the plot of lg(qe?qt)versus t were used to determine the pseudo- first-order rate constant,k1.

    B,pseudo-second-order equation:

    where C is the intercept and kdifis the intra-particle diffusion rate constant(mg·g·min?0.5)which can be determined by the slope of the linear plot of q versus t1/2.

    According to Table 3,pseudo-second-order kinetics was the dominant synthetics for the mixed ZVI/MWCNT method with R2=0.999 in 50 and 200 mg·L?1concentrations and R2=1 in 100 mg·L?1concentration.Konicki et al.[40]conducted a study on Direct red 23 dye and the obtained results showed that Freundlich isotherm(R2=0.959)and Pseudo-second-order kinetic model(R2>0.99)were the best models for describing the reaction of adsorption.The results of the study conducted by Lin et al.[41]on removing Basic Green 5 dye by Titania nanotubes showed that Basic Green 5 adsorption followed a Pseudo-second-order kinetics model for dye concentration of 900 mg·L?1with R2> 0.999.

    Table 3 The results of the kinetics under investigation

    3.8.Estimation of thermodynamic parameters

    Thermodynamic parameters provide information regarding the inherent energetic changes associated with adsorption.Therefore,(ΔG0,kJ·mol?1),entropy (ΔS0,J·mol?1·K?1) and enthalpy (ΔH0,kJ·mol?1)changes were determined by using Vant Hoff equation to elucidate the process of adsorption.where KLis the thermodynamic equilibrium constant(mol?1),R is the gas constant(8.314 J·mol?1·K?1),T is temperature(K),and ΔS0and ΔH0were determined from the slope of linear plotting between ln K and 1/T according to Eq.(8).Also,the ΔG0values were computed according to Eq.(9)[42].As Table4depicts,the values of Gibbs free energy(ΔG0)were negative in the temperature range of 283–303K con firming that the adsorption of RR198 onto ZVI was spontaneous and thermodynamically favorable.When the temperature increases from 283 to 303 K,ΔG0decreases from ?96.81 to ?103.65 kJ·mol?l,which indicates that adsorption,is more spontaneous at higher temperature.The value of enthalpy change ΔH0shows the exothermic or endothermic of the adsorption process.Kara et al.[43]suggested that the ΔH0of physisorption is smaller than 40 kJ·mol?l.On the other hand,the positive value of ΔH0(91.76kJ·mol?l)indicates that the adsorption process of RR-198 onto ZVI/MWCNTs is endothermic and chemisorption.The results of the study conducted by Lin et al.[44]on removing Acid Black 24 dye also showed that by increasing the temperature from 283 to 323 K reaction rate is greatly,and the dye removal rate increased with temperature,indicating an endothermic reaction.Fig.11 depicts the regressions of Vant Hoff plot for thermodynamic parameters in this study.

    Table 4 Thermodynamic parameters calculated at various temperatures

    Fig.11.Regressions of vant Hoff plot for thermodynamic parameters and the adsorption of the RR-198 onto ZVI/MWCNTs at(various temperatures,initial dye concentration=100 mg·L?1and pH=3).

    4.Conclusions

    With increasing the temperature up to 303 K the dye adsorption was increased. Also, RR198 removal followed Freundlich isotherm and Pseudo-second-order kinetic models. Among the parameters of a solution,pH was more emphasized in the present research. In the studied processes, as the pH decreased, the efficiency of dye removal process increased.Also, it is described here that iron powder provides ease of use,allows iron filings to stay in the environment, and can be continually utilized. As a result, the ZVI/MWCNT method as a fast-functioning method with high efficiency can help remove dyes from industrial wastewater. Therefore, application of this method should be investigated from the economic point of view.

    Acknowledgments

    This article was extracted from Sudabeh Pourfadakar's M.Sc.thesis and approved by Shiraz University of Medical Sciences,Shiraz,Iran(No91/6133).The authors are grateful for Ms.A.Keivanshekouh at the Research Improvement Center of Shiraz University of Medical Sciences for improving the use of English in the manuscript.

    [1]J.Cao,L.Wei,Q.Huang,L.Wang,S.Han,Reducing degradation of azo dye by zerovalent iron in aqueous solution,Chemosphere 38(3)(1999)565–571.

    [2]A.Geethakarthi,B.R.Phanikumar,Adsorption of reactive dyes from aqueous solutions by tannery sludge developed activated carbon:Kinetic and equilibrium studies,Int.J.Environ.Sci.Technol.8(3)(2011)561–570.

    [3]Y.Fu,T.Viraraghavan,Fungal decolorization of dye waste waters:A review,Bioresour.Technol.79(2001)251–262.

    [4]M.T.Ghaneian,G.Ghanizadeh,M.Gholami,F.Ghaderinasab,Application of eggshell as a natural sorbent for the removal of reactive red 123 dye from synthetic textile wastewater,J.Res.Med.Sci.11(4)(2010)25–35(In Persian).

    [5]N.Supaka,K.Juntongjin,S.Damronglerd,M.L.Delia,P.Strehaiano,Microbial decolorization of reactive azo dyes in a sequential anaerobic–aerobic system,J.Chem.Eng.99(2004)169–176.

    [6]N.Pramanpol,N.Nitayapat,Adsorption of reactive dye by eggshell and its membrane,Kasetsart J.(Nat.Sci.)40(2006)192–197.

    [7]S.Chatterjee,S.R.Lim,S.H.Woo,Removal of reactive black 5 by zero-valent iron modified with various surfactants,J.Chem.Eng.160(2010)27–32.

    [8]M.Solís,A.Solís,H.I.Pérez,N.Manjarrez,M.Flores,Microbial decolouration of azo dyes:A review,Process Biochem.47(2012)1723–1748.

    [9]F.Gholami-Borujeni,A.H.Mahvi,S.Naseri,M.A.Faramarzi,R.Nabizadeh,M.Alimohammadi,Application of immobilized horseradish peroxidase for removal and detoxi fi cation of azo dye from aqueous solution,J.Res.Chem.Environ.15(2011)217–222.

    [10]F.Gholami-Borujeni,A.H.Mahvi,S.Nasseri,M.A.Faramarzi,R.Nabizadeh,M.Alimohammadi,Enzymatic treatment and detoxification of acid orange 7 from textile wastewater,Appl.Biochem.Biotechnol.165(2011)1274–1284.

    [11]M.C.Ncibi,B.Mahjoub,M.Seffen,Adsorptive removal of textile reactive dye using Posidonia oceanica(L.) fibrous biomass,Int.J.Environ.Sci.Technol.4(4)(2007)433–440.

    [12]B.C.Oei,S.Ibrahim,S.Wang,H.M.Ang,Surfactant modified barley straw for removal of acid and reactive dyes from aqueous solution,Bioresour.Technol.100(2009)4292–4295.

    [13]H.D.Choi,M.C.Shin,D.H.Kim,C.S.Jeon,K.Baek,Removal characteristics of reactive black 5 using surfactant-modified activated carbon,Desalination 223(1–3)(2008)290–298.

    [14]M.Shirmardi,A.Mesdaghinia,A.H.Mahvi,S.Nasseri,R.Nabizadeh,Kinetics and equilibrium studies on adsorption of acid red 18(azo-dye)using multi wall carbon nanotubes(MWCNTs)from aqueous solution,J.Chem.9(4)(2012)2371–2383.

    [15]T.Madrakian,A.Afkhami,M.Ahmadi,H.Bagheri,Removal of some cationic dyes from aqueous solutions using magnetic-modified multi-walled carbon nanotubes,J.Hazard.Mater.196(30)(2011)109–114.

    [16]R.Q.Long,R.T.Yang,Carbon nanotubes as superior sorbent for dioxin removal,J.Am.Chem.Soc.123(9)(2001)2058–2059.

    [17]S.Pourfadakari,A.H.Mahvi,Kinetics and equilibrium studies for removal of reactive red 198 from aqueous solutions using zero valent iron powder,J.Health Scope 3(2)(2014)1–8.

    [18]N.Deng,F.Luo,F.Wu,M.Xiao,X.Wu,Discoloration of aqueous reactive dye solutions in the UV/Fe 0 system,Water Res.34(2000)2408–2411.

    [19]S.Nam,P.G.Tratnyek,Reduction of azo dyes with zero-valent iron,Water Res.34(6)(2000)1837–1845.

    [20]M.Zarrabi,M.Samarghndi,A.Rahmani,Kinetic study of acid red 18 and acid red 14 removal from aqueous solution using metallic iron,J.Health Hyg.Ardebil Iran.3(2011)31–40.

    [21]L.Clesceri,A.Greenberg,A.Eaton,Standard methods for the examination of water and wastewater,APHA,AWWA,WEF,USA,2010 20.

    [22]C.H.Wu,Adsorption of reactive dye onto carbon nanotubes:equilibrium,kinetics and thermodynamics,J.Hazard.Mater.144(1–2)(2007)93–100.

    [23]H.Zhu,R.Jiang,L.Xiao,G.Zeng,Preparation,characterization,adsorption kinetics and thermodynamics of novel magnetic chitosan enwrapping nanosized γ-Fe2O3and multi-walled carbon nanotubes with enhanced adsorption properties for methyl orange,Bioresour.Technol.101(14)(2010)5063–5069.

    [24]K.Barbusiński,J.Majewski,Discoloration of azo dye acidred 18 by Fenton reagent in the presence of iron powder,J.Environ.Stud.Pol.12(2)(2003)151–155.

    [25]F.M.Machado,C.P.Bergmann,T.H.Fernandes,E.C.Lima,B.Royer,T.Calvete,et al.,Adsorption of reactive red M-2BE dye from water solutions by multi-walled carbon nanotubes and activated carbon,J.Hazard.Mater.192(3)(2011)1122–1131.

    [26]Y.Yao,H.Bing,X.Feifei,C.Xiaofeng,Equilibrium and kinetic studies of methyl orange adsorption on multiwalled carbon nanotubes,J.Chem.Eng.170(2011)82–89.

    [27]Z.Shahryari,A.S.Goharrizi,M.Azadi,Experimental study of methylene blue adsorption from aqueous solutions onto carbon nanotubes,J.Water Res.Environ.Eng.Int.2(2010)16–28.

    [28]J.A.Mielczarski,G.M.Atenas,E.Mielczarski,Role of iron surface oxidation layers in decomposition of azo-dye water pollutants in weak acidic solutions,Appl.Catal.B Environ.56(4)(2005)289–303.

    [29]J.L.Gong,B.Wang,G.M.Zeng,C.P.Yang,C.G.Niu,Q.Y.Niu,et al.,Removal of cationic dyes from aqueous solution using magnetic multi-wall carbon nanotube nanocomposite as adsorbent,J.Hazard.Mater.164(2–3)(2009)1517–1522.

    [30]S.Khorramfar,N.Mahmoodi,M.Arami,K.Gharanjig,Dye removal from colored textile wastewater using Tamarindus indica Hull:Adsorption isotherm and kinetics study,J.Color.Sci.Technol.3(2009)81–88.

    [31]T.S.Natarajan,K.Natarajan,H.C.Bajaj,R.J.Tayade,Enhanced photocatalytic activity of bismuth-doped TiO2nanotubes under direct sunlight irradiation for degradation of Rhodamine B dye,J.Nanopart.Res.15(2013)1–18.

    [32]S.T.Wong,Y.P.Tan,A.H.Abdullah,S.T.Ong,Removal of basic blue 3 and reactive orange 16 by adsorption onto quartenized sugar cane bagasse,J.Anal.Sci.Malays.13(2009)185–193.

    [33]N.Dizge,C.Aydiner,E.Demirbas,M.Kobya,S.Kara,Adsorption of reactivedyesfrom aqueous solutions by fly ash:Kinetic and equilibrium studies,J.Hazard.Mater.150(3)(2008)737–746.

    [34]J.Fan,Y.Guo,J.Wang,M.Fan,Rapid decolorization of azo dye methyl orange in aqueous solution by nanoscale zerovalent iron particles,J.Hazard.Mater.166(2–3)(2009)904–910.

    [35]P.Palanisamy,A.Agalya,P.Sivakumar,Polymer composite—A potential biomaterial for the removal of reactive dye,J.Chem.9(4)(2012)1823–1834.

    [36]N.Thinakaran,P.Baskaralingam,M.Pulikesi,P.Panneerselvam,S.Sivanesan,Removal of acid violet 17 from aqueous solutions by adsorption onto activated carbon prepared from sun flower seed hull,J.Hazard.Mater.151(2–3)(2008)316–322.

    [37]M.Temkin,V.Pyzhev,Kinetics of ammonia synthesis on promoted iron catalysts,Acta Physicochim.URSS 12(1940)217–229.

    [38]J.R.Baseri,P.Palanisamy,P.Sivakumar,Adsorption of reactive dye by a novel activated carbon prepared from Thevetia peruviana,J.Chem.Res.3(2012)36–41.

    [39]D.Suteu,C.Zaharia,T.Malutan,Removal of orange 16reactive dye from aqueous solutions by waste sun flower seed shells,J.Serb.Chem.Soc.76(4)(2011)607–624.

    [40]W.Konicki,I.Pe?ech,E.Mijowska,I.Jasińska,Adsorption of anionic dye directred 23 onto magnetic multi-walled carbon nanotubes-Fe3C nanocomposite:kinetics,equilibrium and thermodynamics,Chem.Eng.210(1)(2012)87–95.

    [41]K.S.Lin,H.W.Cheng,W.R.Chen,C.F.Wu,Synthesis,characterization,and adsorption kinetics of titania nanotubes for basic dye wastewater treatment,J.Adsorpt.16(1)(2010)47–56.

    [42]M.A.M.Khraisheh,Y.S.Al-Degs,S.I.Allen,M.N.Ahmad,Elucidation of controlling steps of reactive dye adsorption on activated carbon,J.Ind.Eng.Chem.Res.41(6)(2002)1651–1657.

    [43]M.Kara,H.Yuzer,E.Sabah,M.S.Celik,Adsorption of cobalt from aqueous solutions onto sepiolite,J.Water Res.37(1)(2003)224–232.

    [44]Y.T.Lin,C.H.Weng,F.Y.Chen,Effective removal of AB24 dye by nano/micro-size zero-valent iron,Sep.Purif.Technol.64(1)(2008)26–30.

    99热6这里只有精品| 神马国产精品三级电影在线观看 | 国产人伦9x9x在线观看| av免费在线观看网站| av中文乱码字幕在线| av有码第一页| 黄色片一级片一级黄色片| 亚洲欧美日韩高清在线视频| 欧美一区二区精品小视频在线| 国产精品,欧美在线| 国产精品 国内视频| 国产区一区二久久| 亚洲va日本ⅴa欧美va伊人久久| 国产精品久久久久久亚洲av鲁大| 国产精品精品国产色婷婷| 国产成人aa在线观看| 国产在线精品亚洲第一网站| 亚洲中文字幕日韩| 欧美黑人欧美精品刺激| 一级作爱视频免费观看| 一级毛片高清免费大全| 此物有八面人人有两片| 丝袜美腿诱惑在线| 欧美3d第一页| 亚洲一区中文字幕在线| 国内揄拍国产精品人妻在线| 久久久久国内视频| 怎么达到女性高潮| 国产三级中文精品| 欧美一区二区国产精品久久精品 | 欧美日韩精品网址| 欧美在线黄色| 欧美成人一区二区免费高清观看 | 麻豆成人av在线观看| 男人舔女人下体高潮全视频| 免费搜索国产男女视频| 法律面前人人平等表现在哪些方面| 国产伦一二天堂av在线观看| 日韩欧美国产一区二区入口| 叶爱在线成人免费视频播放| 可以免费在线观看a视频的电影网站| 亚洲av成人一区二区三| 亚洲乱码一区二区免费版| 露出奶头的视频| 成人av在线播放网站| 日本一本二区三区精品| 色哟哟哟哟哟哟| 国产欧美日韩一区二区三| 久久精品91无色码中文字幕| 老汉色∧v一级毛片| 天堂动漫精品| 午夜福利视频1000在线观看| 脱女人内裤的视频| 99久久久亚洲精品蜜臀av| 男女床上黄色一级片免费看| 亚洲人成伊人成综合网2020| 亚洲欧美日韩东京热| 日韩欧美精品v在线| 日韩欧美免费精品| 午夜成年电影在线免费观看| 动漫黄色视频在线观看| 欧美性猛交黑人性爽| 国产麻豆成人av免费视频| 免费一级毛片在线播放高清视频| 99久久久亚洲精品蜜臀av| 日韩三级视频一区二区三区| 国产97色在线日韩免费| 亚洲精品一卡2卡三卡4卡5卡| 久久这里只有精品中国| 国产精华一区二区三区| 中文字幕av在线有码专区| 国产又色又爽无遮挡免费看| 成人国产一区最新在线观看| 午夜亚洲福利在线播放| 欧美日韩亚洲国产一区二区在线观看| 在线观看免费视频日本深夜| 国产一区二区在线av高清观看| 麻豆国产av国片精品| 精品国内亚洲2022精品成人| 午夜影院日韩av| 精品免费久久久久久久清纯| 丰满人妻熟妇乱又伦精品不卡| 亚洲专区国产一区二区| www.999成人在线观看| 后天国语完整版免费观看| 亚洲avbb在线观看| 欧美三级亚洲精品| 亚洲熟妇熟女久久| 欧美3d第一页| 国内精品一区二区在线观看| 亚洲,欧美精品.| 制服诱惑二区| 91在线观看av| 他把我摸到了高潮在线观看| 午夜精品久久久久久毛片777| 亚洲av中文字字幕乱码综合| 美女大奶头视频| 日韩av在线大香蕉| 亚洲在线自拍视频| 亚洲精品一区av在线观看| 亚洲国产欧美人成| 狠狠狠狠99中文字幕| 色综合站精品国产| 亚洲男人天堂网一区| 99国产精品一区二区蜜桃av| 亚洲第一欧美日韩一区二区三区| 亚洲av中文字字幕乱码综合| 亚洲电影在线观看av| 97人妻精品一区二区三区麻豆| 在线免费观看的www视频| 精品国产乱码久久久久久男人| 一级作爱视频免费观看| 男女那种视频在线观看| 欧美激情久久久久久爽电影| 神马国产精品三级电影在线观看 | 正在播放国产对白刺激| 一本大道久久a久久精品| 日韩精品青青久久久久久| 亚洲男人天堂网一区| 又大又爽又粗| 少妇的丰满在线观看| 香蕉久久夜色| 国产三级中文精品| 欧美黑人欧美精品刺激| 国产一区二区三区在线臀色熟女| 人成视频在线观看免费观看| 中国美女看黄片| 18禁黄网站禁片午夜丰满| 搡老熟女国产l中国老女人| 美女免费视频网站| 男人的好看免费观看在线视频 | 亚洲av电影在线进入| 狂野欧美激情性xxxx| 成年版毛片免费区| 琪琪午夜伦伦电影理论片6080| 成年免费大片在线观看| 夜夜看夜夜爽夜夜摸| 99在线人妻在线中文字幕| 非洲黑人性xxxx精品又粗又长| 久久精品亚洲精品国产色婷小说| 免费电影在线观看免费观看| 日本撒尿小便嘘嘘汇集6| 亚洲国产精品合色在线| 亚洲熟妇熟女久久| 国产激情久久老熟女| 夜夜看夜夜爽夜夜摸| 国产精品九九99| 可以免费在线观看a视频的电影网站| 白带黄色成豆腐渣| 国产午夜精品久久久久久| 国产日本99.免费观看| 亚洲国产精品合色在线| 国产亚洲欧美在线一区二区| 蜜桃久久精品国产亚洲av| 亚洲熟女毛片儿| 久久久久久国产a免费观看| 女人被狂操c到高潮| 亚洲无线在线观看| 黄色片一级片一级黄色片| 99国产精品一区二区三区| 精品国产美女av久久久久小说| 麻豆国产av国片精品| 欧美日韩国产亚洲二区| 国产精品一区二区三区四区久久| 91麻豆av在线| 夜夜看夜夜爽夜夜摸| 淫秽高清视频在线观看| 国产高清videossex| 国产精品综合久久久久久久免费| 99久久无色码亚洲精品果冻| 亚洲av片天天在线观看| 宅男免费午夜| 可以免费在线观看a视频的电影网站| 黑人巨大精品欧美一区二区mp4| 国产午夜精品久久久久久| 亚洲第一欧美日韩一区二区三区| 一区二区三区高清视频在线| 人成视频在线观看免费观看| 国产亚洲精品综合一区在线观看 | 人妻丰满熟妇av一区二区三区| 精品人妻1区二区| 国产黄色小视频在线观看| 级片在线观看| 久久欧美精品欧美久久欧美| a级毛片在线看网站| 精品国内亚洲2022精品成人| 99久久精品热视频| 国产区一区二久久| 成人av一区二区三区在线看| 色播亚洲综合网| 一级毛片女人18水好多| 久久99热这里只有精品18| 在线观看免费午夜福利视频| 一边摸一边做爽爽视频免费| 91av网站免费观看| 国产1区2区3区精品| av国产免费在线观看| 欧美乱妇无乱码| 一本大道久久a久久精品| 日韩欧美三级三区| 久久久国产成人精品二区| 全区人妻精品视频| 国产成人精品无人区| 啦啦啦观看免费观看视频高清| 亚洲欧美日韩无卡精品| av福利片在线| 午夜激情av网站| av有码第一页| 99热这里只有是精品50| 搡老岳熟女国产| 好男人在线观看高清免费视频| 国产精品乱码一区二三区的特点| 亚洲av日韩精品久久久久久密| 久久久国产欧美日韩av| 亚洲精品中文字幕一二三四区| 国产激情久久老熟女| 亚洲va日本ⅴa欧美va伊人久久| 亚洲精品色激情综合| 91国产中文字幕| 国产成人av激情在线播放| 国产在线观看jvid| 久久这里只有精品19| 国产精品99久久99久久久不卡| 久久久国产精品麻豆| 在线播放国产精品三级| 18禁黄网站禁片免费观看直播| 麻豆国产av国片精品| 国产精品亚洲美女久久久| 国产精品一及| www.精华液| 好男人电影高清在线观看| 一级片免费观看大全| 天堂av国产一区二区熟女人妻 | 非洲黑人性xxxx精品又粗又长| 欧美精品亚洲一区二区| 亚洲精品中文字幕一二三四区| 免费在线观看日本一区| 18禁国产床啪视频网站| 午夜成年电影在线免费观看| 精品人妻1区二区| 午夜福利视频1000在线观看| 婷婷精品国产亚洲av| 90打野战视频偷拍视频| 国产av一区在线观看免费| av天堂在线播放| 高清毛片免费观看视频网站| 亚洲av五月六月丁香网| 搡老妇女老女人老熟妇| 91在线观看av| 国产av不卡久久| svipshipincom国产片| 欧美又色又爽又黄视频| 欧美日韩福利视频一区二区| 精品国产亚洲在线| 大型av网站在线播放| 麻豆一二三区av精品| 精品国产美女av久久久久小说| 国产97色在线日韩免费| www.自偷自拍.com| 十八禁人妻一区二区| 国产精品电影一区二区三区| 国产精品98久久久久久宅男小说| 一卡2卡三卡四卡精品乱码亚洲| 久久伊人香网站| 成人永久免费在线观看视频| 99久久久亚洲精品蜜臀av| 亚洲国产高清在线一区二区三| 亚洲精品一卡2卡三卡4卡5卡| 久久国产乱子伦精品免费另类| 久久人妻福利社区极品人妻图片| 精品久久久久久久末码| 欧美另类亚洲清纯唯美| 日韩精品中文字幕看吧| 亚洲成人中文字幕在线播放| 久久久久久久精品吃奶| 午夜成年电影在线免费观看| 黑人巨大精品欧美一区二区mp4| 亚洲国产欧洲综合997久久,| 国产成人av教育| 女人爽到高潮嗷嗷叫在线视频| 国产在线观看jvid| 麻豆av在线久日| 日本三级黄在线观看| 亚洲电影在线观看av| 国产午夜精品久久久久久| aaaaa片日本免费| 又黄又粗又硬又大视频| 在线观看一区二区三区| 黄片大片在线免费观看| 一级毛片高清免费大全| 五月伊人婷婷丁香| 欧美在线一区亚洲| 看黄色毛片网站| 久久天堂一区二区三区四区| 人妻久久中文字幕网| 免费看a级黄色片| 久99久视频精品免费| 中文亚洲av片在线观看爽| 久久精品综合一区二区三区| 亚洲精品久久国产高清桃花| 国产69精品久久久久777片 | 日韩欧美在线二视频| 曰老女人黄片| 一进一出好大好爽视频| 亚洲黑人精品在线| 精品久久久久久成人av| 亚洲午夜精品一区,二区,三区| 草草在线视频免费看| cao死你这个sao货| 亚洲欧美激情综合另类| 日韩国内少妇激情av| 亚洲精品中文字幕在线视频| 最近视频中文字幕2019在线8| 精品国产乱码久久久久久男人| av福利片在线| 成人欧美大片| 国产三级中文精品| 叶爱在线成人免费视频播放| 老司机福利观看| 999久久久精品免费观看国产| 九九热线精品视视频播放| 亚洲免费av在线视频| 午夜激情av网站| 精品乱码久久久久久99久播| 最新在线观看一区二区三区| 在线a可以看的网站| 国产av不卡久久| 亚洲人成电影免费在线| 国产av麻豆久久久久久久| 少妇粗大呻吟视频| 日日干狠狠操夜夜爽| 免费在线观看日本一区| 成人三级黄色视频| 香蕉国产在线看| 99精品在免费线老司机午夜| 天天躁夜夜躁狠狠躁躁| 巨乳人妻的诱惑在线观看| 日本 欧美在线| 伦理电影免费视频| 成人三级做爰电影| 妹子高潮喷水视频| 九九热线精品视视频播放| 18禁黄网站禁片午夜丰满| 欧美绝顶高潮抽搐喷水| 国产主播在线观看一区二区| 久久久久九九精品影院| 99久久99久久久精品蜜桃| 97人妻精品一区二区三区麻豆| 国模一区二区三区四区视频 | 在线播放国产精品三级| 三级国产精品欧美在线观看 | 日韩 欧美 亚洲 中文字幕| 一个人免费在线观看电影 | 熟女电影av网| 男女床上黄色一级片免费看| av片东京热男人的天堂| 曰老女人黄片| 国产成年人精品一区二区| 两人在一起打扑克的视频| 亚洲专区字幕在线| 亚洲国产欧洲综合997久久,| 可以免费在线观看a视频的电影网站| 亚洲电影在线观看av| a级毛片a级免费在线| 亚洲av成人精品一区久久| 亚洲精品一区av在线观看| 制服丝袜大香蕉在线| 黄色丝袜av网址大全| 国产又色又爽无遮挡免费看| 欧美色欧美亚洲另类二区| 亚洲 欧美 日韩 在线 免费| 欧美性猛交黑人性爽| 国产久久久一区二区三区| 在线观看免费视频日本深夜| 免费在线观看完整版高清| xxxwww97欧美| 男人舔奶头视频| 久久这里只有精品19| 久久久久亚洲av毛片大全| 国产日本99.免费观看| 2021天堂中文幕一二区在线观| xxxwww97欧美| av国产免费在线观看| 欧美成人免费av一区二区三区| 美女午夜性视频免费| 校园春色视频在线观看| 久久婷婷人人爽人人干人人爱| 国内久久婷婷六月综合欲色啪| 色综合亚洲欧美另类图片| 一本精品99久久精品77| www.999成人在线观看| 亚洲 欧美一区二区三区| 国产黄a三级三级三级人| 看片在线看免费视频| 一个人免费在线观看的高清视频| 国产伦一二天堂av在线观看| 国产成人精品无人区| 精品福利观看| 嫁个100分男人电影在线观看| 久久久久久免费高清国产稀缺| 1024手机看黄色片| 国产精品久久久久久亚洲av鲁大| 国产区一区二久久| 日韩精品免费视频一区二区三区| 伦理电影免费视频| 久久精品影院6| 天堂av国产一区二区熟女人妻 | 一卡2卡三卡四卡精品乱码亚洲| 亚洲美女视频黄频| 两个人看的免费小视频| 久久久水蜜桃国产精品网| 波多野结衣巨乳人妻| 舔av片在线| 亚洲专区字幕在线| 亚洲国产欧美一区二区综合| 国产午夜福利久久久久久| 麻豆成人午夜福利视频| 欧美又色又爽又黄视频| 婷婷丁香在线五月| 久久精品国产清高在天天线| 欧美最黄视频在线播放免费| 黄色视频,在线免费观看| 欧美 亚洲 国产 日韩一| 日日干狠狠操夜夜爽| 国产精品98久久久久久宅男小说| 国产亚洲av嫩草精品影院| 少妇粗大呻吟视频| 久久久久久亚洲精品国产蜜桃av| 久久精品夜夜夜夜夜久久蜜豆 | 男人舔女人下体高潮全视频| 久久午夜综合久久蜜桃| 亚洲国产欧美人成| 免费在线观看视频国产中文字幕亚洲| 亚洲黑人精品在线| 亚洲中文字幕一区二区三区有码在线看 | 欧美乱妇无乱码| 久久久久久九九精品二区国产 | 久久婷婷人人爽人人干人人爱| 国产又黄又爽又无遮挡在线| 久久久水蜜桃国产精品网| 黑人操中国人逼视频| 国产高清有码在线观看视频 | 国产成人精品久久二区二区91| 1024手机看黄色片| 999久久久国产精品视频| 久久久久久亚洲精品国产蜜桃av| 在线观看一区二区三区| 国产精品亚洲一级av第二区| 亚洲国产欧美一区二区综合| 中文亚洲av片在线观看爽| 成人av在线播放网站| 人人妻人人澡欧美一区二区| 美女扒开内裤让男人捅视频| 99精品欧美一区二区三区四区| 一区二区三区国产精品乱码| 18禁美女被吸乳视频| 亚洲精品一卡2卡三卡4卡5卡| 成年人黄色毛片网站| 此物有八面人人有两片| 精品午夜福利视频在线观看一区| 久久精品国产清高在天天线| 免费一级毛片在线播放高清视频| 性色av乱码一区二区三区2| 一级黄色大片毛片| 久9热在线精品视频| 女人高潮潮喷娇喘18禁视频| 亚洲国产精品久久男人天堂| 国产av不卡久久| 91九色精品人成在线观看| 久久久久久久精品吃奶| 不卡一级毛片| 国产亚洲欧美98| av在线播放免费不卡| 久久热在线av| 中文字幕熟女人妻在线| 欧美精品亚洲一区二区| 国产真实乱freesex| 亚洲乱码一区二区免费版| 日本在线视频免费播放| 国产精品九九99| 日本熟妇午夜| 午夜福利视频1000在线观看| 精品人妻1区二区| 蜜桃久久精品国产亚洲av| 国产高清视频在线观看网站| 好看av亚洲va欧美ⅴa在| 亚洲精华国产精华精| 人妻夜夜爽99麻豆av| 两人在一起打扑克的视频| 亚洲美女视频黄频| 国产精品野战在线观看| 两个人视频免费观看高清| 精品国产超薄肉色丝袜足j| 免费在线观看成人毛片| 少妇被粗大的猛进出69影院| 麻豆一二三区av精品| 国产成人精品无人区| 亚洲精品中文字幕在线视频| 久久久国产成人精品二区| 午夜免费观看网址| 黑人操中国人逼视频| 亚洲精华国产精华精| 久久久久久九九精品二区国产 | 欧美黄色片欧美黄色片| 国产午夜精品论理片| 久久久久国内视频| 成人国产一区最新在线观看| 法律面前人人平等表现在哪些方面| 亚洲精品美女久久av网站| 欧美性长视频在线观看| 香蕉国产在线看| 亚洲成人精品中文字幕电影| 国产在线精品亚洲第一网站| 精品国产乱码久久久久久男人| 久久香蕉精品热| aaaaa片日本免费| 他把我摸到了高潮在线观看| 看黄色毛片网站| 最近最新免费中文字幕在线| 亚洲专区中文字幕在线| 亚洲国产精品久久男人天堂| videosex国产| 国产精品免费视频内射| 亚洲人成伊人成综合网2020| 午夜免费观看网址| 香蕉久久夜色| 日韩av在线大香蕉| 国产精品一区二区精品视频观看| 两个人视频免费观看高清| 国产成人精品久久二区二区91| 国产亚洲精品一区二区www| 最近视频中文字幕2019在线8| 国产1区2区3区精品| 亚洲精品美女久久久久99蜜臀| 精品久久久久久久久久免费视频| 亚洲,欧美精品.| 国内精品久久久久精免费| 国产精品九九99| 成人精品一区二区免费| 亚洲av电影在线进入| 国产精品亚洲美女久久久| 久久精品国产亚洲av高清一级| www日本在线高清视频| 啪啪无遮挡十八禁网站| 两人在一起打扑克的视频| 亚洲国产精品sss在线观看| 又爽又黄无遮挡网站| 国产又色又爽无遮挡免费看| 国产精品久久电影中文字幕| 1024香蕉在线观看| 国产激情欧美一区二区| 一个人观看的视频www高清免费观看 | 看免费av毛片| 久久亚洲真实| 男人舔奶头视频| 中文在线观看免费www的网站 | 在线观看免费视频日本深夜| 久久久久久亚洲精品国产蜜桃av| 国产成年人精品一区二区| 亚洲最大成人中文| 一进一出抽搐动态| 亚洲激情在线av| 久久精品亚洲精品国产色婷小说| 1024手机看黄色片| www日本黄色视频网| 免费一级毛片在线播放高清视频| 麻豆av在线久日| 国产高清视频在线播放一区| 97超级碰碰碰精品色视频在线观看| 精华霜和精华液先用哪个| 人妻丰满熟妇av一区二区三区| 成人午夜高清在线视频| 国产视频一区二区在线看| 99精品久久久久人妻精品| 日韩欧美国产一区二区入口| 九色国产91popny在线| 51午夜福利影视在线观看| 午夜视频精品福利| 在线播放国产精品三级| 少妇裸体淫交视频免费看高清 | 黄片大片在线免费观看| 亚洲成人中文字幕在线播放| 真人做人爱边吃奶动态| 嫁个100分男人电影在线观看| 国产成人系列免费观看| 天堂av国产一区二区熟女人妻 | 亚洲va日本ⅴa欧美va伊人久久| 欧美日韩一级在线毛片| 国产精品久久久人人做人人爽| 国产亚洲精品av在线| 国产av又大| 亚洲美女视频黄频| 国产亚洲精品一区二区www| 麻豆国产av国片精品| 久久精品国产亚洲av香蕉五月| 国产亚洲精品一区二区www| 久久久国产成人免费| 国产免费av片在线观看野外av| 国产成+人综合+亚洲专区| 好男人在线观看高清免费视频| 美女午夜性视频免费| 中文字幕高清在线视频| 久久久久九九精品影院| 亚洲国产看品久久| 在线观看舔阴道视频| 1024手机看黄色片| 国产精品久久久人人做人人爽| 国产免费男女视频| 热99re8久久精品国产| 久久中文看片网| 亚洲国产精品合色在线| 精品无人区乱码1区二区| 亚洲熟妇中文字幕五十中出| 亚洲av五月六月丁香网| 久久久久久亚洲精品国产蜜桃av|