• 
    

    
    

      99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

      再談“對一道高考試題的質(zhì)疑與探究”

      2016-05-24 07:56:40浙江省溫州中學325014吳時月
      中學數(shù)學研究(江西) 2016年5期
      關鍵詞:奇函數(shù)增函數(shù)考試題

      浙江省溫州中學 (325014) 吳時月

      ?

      再談“對一道高考試題的質(zhì)疑與探究”

      浙江省溫州中學(325014)吳時月

      抽象函數(shù)的對稱性、周期性是高中數(shù)學的重點內(nèi)容之一,這類問題由于抽象程度高,解答過程靈活,不僅學生難以把握,老師在命題時也會經(jīng)常出錯.近期,筆者在查閱文獻時,看到文【1】中的“對一道高考試題的質(zhì)疑與探究”,深有感觸,并對此類問題進行更深入的思考,作為對文【1】探究的繼續(xù),現(xiàn)記述如下.

      一、真題再現(xiàn)

      (2005福建理)已知f(x)是定義在R上的以3為周期的奇函數(shù),且f(2)=0,則方程f(x)=0在區(qū)間(0,6)內(nèi)解的個數(shù)的最小值是().

      A.2B.3C.4D.5

      命題組提供的流行錯解:f(2)=f(5)=0,f(0)=f(3)=0,f(2)=f(-1)=-f(1)=-f(4)=0,所以f(1)=f(4)=0.所以答案選D.

      (2005福建文)已知f(x)是定義在R上的以3為周期的偶函數(shù),且f(2)=0,則方程f(x)=0在區(qū)間(0,6)內(nèi)解的個數(shù)的最小值是().

      A.5B.4C.3D.2

      命題組提供的基本解法:f(2)=f(5)=0,f(2)=f(-2)=f(1)=f(4)=0,此解法則是正確無疑,相比于理科題,條件僅由奇函數(shù)變成偶函數(shù),結(jié)果則是大相徑庭.

      二、錯題剖析

      此題是在講授抽象函數(shù)的內(nèi)容時經(jīng)常遇到的一道錯題,下面先提供學生的兩種解法:

      解法一、二的圖像延拓如圖1:

      圖1

      兩種解法的答案為什么不一致呢?很多學生都找不出錯誤的地方.究其原因,是因為f(x)是偶函數(shù)的條件多余,從而導致自相矛盾的表達式;或者把條件f(x+1)+f(x)=1改為f(x+2)=f(x),則函數(shù)的表達式就唯一確定了,深究原因,是因為條件f(x+1)+f(x)=1在給出周期性的同時,還可以利用此條件得到相應區(qū)間的表達式,造成自相矛盾的結(jié)果. (或者說:f(x+1)+f(x)=1只是f(x+2)=f(x)的充分不必要條件,而不是充要條件)

      以下的例題也是很多復習參考書中經(jīng)常出現(xiàn)的錯題:

      A.是增函數(shù),且f(x)<0

      B.是增函數(shù),且f(x)>0

      C.是減函數(shù),且f(x)<0

      D.是減函數(shù),且f(x)>0

      只要稍加修改,以上錯題便可成為典型的例題:

      A.是增函數(shù),且f(x)<0

      B.是增函數(shù),且f(x)>0

      C.是減函數(shù),且f(x)<0

      D.是減函數(shù),且f(x)>0

      A.是增函數(shù),且f(x)<0

      B.是增函數(shù),且f(x)>0

      C.是減函數(shù),且f(x)<0

      D.是減函數(shù),且f(x)>0

      以典型例題3″為例,下面提供兩種常用的解法:

      解法一、二的圖像延拓如圖2:

      圖2

      三、典例探究

      典型例題5定義在R上的奇函數(shù)f(x)滿足f(3+x)=f(3-x),若當x∈(0,3)時,f(x)=2x,則當x∈(-6,-3)時,f(x)=() .

      A. 2x+6B. -2x+6C.2x-6D.-2x-6

      典型解法一:由f(x+6)=f(-x),f(-x)=-f(x)得f(x+6)=-f(x).當x∈(-6,-3)時,x+6∈(0,3),所以f(x+6)=2x+6=-f(x),即f(x)=-2x+6.選B.

      典型解法二:當x∈(3,6)時,6-x∈(0,3),所以f(x)=f(6-x)=26-x,當x∈(-6,-3)時,-x∈(3,6),所以f(x)=-f(-x)=-2x+6.

      解法一、二的圖像延拓如圖3所示:

      典型例題5′定義在R上的奇函數(shù)f(x)滿足f(3+x)=f(3-x),若當x∈(0,3)時,f(x)=2x,當x∈(-12,-9)時,求f(x)的表達式.

      解:當x∈(-12,-9)時,x+12∈(0,3),所以f(x+12)=212+x=-f(x+6)=f(x),即當x∈(-12,-9)時,f(x)=212+x.

      此題背后隱藏著抽象函數(shù)的另一個重要性質(zhì)(如圖4):既有對稱中心,又有對稱軸的函數(shù),必有周期. 具體性質(zhì)如下:

      性質(zhì)1若函數(shù)y=f(x)關于點(a,y0)和直線x=b對稱,則4|b-a|是函數(shù)y=f(x)的一個周期.

      性質(zhì)2若函數(shù)y=f(x)關于直線x=a和x=b對稱,則2|b-a|是函數(shù)y=f(x)的一個周期.

      性質(zhì)3若函數(shù)y=f(x)關于點(a,y0)和點(b,y0)對稱,則2|b-a|是函數(shù)y=f(x)的一個周期.

      四、反思總結(jié)

      每一個數(shù)學問題都有它的數(shù)學本質(zhì),面對一個問題,如果只看到問題的表層,就無法深入到問題的內(nèi)核,看不透問題的本質(zhì),正所謂“不識廬山真面目,只緣身在此山中” .所以,在平時的解題和探究過程中就應該通過問題的解決揭示問題的本質(zhì),使數(shù)學問題的解決變得簡單而自然.

      參考文獻

      [1] 馬進才.對一道高考試題的質(zhì)疑與探究[J].數(shù)學通訊,2013(9).

      猜你喜歡
      奇函數(shù)增函數(shù)考試題
      酯縮合在高考試題中的應用
      酯縮合在高考試題中的應用
      一個對數(shù)不等式的改進
      一道集訓隊選拔考試題的推廣
      我為高考設計題目(2)
      例談幾道2018年高考試題
      淺談如何運用奇函數(shù)研究對稱中心
      2016年山東省20題第(Ⅱ)問的三種解法
      定義在R的奇函數(shù)可以任性使用f(0)=0
      函數(shù)奇偶性的解題技巧
      鲁山县| 札达县| 漠河县| 满城县| 荣成市| 准格尔旗| 荥阳市| 潍坊市| 保定市| 余干县| 池州市| 花莲县| 隆子县| 夹江县| 德令哈市| 常州市| 肇源县| 定南县| 绥中县| 容城县| 阳泉市| 永顺县| 左云县| 阳谷县| 绥宁县| 乐昌市| 兴城市| 罗江县| 桓台县| 长武县| 育儿| 井陉县| 怀来县| 道孚县| 诏安县| 嘉荫县| 沙湾县| 泰和县| 黔江区| 霸州市| 梅州市|