• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Optimization of rice wine fermentation process based on the simultaneous saccharification and fermentation kinetic model☆

    2016-05-26 09:28:34DengfengLiuHongtaoZhangChiChungLinBaoguoXu
    Chinese Journal of Chemical Engineering 2016年10期
    關(guān)鍵詞:球體勘探礦體

    Dengfeng Liu*,Hongtao Zhang,Chi-Chung Lin,Baoguo Xu

    1Key Laboratory of Industrial Advanced Process Control for Light Industry of Ministry of Education,Jiangnan University,Wuxi 214122,China

    2School of Internet of Things Engineering,Jiangnan University,Wuxi 214122,China

    3Key Laboratory of Industrial Biotechnology of Ministry of Education,Jiangnan University,Wuxi 214122,China

    1.Introduction

    Chinese rice wine is a non-distillation beverage which is quite popular in south China[1].So far,it is clear that temperature control in the Chinese rice wine brewing process is the most important controlling parameters governing the quality of Chinese rice wine[2].The temperature during Chinese rice wine fermentation affects the following subprocesses[3]:(1)Cell growth/death.During the first 20 h,temperature affects cell growth and cell concentration affects ethanol production.(2)Starch hydrolysis.Temperature also affects the hydrolysis of starch from the sticky rice.(3)Fermentation rate of ethanol production.Temperature affects cell growth,particularly for the S.cerevisiae which transfers glucose to ethanol as we reported previously[2].(4)Production of byproducts.Temperature affects the bacteria growth which produces organic acids.

    However, the temperature control can be manually adjusted but it is necessary to determine the optimal temperature profile at various stages of the Chinese rice wine fermentation process. To determine the optimal temperature profile, the development of the kinetic model for the fermentation process is needed [4,5]. Thus far, although several mechanistic models have been proposed for enzymatic hydrolysis of cellulose 6,7], ethanol fermentation by S. cerevisiae [8], the optimum temperature for enzymatic hydrolysis of cellulose (typically 45–50 °C)is higher than that of the Chinese rice wine fermentation (30–35 °C) with S. cerevisiae as the fermenting organism. However, during the ethanol production, the enzyme for their study was purified cellulase and the temperature reached as high as 50 °C. In addition, most of their substrates were water-insoluble cellulose or starch flour. It is obviously different from that for Chinese rice wine fermentation. During the Chinese rice wine fermentation process, the temperature cannot exceed 35 °C,and the saccharification materials are whole steamed sticky rice. In addition,Chinese wheat qu instead of purify enzymes were used in the process [4,9,10]. All of the above indicate that Chinese rice wine fermentation is a new type SSF fermentation different from former ethanol fermentation.Consequently, although there have several model-based control of temperature during simultaneous saccharification and fermentation (SSF) has been experimentally determined for industrial ethanol fermentation; new kinetic model suitable for Chinese rice wine fermentation and the optimal temperature profile is still needed tobe developed.

    Hitherto,there are three methods to construct kinetic model:(1)Mechanism Model;(2)Data-driven model and(3)Gray-box model.Recently,our group has conducted a series of work to develop a suitable kinetic model for the Chinese rice wine fermentation based on the characteristics of Chinese rice wine brewing[11,12].Both ethanol and organic acids in the Chinese rice wine can affect its quality.Acquiring high ethanol concentration and keeping the organic acids at suitable concentration are the main objectives for the process[13].Like any other process,the basic challenge in Chinese rice wine brewing is to obtain high degree of hydrolysis of carbohydrate substrates together with high ethanol yield.

    In this work,kinetic parameters were estimated from the kinetic model developed by our group,the temperature-dependent model has been developed and validated using the fermentation data with the industrial strain of the yeast S.cerevisiae Su-25 at various temperatures with pretreated whole stick rice.Subsequently,an optimal temperature pro file for the SSF process of Chinese rice wine brewing to acquire high content of ethanol was determined based on the fitted model.

    2.Materials and Methods

    2.1.Mathematical model

    The mathematical model developed in this work was constructed based on our previous report[12].As we describe in the kinetic model sections,the concentration of glucose were always low during the simultaneous saccharification and fermentation(SSF)process.At first,we hypothesized that the glucose was rapidly utilized by the yeast which was why the glucose level was always low.To verify our hypothesis,saccharification experiment was conducted.The result showed that the concentration of glucose was also as low as 3.5 g·L?1in saccharification experiment only using wheat qu and starch,which was similar to that of under SSF condition.Therefore,during the Chinese rice wine fermentation process,maltose and maltotriose were the main sugar used by S.cerevisiae Su-25 to produce ethanol and other by-products.

    Our mathematical model is shown as follows based our previous publication[12]:where the constants(1.037,1.056,and 0.54)are the yield coefficients accounting for the molecular weight differences among the products;the other constants are obtained from the Balling equations[14];Ks1–Ks4are the saturation constants of each substrate.

    2.2.Materials

    The Chinese wheat qu used in this study was supplied by the Shaoxing Nverhong Rice Wine Company(Zhejiang,China)and stored at room temperature.Sticky(glutinous)rice from northern China,was purchased from the Vanguard Market,Wuxi,China.Yeast strains S.cerevisiae Su-25 supplied by the Nverhong Wine Company(Shaoxing,Zhejiang,China)was used in this study and stored at 4°C.

    2.3.Thermo-controlled fermentation process

    Rice wine fermentation experiments were carried out with rice wine yeast strains S. cerevisiae Su-25 and wheat qu.

    The yeast strainwas stored at 4 °C on slants of YPD agarmedium. The yeast inoculum was transferred to a new slant of YPD agar and cultured for 24 h at 28 °C. A sloop of yeast culture was added to 50 ml YPD broth (250 ml flask) and cultured at 28 °C for 18 h. Based on the 1:10 ratio,yeast seed inoculum to newYPD broth (100 ml in 500 ml flask) and cultured at 28 °C for another 18 h.

    The experiments were conducted in 7-L tank fermenters(BioFlow/CelliGen 115,New Brunswick Scientific,En field,CT,USA)containing about 5 L batch fermentation broth(1200 g steamed rice(dry weight),204 g wheat qu,120 ml yeast seed culture and 2400 ml tap water)at constant temperature for 96 h,four temperatures(18 °C,23 °C,28 °C,33°C)were chosen.

    2.4.Analytical methods

    At the predetermined time,samples of 2 ml cultures were taken from the fermentor for analyses with HPLC using the method describing by Liu et al.[3,11]as follows:2 ml of samples from each experiment were taken out,and then centrifuged and filtered through 0.45-μm-pore Durapore(PVDF)membrane filters(Fisher,Pittsburgh,PA,USA),subsequently analyzed with high-performance liquid chromatography(HPLC).Agilent HPLC system(Agilent 1200 Series,Santa Clara,CA,USA)were used for injection and detection.An Aminex HPX-87H column(300×7.8 mm)(Bio-Rad Labs,Richmond,CA,USA)was used to identify and determine the levels of sugars(maltotriose,maltose and glucose)and ethanol with G1314B VWD detector and a G1362A RID detector(Agilent1200Series,SantaClara,CA,USA).The HPLC conditions used were as follows: flow rate was 0.5 ml·min?1,the mobile phase consisted of 60-ml acetonitrile and 1270-μl sulfuric acid for every 1000-ml solvent,injection volume was 20 μl per fixed loop.

    分析成像結(jié)果可以發(fā)現(xiàn),異常出現(xiàn)在兩個(gè)球體中央靠近左側(cè)質(zhì)量比較小的球體,這就說(shuō)明該成像技術(shù)在比較淺的地層中異常越明顯,和單個(gè)球體成像結(jié)果相同。但這種模型對(duì)小質(zhì)量異常體表現(xiàn)得更加明顯,總而言之,這樣的成像技術(shù)適合淺源礦體勘探。

    2.5.Determination of model parameters and its validation

    To fit the data to the model,the parameters in the model were estimated using a nonlinear least square method which minimizes an objective function of Z[15]:

    where n represents the number of data points,ZX,represent the least squares discrepancies between experimental data and simulated results of biomass,X represent starch,maltose,yeast cells,ethanol,dissolved oxygen,wheat qu,and starch-enzyme complex,respectively.And i denotes the number of experimental data points.‘exp’and ‘sim’denote the observed value,and simulated value,respectively.The model was constructed by using fourth-order Runge–Kutta method in MATLAB.MSE(mean squares error)and R2were used to evaluate the experimental data and modeling data.The MSE value can be calculated by the sum squares errors divided by the length of actual data period[16].

    Fig.1.The time course of the concentrations(g·L?1)of maltotriose,maltose,glucose,and ethanol at(A)18 °C,(B)23 °C,(C)28°C,(D)33 °C of Chinese rice wine fermentation production.

    where fi,yi,y and ntare the model data,experimental data,mean experimental data and length of actual data period,respectively.

    2.6.Development of temperature-dependent model and its validation

    Kinetic parameters as a function of temperature in the range from18 to 33°C were estimated using the software package of Origin 8.0.These functions coupling with the fermentation kinetic model of Chinese rice wine fermentation were described in 2.1.A mathematical model was developed for the Chinese rice wine fermentation.This model considers the effects of temperature and it was verified with existing data.

    2.7.Optimization of temperature pro file

    Fig.2.Schematics for modeling and validating the temperature pro file of the SSF process for Chinese rice wine.

    Table 1 Estimated parameter values at various temperatures during Chinese wine fermentation

    Table 2 Evaluation of the kinetic parameters as a function of temperature(T)during Chinese wine fermentation

    The optimal temperature pro file for maximizing ethanol production was determined using genetic algorithms(GAs)with the developed model in Section 2.6.We pick the ‘Population Size’, ‘Generations’,‘Stall Time Limit’,‘Stall Gen Limit’,and ‘Tol Fun’,as 200,100,Inf,2,and 1×10?6to run the GAs.The objective function was chosen as Eq.(11)for maximizing ethanol production by optimizing the temperature profile.

    where A(tf)is the ethanol concentration at the end of fermentation.

    3.Results and Discussion

    3.1.Selection of key controlling variables and refinement of model

    To construct model of the fermentation process and setup automatic control parameter,the most important procedure is determining the key controlling variables.For the Chinese rice wine production based on the China national standard GB-13662-2000 which can be classified into four types:dry-type(sugar content ≤15 g·L?1),half dry-type(15g·L?1< sugar content≤40g·L?1),half-sweet type(40 g·L?1< sugar sugar content≤ 100 g·L?1)and sweet-type(sugar content> 100 g·L?1).

    To evaluate the effect of temperature on ethanol and sugar production,Chinese rice wine fermentation was carried out at 18 °C,23 °C,28 °C,and 33 °C.The results are shown in Fig.1.The concentration of maltotriose at 33°C increased gradually until fermentation end,and the concentration of maltotriose at 18°C arrived at the highest concentration of 10.3 g·L?1and then gradually reduced to 8.4 g·L?1at 140 h.For the concentration of maltotriose at 28 and23°C,both of them all arrived at the highest concentration at 45 g·L?1and following gradually reduced until 140 h(Fig.1A).The concentration of maltose reached the highest capacity of 90 g·L?1at 25 h and it remained unchanged until40h.Then,it began to reduce gradually. The concentration of maltose increased at the highest concentration of 79.5 g·L?1at 25 h and then reduced quickly,and all arrived at lower values at 80 h.However,the concentration of maltose arrived at 80 g·L?1at 20 h,it reduced to 40 g·L?1at 25 h and then increased to 70 g·L?1,following reduced gradually until fermentation end(Fig.1B).But the concentration of glucose only went up to around 3 g·L?1(Fig.1C).Consequently,maltose and maltotriose were chosen as variables but glucose was not considered in the resulting model.

    Fig.3.Effect of temperature on the kinetic parameters(A)k1;(B)k2;(C)k3;(D)k4;(E)k5;(F)k6during Chinese wine fermentation.

    For ethanol, from Fig. 1D, the final concentration of ethanol in Chinese rice wine broth increased with temperature increasing from 18 to 28°C,and dropped to 30 g·L?1at 33 °C.These results reveal that temperature control is an important parameter for ethanol production for Chinese rice wine brewing.Similar results were also reported for industrial ethanol fermentations[17,18].Consequently,ethanol,maltose and maltotriose were considered as the major controlling parameters.

    3.2.Development of the temperature-dependent model

    To develop the model and validate the temperature pro file for the SSF process,approaches described by Fig.2 were used.The experimental data were utilized for parameter estimation with our accordingly developed kinetic model in this report.The estimated parameters from experimental data with our kinetic model are provided in Table 1.The parameter sensitivity test was conducted to examine the influence of the model parameters.Changes of±10%were introduced to each parameter from its optimized value for the first ambient-temperature run and the ratio of the total sum of squared changes in the outputs(products)over the parameter change was computed as an indicator of the influence of the parameter or parameter sensitivity.The result revealed that k1,k2,k3,k5and k6are sensitive.

    The temperature is an important parameter for ethanol fermentation.The reaction rate of enzyme for starch hydrolysis to produce maltose and maltotriose are also affected accordingly.

    The effect of temperature on the specific hydrolysis rate of starch[19]and ethanol production[20]are quantitatively described by the Arrhenius equation which has been used to describe ethanol production with cellulose:ki(T1)=ki(T2)exp[?ΔH/R(1/T1–1/T2)]in which ki(T1)and ki(T2)are the rate constant at the absolute temperature T1and T2;R is the gas constant(8.314 × 10?3kJ·mol?1·K?1);and ΔH is the activation enthalpy of the reaction described by rate coefficient ki(kJ·mol?1·K?1).We obtained ΔH of 33.018(kJ·mol?1·K?1)and 55.82684(kJ·mol?1·K?1)for k1and k6,estimated using Origin 8.0,respectively.Parameters k2,k3,k4and k5are used in model to describe maltotriose changing.Using the parameter values given in Table 1,kinetic parameters as a function of temperature were developed using Origin 8.0, the resulting model is shown in Table 2. Good agreement has been found between the developed function and the kinetic parameters(shown as Fig.3).

    Fig.3shows that k1and k6have the similar tendency within the temperature range 18–33 °C.The possible reason is that these parameters are used to describe fermentation kinetic with the Arrhenius equation and the reaction mechanism is the same.In addition,k1and k6,as well as,k2and k5have the same tendency.k4gradually increased and then decreased.And k3increased with the temperature increasing(Fig.3).

    3.3.Validation of the resulting temperature model with experimental data

    After we developed the kinetic parameters as a function of temperature,the temperature-dependent model for describing the Chinese rice wine fermentation was worked out.However,to optimize the Chinese rice wine fermentation,we need to validate the model with the experimental data and the parameters summarized in Table 1.

    Using the parameter function in Table 2,the data from the developed temperature-dependent model were shown as Fig.4,in which indicates that a good agreement is found between the model and the experimental data for maltose and maltotriose concentrations,as well as ethanol production.In the Chinese rice wine fermentation broth,analysis of the cell concentration is still difficult.Therefore,in Fig.4,the experimental data does not show the cell concentration. In addition,as Chinese rice wine is a semi-solid fermentation,the dissolved oxygen(DO)is difficult to determine accurately.The comparison of the ethanol concentrations of the experimental data and model at various temperatures are shown in Table 3.We concluded that all the parameters of the developed model in this report are applicable to the SSF process besides the values at 23°C.It is clear that the experimental data on ethanol level are higher than that of model predicted.The reason is that yeast growth is more robust at23°C,and has longer viability time at 23°C than other temperatures.Consequently,higher ethanol level is produced by the yeast at 23°C.

    Fig.4.Experimental data and model simulations for ethanol production with the development temperature-dependent kinetic model at various temperatures.

    Table 3 The comparison of experimental and model predicted ethanol concentration for various temperatures

    3.4.Optimization of the temperature for maximizing ethanol production

    Rice wine fermentation is a typical nonlinear system.Genetic algorithm is effective for complex nonlinear system optimization.Therefore,an optimization control strategy of GAs was developed to acquire optimal temperature pro files.

    Optimization of the temperature for non-isothermal SSF process was made using the optimal pro file.The prediction of the stated variables such as maltotriose,maltose and ethanol are shown as different type lines in Fig.5A.The model predicted the temperature pro file was nonlinear(Fig.5B).

    Fig.5.Optimized temperature pro file and ethanol production by SSF during Chinese wine fermentation.

    The temperature profile estimated by Origin 8.0 can be described by the equation shown below:where,t is time.Temperature profiling begins with the low temperature at 26°C,which allows the growth of the yeast cells during the first 20 h.Subsequently,the operating temperature increased rapidly up to 31.97 °Cat30h,after which it decreased slowly to 18 °Cat65h.The predicted final concentration of ethanol was 89.3 g·L?1,which is 14%–21%higher than that of the traditional SSF process(manual controlling).

    4.Conclusions

    The effect of constant temperature on Chinese rice wine fermentation and optimal temperature pro file was investigated at a scale-down level using Mathematical model was developed ematical model.The operating temperature of Chinese rice wine fermentation was restricted by the temperature for the reason that high temperature will cause excessive organic acid production.Thus,the upper and lower limits of operating temperature are 18 and 33°C,respectively,in this work.The accordingly developed temperature-dependent model has good agreement with the experimental data.Our model suggests that temperature has a strong effect on starch hydrolysis as well as cell growth and ethanol production.The optimal temperature pro file is:during the first 20 h the temperature increases gradually from26 °C to31.9 °C.The operating temperature at around 31.5°C lasted for 13 h.Thereafter,it decreases slowly to 18°C at 68 h.The predicted final concentration of ethanol is 89.3 g·L?1.Our model conceivably can facilitate the improvement of the production of Chinese rice wine at the industrial scale.

    [1]T.Luo,W.Fan,Y.Xu,Characterization of volatile and semi-volatile compounds in Chinese rice wines by headspace solid phase microextraction followed by gas chromatography–mass spectrometry,J.Inst.Brew.114(2)(2008)172–179.

    [2]D.Liu,H.-T.Zhang,W.Xiong,J.Hu,B.Xu,C.-C.Lin,L.Xu,L.Jiang,Effect of temperature on Chinese rice wine brewing with high concentration presteamed whole sticky rice,BioMed.Res.Int.2014(2014)8.

    [3]D.Liu,H.Zhang,B.Xu,J.Tan,Influence of fermentation temperature and source of enzymes on enological characteristics of rice wine,J.Inst.Brew.120(3)(2014)231–237.

    [4]S.Mutturi,G.Lidén,Model-based estimation of optimal temperature pro file during simultaneous saccharification and fermentation of Arundo donax,Biotechnol.Bioeng.111(5)(2014)866–875.

    [5]C.López,C.Diana,T.Barz,M.Pe?uela,A.Villegas,S.Ochoa,G.Wozny,Model-based identifiable parameter determination applied to a simultaneous saccharification and fermentation process model for bio-ethanol production,Biotechnol.Prog.29(4)(2013)1064–1082.

    [6]C.-T.Tsai,R.Morales-Rodriguez,G.Sin,A.S.Meyer,A dynamic model for cellulosic biomass hydrolysis:A comprehensive analysis and validation of hydrolysis and product inhibition mechanisms,Appl.Biochem.Biotechnol.172(6)(2014)2815–2837.

    [7]M.Nikzad,K.Movagharnejad,F.Talebnia,Z.Aghaiy,M.Mighani,Modeling of alkali pretreatment of rice husk using response surface methodology and artificial neural network,Chem.Eng.Commun.(2014).

    [8]C.Bellido,S.Bolado,M.Coca,S.Lucas,G.González-Benito,M.T.García-Cubero,Effect of inhibitors formed during wheat straw pretreatment on ethanol fermentation by Pichia stipitis,Bioresour.Technol.102(23)(2011)10868–10874.

    [9]S.Chen,Y.Xu,Effect of‘wheat Qu’on the fermentation processes and volatile lfavour-active compounds of Chinese rice wine(Huangjiu),J.Inst.Brew.119(1–2)(2013)71–77.

    [10]Xu,Y.,Wang,D.,Fan,W.,Mu,X.,and Chen,J.Tranditional Chinese biotechnology,In Biotechnology in China II:Chemicals,energy and environment(Tsao,G.T.,Ouyang,P.,and Chen,J.,Eds.),pp 189–233,Springer,Berlin(2010).

    [11]D.Liu,H.Zhang,B.Xu,J.Tan,Development of kinetic model structures for glutinous rice saccharification by different enzymes,J.Food Process Eng.37(3)(2014)317–328.

    [12]D.Liu,H.Zhang,B.Xu,J.Tan,Development of kinetic model structures for simultaneous sacchari fi cation and fermentation in rice wine production,J.Inst.Brew.121(4)(2015)585–596.

    [13]P.Wang,J.Mao,X.Meng,X.Li,Y.Liu,H.Feng,Changes in flavour characteristics and bacterial diversity during the traditional fermentation of Chinese rice wines from Shaoxing region,Food Control 44(2014)58–63.

    [14]A.J.Cutaia,A.-J.Reid,R.A.Speers,Examination of the relationships between original,real and apparent extracts,and alcohol in pilot plant and commercially produced beers,J.Inst.Brew.115(4)(2009)318–327.

    [15]J.M.van Zyl,E.van Rensburg,W.H.van Zyl,T.M.Harms,L.R.Lynd,A kinetic model for simultaneous saccharification and fermentation of Avicel with Saccharomyces cerevisiae,Biotechnol.Bioeng.108(4)(2011)924–933.

    [16]M.M.Don,N.F.Shoparwe,Kinetics of hyaluronic acid production by Streptococcus zooepidemicus considering the effect of glucose,Biochem.Eng.J.49(1)(2010)95–103.

    [17]J.H.Lee,D.Williamson,P.Rogers,The effect of temperature on the kinetics of ethanol production by Saccharomyces uvarum,Biotechnol.Lett.2(4)(1980)141–146.

    [18]M.Jin,C.Gunawan,V.Balan,M.W.Lau,B.E.Dale,Simultaneous saccharification and co-fermentation(SSCF)of AFEXTM pretreated corn stover for ethanol production using commercial enzymes and Saccharomyces cerevisiae 424A(LNH-ST),Bioresour.Technol.110(0)(2012)587–594.

    [19]K.-K.Oh,S.-W.Kim,Y.-S.Jeong,S.-I.Hong,Bioconversion of cellulose into ethanol by nonisothermal simultaneous sacchari fi cation and fermentation,Appl.Biochem.Biotechnol.89(1)(2000)15–30.

    [20]A.Sipos,X.Meyer,P.Strehaiano,Development of a non-linear dynamic mathematical model for the alcoholic fermentation,Acta Aliment.36(4)(2007)429–438.?

    猜你喜歡
    球體勘探礦體
    油氣勘探開發(fā)三年滾動(dòng)計(jì)劃編制的思考
    化工管理(2022年14期)2022-12-02 11:43:00
    近地表礦體地下組合式連續(xù)開采技術(shù)研究
    越來(lái)越圓的足球
    計(jì)算機(jī)生成均值隨機(jī)點(diǎn)推理三、四維球體公式和表面積公式
    Chronicle of An Epic War
    Beijing Review(2020年25期)2020-06-24 06:21:32
    論甲烏拉礦區(qū)斷裂構(gòu)造及控礦作用
    勘探石油
    3D Mine不規(guī)則礦體三維地質(zhì)建模和儲(chǔ)量計(jì)算
    廣告創(chuàng)意新方法——球體思維兩極法
    春曉油氣田勘探開發(fā)的歷史
    能源(2016年1期)2016-12-01 05:10:19
    亚洲国产欧美日韩在线播放| 久久久久免费精品人妻一区二区 | 人人妻,人人澡人人爽秒播| 日韩一卡2卡3卡4卡2021年| 又紧又爽又黄一区二区| 久久九九热精品免费| 嫩草影院精品99| 免费看a级黄色片| 精品熟女少妇八av免费久了| 亚洲国产欧洲综合997久久, | 夜夜爽天天搞| 国产亚洲精品第一综合不卡| 熟妇人妻久久中文字幕3abv| 午夜成年电影在线免费观看| 免费高清在线观看日韩| 日本五十路高清| 亚洲国产精品久久男人天堂| 在线观看免费日韩欧美大片| 久久久久久大精品| 亚洲 国产 在线| 亚洲男人的天堂狠狠| 午夜精品久久久久久毛片777| 99国产综合亚洲精品| 草草在线视频免费看| 亚洲国产高清在线一区二区三 | 国产麻豆成人av免费视频| 日韩欧美免费精品| 久热这里只有精品99| 12—13女人毛片做爰片一| 我的亚洲天堂| 热99re8久久精品国产| a级毛片在线看网站| 琪琪午夜伦伦电影理论片6080| 好男人电影高清在线观看| 欧美日韩瑟瑟在线播放| 岛国在线观看网站| 国产激情久久老熟女| 免费一级毛片在线播放高清视频| 亚洲精品久久国产高清桃花| 美女高潮喷水抽搐中文字幕| 国产亚洲精品第一综合不卡| 国产精品一区二区精品视频观看| 国产99久久九九免费精品| 少妇的丰满在线观看| 久久久久九九精品影院| 亚洲中文av在线| 一区二区日韩欧美中文字幕| 欧美成人午夜精品| 欧美久久黑人一区二区| 精品欧美一区二区三区在线| 成年人黄色毛片网站| 制服丝袜大香蕉在线| 黄色视频不卡| 色在线成人网| 久久婷婷成人综合色麻豆| 在线观看舔阴道视频| 一本精品99久久精品77| 欧美日韩福利视频一区二区| 久久人妻福利社区极品人妻图片| 99国产极品粉嫩在线观看| 在线观看免费视频日本深夜| 国产精品一区二区免费欧美| 午夜激情福利司机影院| 日本a在线网址| 丰满的人妻完整版| 日韩欧美 国产精品| 国产1区2区3区精品| 91麻豆av在线| 国产真实乱freesex| 叶爱在线成人免费视频播放| 久久精品夜夜夜夜夜久久蜜豆 | 午夜福利在线观看吧| 99精品欧美一区二区三区四区| 熟女电影av网| 级片在线观看| 可以在线观看的亚洲视频| 国产精品 国内视频| 91成年电影在线观看| 亚洲成人国产一区在线观看| 嫩草影视91久久| 精品国产超薄肉色丝袜足j| 99国产精品一区二区三区| 亚洲欧美日韩高清在线视频| 操出白浆在线播放| 亚洲av第一区精品v没综合| 亚洲熟妇熟女久久| 日韩欧美一区二区三区在线观看| 午夜免费成人在线视频| 午夜免费成人在线视频| 中文资源天堂在线| 法律面前人人平等表现在哪些方面| 国产欧美日韩一区二区精品| 欧美日韩乱码在线| 国产黄a三级三级三级人| 亚洲美女黄片视频| 少妇粗大呻吟视频| 无限看片的www在线观看| 在线播放国产精品三级| 少妇的丰满在线观看| 欧美乱妇无乱码| 天天添夜夜摸| 久久久久久久久久黄片| 亚洲自拍偷在线| 一进一出抽搐gif免费好疼| 变态另类成人亚洲欧美熟女| 欧美乱色亚洲激情| 黄片播放在线免费| 午夜久久久在线观看| 国内精品久久久久久久电影| 日韩高清综合在线| or卡值多少钱| 国产精品久久久久久精品电影 | 亚洲九九香蕉| 天堂√8在线中文| 香蕉av资源在线| 久久精品国产亚洲av香蕉五月| 国产精品久久久av美女十八| 99久久久亚洲精品蜜臀av| 老熟妇乱子伦视频在线观看| 变态另类成人亚洲欧美熟女| 日日夜夜操网爽| 精品久久久久久成人av| 亚洲一区高清亚洲精品| 久久久国产精品麻豆| 免费电影在线观看免费观看| 久久婷婷人人爽人人干人人爱| 在线观看一区二区三区| 国产精品久久久久久亚洲av鲁大| 一二三四在线观看免费中文在| 欧美乱色亚洲激情| 99国产精品99久久久久| 十八禁网站免费在线| 久久热在线av| 成熟少妇高潮喷水视频| 亚洲一区高清亚洲精品| 亚洲av电影在线进入| avwww免费| 精品国产一区二区三区四区第35| 最好的美女福利视频网| 伊人久久大香线蕉亚洲五| 99久久久亚洲精品蜜臀av| 亚洲专区国产一区二区| 一二三四在线观看免费中文在| 亚洲一区二区三区不卡视频| 看黄色毛片网站| 日本一本二区三区精品| 国产成人欧美在线观看| 很黄的视频免费| bbb黄色大片| 色精品久久人妻99蜜桃| 亚洲av日韩精品久久久久久密| 亚洲精品美女久久av网站| 波多野结衣高清作品| 草草在线视频免费看| 一区二区日韩欧美中文字幕| 久久欧美精品欧美久久欧美| 国产精品亚洲一级av第二区| 精品国产乱子伦一区二区三区| 国产激情欧美一区二区| svipshipincom国产片| 亚洲国产精品久久男人天堂| 天堂影院成人在线观看| 夜夜躁狠狠躁天天躁| 久久热在线av| 黑人操中国人逼视频| 成人一区二区视频在线观看| 99精品在免费线老司机午夜| 国产又黄又爽又无遮挡在线| 黄色丝袜av网址大全| 国产97色在线日韩免费| 久久久国产成人免费| 亚洲精品久久国产高清桃花| 女性生殖器流出的白浆| 国产黄a三级三级三级人| www.精华液| av超薄肉色丝袜交足视频| 久久人妻福利社区极品人妻图片| 啦啦啦 在线观看视频| 国产午夜精品久久久久久| 亚洲av成人av| 99在线人妻在线中文字幕| 日本精品一区二区三区蜜桃| 哪里可以看免费的av片| 午夜福利免费观看在线| 国产一区二区激情短视频| 日韩成人在线观看一区二区三区| 色在线成人网| 男人舔奶头视频| 天天躁狠狠躁夜夜躁狠狠躁| 一级a爱片免费观看的视频| 草草在线视频免费看| 欧美激情高清一区二区三区| 三级毛片av免费| 麻豆一二三区av精品| 97碰自拍视频| 精品久久久久久久毛片微露脸| 亚洲人成伊人成综合网2020| 波多野结衣巨乳人妻| 好看av亚洲va欧美ⅴa在| 亚洲一区中文字幕在线| 欧美精品亚洲一区二区| 黄网站色视频无遮挡免费观看| 12—13女人毛片做爰片一| av中文乱码字幕在线| 波多野结衣高清无吗| 97人妻精品一区二区三区麻豆 | 国产欧美日韩一区二区三| 99热只有精品国产| 久久久国产精品麻豆| 欧美 亚洲 国产 日韩一| 国产亚洲精品综合一区在线观看 | 麻豆成人午夜福利视频| 麻豆国产av国片精品| 老司机午夜十八禁免费视频| 国产亚洲欧美精品永久| 精品久久久久久久久久免费视频| 成人欧美大片| 757午夜福利合集在线观看| 变态另类成人亚洲欧美熟女| 99久久久亚洲精品蜜臀av| 国产av在哪里看| 欧美午夜高清在线| 国产一区二区在线av高清观看| 久久精品国产清高在天天线| a级毛片a级免费在线| 免费人成视频x8x8入口观看| 这个男人来自地球电影免费观看| 热99re8久久精品国产| 亚洲成国产人片在线观看| 色av中文字幕| 制服人妻中文乱码| 中文字幕久久专区| 久久久久免费精品人妻一区二区 | 欧美精品亚洲一区二区| 亚洲精品中文字幕在线视频| av天堂在线播放| 国产高清激情床上av| 在线观看www视频免费| 欧美三级亚洲精品| 国产精品综合久久久久久久免费| 国产精品久久久av美女十八| 国产一卡二卡三卡精品| 成人亚洲精品一区在线观看| 99国产精品一区二区蜜桃av| 日韩大码丰满熟妇| 欧美色视频一区免费| 亚洲一卡2卡3卡4卡5卡精品中文| e午夜精品久久久久久久| 成人亚洲精品av一区二区| 一级毛片精品| 日韩精品中文字幕看吧| 亚洲成人久久性| 波多野结衣av一区二区av| 亚洲男人天堂网一区| 久久久精品欧美日韩精品| 久久精品国产亚洲av高清一级| 精品欧美国产一区二区三| 色综合欧美亚洲国产小说| 欧美一级a爱片免费观看看 | 欧美另类亚洲清纯唯美| 国产人伦9x9x在线观看| 热re99久久国产66热| 日韩精品中文字幕看吧| 日韩欧美 国产精品| avwww免费| 亚洲精品美女久久久久99蜜臀| 久久久国产精品麻豆| 夜夜爽天天搞| 中文字幕精品亚洲无线码一区 | 久久 成人 亚洲| 婷婷亚洲欧美| 伊人久久大香线蕉亚洲五| 男女做爰动态图高潮gif福利片| 老汉色av国产亚洲站长工具| 嫩草影院精品99| 国产高清有码在线观看视频 | 999久久久国产精品视频| 亚洲欧美日韩无卡精品| 男女床上黄色一级片免费看| 亚洲性夜色夜夜综合| 久久精品国产亚洲av高清一级| 久9热在线精品视频| 成熟少妇高潮喷水视频| 最新美女视频免费是黄的| 国产伦一二天堂av在线观看| 99久久久亚洲精品蜜臀av| 1024香蕉在线观看| 亚洲性夜色夜夜综合| 久久久久九九精品影院| 国产v大片淫在线免费观看| 精品久久久久久久久久免费视频| 国产伦一二天堂av在线观看| 老汉色∧v一级毛片| 日韩精品免费视频一区二区三区| 琪琪午夜伦伦电影理论片6080| a级毛片在线看网站| 很黄的视频免费| 久久久久久久久免费视频了| 在线观看舔阴道视频| 国产一级毛片七仙女欲春2 | 亚洲五月天丁香| 在线观看免费日韩欧美大片| 后天国语完整版免费观看| 欧美一级毛片孕妇| 久久国产亚洲av麻豆专区| 又紧又爽又黄一区二区| 亚洲第一av免费看| 久久中文字幕人妻熟女| 国产精华一区二区三区| 成年女人毛片免费观看观看9| 怎么达到女性高潮| 久热爱精品视频在线9| 巨乳人妻的诱惑在线观看| 1024视频免费在线观看| 99久久综合精品五月天人人| 观看免费一级毛片| 欧美绝顶高潮抽搐喷水| 一级黄色大片毛片| 亚洲成人精品中文字幕电影| www.999成人在线观看| 啪啪无遮挡十八禁网站| 欧美另类亚洲清纯唯美| 一本综合久久免费| 久久欧美精品欧美久久欧美| 国产午夜精品久久久久久| 国产成人影院久久av| 国产成人啪精品午夜网站| 女性被躁到高潮视频| 亚洲欧美日韩无卡精品| 少妇裸体淫交视频免费看高清 | 免费在线观看完整版高清| 18美女黄网站色大片免费观看| 成人亚洲精品av一区二区| www日本在线高清视频| 亚洲国产毛片av蜜桃av| 午夜亚洲福利在线播放| 成人国语在线视频| 久久精品亚洲精品国产色婷小说| 人人妻,人人澡人人爽秒播| 国产三级黄色录像| 精品欧美国产一区二区三| 99热这里只有精品一区 | 成人特级黄色片久久久久久久| 久久99热这里只有精品18| 日本 欧美在线| √禁漫天堂资源中文www| 亚洲av五月六月丁香网| 美女大奶头视频| 男女之事视频高清在线观看| 国产v大片淫在线免费观看| www日本在线高清视频| 国产精品香港三级国产av潘金莲| 两个人视频免费观看高清| 十分钟在线观看高清视频www| 欧美乱码精品一区二区三区| 此物有八面人人有两片| 嫩草影院精品99| 国内精品久久久久久久电影| 亚洲一区二区三区不卡视频| www日本黄色视频网| 欧美日韩亚洲综合一区二区三区_| 18禁黄网站禁片午夜丰满| 日韩大尺度精品在线看网址| 在线观看66精品国产| 久热这里只有精品99| 日日干狠狠操夜夜爽| 老司机午夜福利在线观看视频| 国产成人精品久久二区二区免费| 黄色 视频免费看| 国产私拍福利视频在线观看| 国产精品久久视频播放| 国产精品 欧美亚洲| 曰老女人黄片| 国产真人三级小视频在线观看| 99久久无色码亚洲精品果冻| 欧洲精品卡2卡3卡4卡5卡区| 欧美激情久久久久久爽电影| 亚洲成人精品中文字幕电影| 欧美激情高清一区二区三区| 18禁黄网站禁片午夜丰满| 精品国产乱子伦一区二区三区| 一边摸一边做爽爽视频免费| 国产一卡二卡三卡精品| a在线观看视频网站| 两个人看的免费小视频| 久久婷婷成人综合色麻豆| 天堂√8在线中文| bbb黄色大片| 看片在线看免费视频| 国产精品久久久久久亚洲av鲁大| 欧美性猛交黑人性爽| bbb黄色大片| 草草在线视频免费看| 国产精华一区二区三区| 视频在线观看一区二区三区| 欧美国产日韩亚洲一区| 亚洲国产高清在线一区二区三 | 国产精品爽爽va在线观看网站 | 久久青草综合色| 免费在线观看影片大全网站| 亚洲精品色激情综合| 制服诱惑二区| 日韩大尺度精品在线看网址| 午夜视频精品福利| 久久久久久国产a免费观看| 两人在一起打扑克的视频| 搡老熟女国产l中国老女人| 色在线成人网| 欧美成人性av电影在线观看| 色av中文字幕| 国产乱人伦免费视频| 日韩欧美三级三区| 俺也久久电影网| 国产成人av激情在线播放| 久久婷婷成人综合色麻豆| a级毛片a级免费在线| 免费看日本二区| 婷婷精品国产亚洲av| 午夜免费观看网址| 精品熟女少妇八av免费久了| 成人精品一区二区免费| 91成人精品电影| 国产高清有码在线观看视频 | 亚洲性夜色夜夜综合| 久久人妻av系列| 一区二区三区激情视频| 黄色视频不卡| 精品无人区乱码1区二区| 少妇熟女aⅴ在线视频| 97人妻精品一区二区三区麻豆 | 视频在线观看一区二区三区| 免费在线观看日本一区| 天天躁夜夜躁狠狠躁躁| 免费女性裸体啪啪无遮挡网站| 国产成人啪精品午夜网站| 侵犯人妻中文字幕一二三四区| 亚洲成av片中文字幕在线观看| 18禁黄网站禁片午夜丰满| 中文字幕精品免费在线观看视频| 两个人免费观看高清视频| 麻豆国产av国片精品| 中文资源天堂在线| 精品国产一区二区三区四区第35| 最好的美女福利视频网| 国产精品,欧美在线| 亚洲五月婷婷丁香| 热re99久久国产66热| 亚洲第一av免费看| 嫁个100分男人电影在线观看| 成人一区二区视频在线观看| 男女午夜视频在线观看| 成人午夜高清在线视频 | 1024香蕉在线观看| 亚洲欧美激情综合另类| 国产视频一区二区在线看| 久久久国产精品麻豆| 久久久久久亚洲精品国产蜜桃av| 一边摸一边做爽爽视频免费| 欧美日韩亚洲综合一区二区三区_| 国产aⅴ精品一区二区三区波| 最好的美女福利视频网| 午夜免费激情av| 91九色精品人成在线观看| 国产一卡二卡三卡精品| 亚洲一区高清亚洲精品| 国产精品亚洲一级av第二区| 国产精品自产拍在线观看55亚洲| 国产aⅴ精品一区二区三区波| 国产亚洲精品第一综合不卡| 欧美乱妇无乱码| 亚洲一区中文字幕在线| 久久久久久国产a免费观看| 黄色丝袜av网址大全| 亚洲精品一区av在线观看| 给我免费播放毛片高清在线观看| 日本熟妇午夜| 成人免费观看视频高清| 欧美成人免费av一区二区三区| 日韩免费av在线播放| 亚洲精华国产精华精| 女人爽到高潮嗷嗷叫在线视频| 88av欧美| 国产激情久久老熟女| 男人舔奶头视频| 久久九九热精品免费| 国产精品国产高清国产av| 亚洲人成77777在线视频| 最近最新中文字幕大全电影3 | 成人免费观看视频高清| √禁漫天堂资源中文www| 国产野战对白在线观看| 国产熟女午夜一区二区三区| 亚洲欧美精品综合一区二区三区| 嫩草影院精品99| 一级毛片女人18水好多| 国产蜜桃级精品一区二区三区| 日本撒尿小便嘘嘘汇集6| 成人特级黄色片久久久久久久| 亚洲av第一区精品v没综合| 99国产精品99久久久久| 欧美黄色片欧美黄色片| 曰老女人黄片| 视频区欧美日本亚洲| 久久国产精品人妻蜜桃| 国产在线观看jvid| 免费在线观看成人毛片| 每晚都被弄得嗷嗷叫到高潮| 又大又爽又粗| 亚洲一区中文字幕在线| 91av网站免费观看| 成人精品一区二区免费| 哪里可以看免费的av片| www.熟女人妻精品国产| 人人妻,人人澡人人爽秒播| 成人手机av| 国产黄片美女视频| 黑丝袜美女国产一区| 国产成人av激情在线播放| 国产在线观看jvid| 女警被强在线播放| 亚洲中文字幕日韩| 亚洲欧美一区二区三区黑人| 成人一区二区视频在线观看| 久久99热这里只有精品18| 国产97色在线日韩免费| 国产成人欧美| 色精品久久人妻99蜜桃| 香蕉久久夜色| 国产一区二区激情短视频| 一本精品99久久精品77| 一级a爱片免费观看的视频| av福利片在线| 黄网站色视频无遮挡免费观看| 亚洲一码二码三码区别大吗| 91九色精品人成在线观看| 久久精品影院6| 国产高清videossex| 搡老岳熟女国产| 国产亚洲欧美98| 97碰自拍视频| 一级作爱视频免费观看| 精品少妇一区二区三区视频日本电影| 香蕉丝袜av| 色播在线永久视频| 国产精品一区二区三区四区久久 | 男男h啪啪无遮挡| 波多野结衣高清作品| 久久伊人香网站| av欧美777| 国产成人欧美在线观看| 男人舔女人的私密视频| 在线观看免费日韩欧美大片| 国产精品国产高清国产av| 黄色视频,在线免费观看| 国产1区2区3区精品| 在线免费观看的www视频| 久久伊人香网站| 搡老岳熟女国产| 最新在线观看一区二区三区| 男人舔女人的私密视频| 99在线视频只有这里精品首页| 欧美成人午夜精品| 18禁裸乳无遮挡免费网站照片 | 美女午夜性视频免费| 十分钟在线观看高清视频www| 不卡一级毛片| tocl精华| 999久久久精品免费观看国产| 久久精品成人免费网站| 老司机在亚洲福利影院| 黄频高清免费视频| 久久精品国产综合久久久| 国产亚洲欧美在线一区二区| 免费观看精品视频网站| 国产精品,欧美在线| 日韩欧美国产在线观看| 午夜福利一区二区在线看| 国产精品久久电影中文字幕| 无遮挡黄片免费观看| 夜夜夜夜夜久久久久| 亚洲精品一区av在线观看| 午夜老司机福利片| 999久久久国产精品视频| 亚洲色图 男人天堂 中文字幕| 国产亚洲av高清不卡| 一边摸一边抽搐一进一小说| 一二三四在线观看免费中文在| 欧美成人性av电影在线观看| 欧美乱色亚洲激情| 亚洲九九香蕉| 中文字幕精品免费在线观看视频| 久久人妻福利社区极品人妻图片| 精品国产国语对白av| 嫩草影院精品99| netflix在线观看网站| 国产精品爽爽va在线观看网站 | 一级黄色大片毛片| 久久久久久久精品吃奶| 精品福利观看| 国产精品久久视频播放| 亚洲国产日韩欧美精品在线观看 | 搡老岳熟女国产| 欧美成人免费av一区二区三区| 国产真人三级小视频在线观看| 国产单亲对白刺激| 日韩成人在线观看一区二区三区| 十分钟在线观看高清视频www| 在线视频色国产色| 午夜福利成人在线免费观看| 午夜a级毛片| 久久伊人香网站| 日韩欧美三级三区| 怎么达到女性高潮| 90打野战视频偷拍视频| 亚洲av片天天在线观看|