• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    The Gut Microbiota and Atherosclerosis:The State of the Art and Novel Perspectives

    2016-05-23 01:59:13GiulioLaRosaandLuigiMarzioBiasucci

    Giulio La Rosa and Luigi Marzio Biasucci

    1Department of Cardiovascular Sciences, Catholic University of Sacred Heart, Largo Agostino Gemelli 8, 00168 Rome, Italy

    Introduction

    The human gut microbiota is composed of more than 100 trillion microbes, grouped into more than 1000 species, with approximately 5 million genes and an average weight of 1.5 kg [1]. It has recently been investigated as one of the major contributors to host metabolism, and its imbalance and alterations are linked to several intestinal and metabolic diseases, such as metabolic syndrome.

    In this review our aim is to describe the specific mechanisms involved in the relationship between the gut microbiota and atherosclerosis and possible novel therapeutic targets to reduce the burden of cardiovascular disease.

    The Human Gut Microbiota

    Recent development of technology has made available high-throughput sequencing to analyze the collective genome of the gut microbiota derived from stool samples, known as the “metagenome,” giving a remarkable contribution to our understanding of the gut microbiota composition. The combination of metagenomic analysis with clinical phenotypic data is known as a “metagenome-wide association study” [2].

    Despite most of the microbiome being constituted of bacterial species, several viruses are present,although their function is almost unknown [3]. It is speculated that intestinal bacterial infections contribute to in flammation and atherosclerosis [4].

    The bacterial composition of the intestinal microflora re flects the in fluence of several factors: diet,bacterial composition of the environment, and host genetics [5]. Although there is considerable diversity between individuals, different groups of scientists have analyzed serial stool collections and have shown that most communities are dominated by species belonging to the phylaBacteroidetes,Firmicutes,Actinobacteria,Proteobacteria, andVerrucomicrobia[6] and the unique core gut microbiota composition of an individual remains remarkably stable over time [7, 8].

    In the last few years, wide investigation of the crosstalk between the gut microbiota and the host has shown a wide range of functions:

    ? It plays a pivotal role in the homeostasis of the gut immune system as well as in protection against pathogens.

    ? It contributes to several metabolic functions,such as Ca2+absorption and bone metabolism,and chemical reactions of xenobiotics.

    ? It is somehow involved in both angiogenesis and the intestinal epithelial barrier [9, 10].

    Data are being accumulated that indicate cross talk between the gut microbiota and intestinal disease may be involved in the development of different metabolic disorders, such as type 2 diabetes mellitus and obesity, and subsequent cardiovascular diseases [11]. In particular, interesting findings from a Finnish study suggest a role of in flammatory bowel disease in the development of coronary artery disease in patients who did not have cardiovascular risk factors other than hypertension [12].

    Moreover, imbalance in metabolism of different cardiovascular drugs (such as statins), for example,resulting from a reduction of cytochrome P450 3A levels, has been found in untreated celiac disease [13].

    The Gut Microbiota in Obesity and Type 2 Diabetes Mellitus: A Driver for In flammation

    It is well established that metabolic syndrome, obesity, and diabetes are major risk factors for coronary artery disease and a primary public health concern.However, only in the past 10 years an explicit link with the specific composition, relative proportions,and functional capacity of bacteria in the intestinal microbiome was recognized [14–16].

    Metagenomic studies in humans and mice comparing the diversity of the gut micro flora between diabetic or obese individuals and healthy controls underline a considerable variation:

    ? enrichment inFirmicutesand a corresponding decrease inBacteroideteslevels in the microbiota of obese individuals, normalized to the level observed in the healthy controls after weight loss[17, 18];

    ? lower levels ofFaecalibacterium prausnitziiin the microbiome of diabetic patients [19].

    However, these results have to be veri fied because discordant data have recently emerged [20, 21].

    Turnbaugh et al. [22] reported successful transmission of the obesity trait through cecal microbiome transplant from obeseob/obmice into germ-free mice (which have sterile intestines and less total body fat content) compared with conventionally caged mice fed with a high fat-sugar–rich diet.

    To explain the underlying mechanism for gut microbiome–mediated obesity, B?ckhed et al. [23]proposed the role of micro flora-derived short-chain fatty acids (SCFAs) in the resistance to diet-induced obesity in germ-free mice. SCFAs derive from fermentation of nondigestible carbohydrates (depending on daily fiber intake) [11] to yield energy, leading to a more efficient harvest from dietary intake. In healthy individuals, SCFAs are mainly composed of acetate (60%), propionate (25%), and butyrate(15%) [22], and these play a complex role in the relationship between the gut microbiome and host metabolism [23]. Once absorbed in the plasma of the host via the intestinal epithelium, they are not only an important energy source but are also involved in several pathways, with proatherogenic and antiatherogenic effects according to their composition.

    Using a metagenomic approach, Cani et al.[19] described a reduction of the abundance ofF. prausnitzii,a butyrate SCFA–producing species, in diabetic patients compared with lean controls, while Karlsson et al. [24] described an increase in the abundance ofLactobacillus gasseriandStreptococcus mutansand a reduction in the number ofRoseburiaspecies (another butyrate SCFA–producing species) andF. prausnitziiin patients with type 2 diabetes. These studies outlined a road map for the hypothesis of SCFAs as possible regulators of host metabolic state, showing how butyrate SCFA–producing species may decrease plasma glucose levels by enhancing glucagon-like peptide 1 release and leptin synthesis and reducing insulin resistance [24]. On the other hand, Kootte et al. [11] described a potential role for SCFAs in promoting a chronic in flammatory state subsequent to an impairment of intestinal permeability.

    In a randomized trial Vrieze et al. [25] evaluated treatment-naive male participants with metabolic syndrome–derived insulin resistance randomized to receive either an allogenic gut microbiota transplant (from lean male donors with a body mass index <23 kg/m2) or an autologous gut microbiota transplant (reinfusion of own collected feces). They reported a reduction of the level of overall SCFAs and especially butyrate SCFA, with a concomitant reduced excreted energy content in the feces that was restored when patients received a lean-donor gut microbiota transplant.

    Another elegant contribution to the establishment of SCFAs as pivotal mediators in gut metabolism comes from bariatric surgery studies. The importance of a gastric bypass procedure (Rouxen-Y gastric bypass) in the treatment of obese and metabolic syndrome patients is well recognized but recent findings underline a therapeutic effect beyond weight reduction, that is a signi ficant increase in insulin sensitivity before weight loss and an enrichment of the bene ficial microbeF. prausnitzii. [26–29]. As explained already, this species of bacteria may exert a protective role through butyrate SCFA secretion, since the levels are negatively correlated with in flammatory markers, suggesting a potential role in modulating systemic in flammation [29].

    Another mechanism by which the gut microbiota may induce the development of obesity, type 2 diabetes mellitus, and subsequent metabolic syndrome could be macrophage activation by bacterial endotoxins (e.g., lipopolysaccharide, LPS) and intestinal bacteria translocation. Macrophage in filtration in visceral adipose tissue has been highlighted as a probable link because of recent studies showing an association between an altered intestinal microbiota and proin flammatory changes in adipose gene expression [30–32].

    Different mechanisms are involved in intestinal bacteria translocation:

    ? a cotransport on dietary fat–derived chylomicrons [33, 34];

    ? decreased production of glucagon-like peptide 2

    in intestinal neuroendocrine L cells, caused by LPS, which leads to weakened colon epithelial integrity [35].

    The increased gut microbiota LPS levels (de fined as “metabolic endotoxemia”) induce a state of low-grade in flammation in mice fed a high-fat diet. In particular, an association with reduced levels ofBi fidobacteriumandEubacterium rectale/Clostridium coccoideswas found to be signi ficant[36].

    Sanz et al. [37] described a similar phenotype in murine models comparing mice fed a high-fat diet with those that received long-term infusion of LPS to reach the same plasma LPS levels measured in the first group, showing a specific link between translocation of intestinal bacteria products and activation of in flammatory response by interaction with Toll-like receptor 4(TLR4). The pivotal role of TLR4 in this complex interplay was clarified with mice fed a high-fat-diet that had CD14 knocked out, a key molecule in TLR4 signaling,characterized by strong resistance to the development of obesity.

    The state of low-grade in flammation determined by microbiota-derived LPS leads to substantial alterations in both glucidic and lipid metabolism:an increase of insulin resistance and activation of macrophages that in filtrated adipose tissue, promoting fasting hyperglycemia, dyslipidemia, obesity,and hepatic steatosis (Figure 1) [38].

    Finally, it is worth noting that, besides LPS, other gut microbiota compounds participate in this proin flammatory scenario, including peptidoglycans,lipoproteins and flagellins, which induce activation of innate in flammatory pathways [39, 40].

    The Gut Microbiota and Atherothrombosis

    The cross talk between the gut microbiota and the pathogenesis of in flammation in atherosclerosis has been widely investigated in recent years. We can summarize the role of the gut microbiota into two main areas:

    ? proatherogenic effects;

    ? antiatherogenic effects.

    Figure 1 Relationship Between Changes in Gut Microbiota Composition and Atherosclerosis.

    Proatherogenic Effects

    Endotoxemia-derived chronic low-grade in flammation can be considered a potential contributing factor for both metabolic syndrome and atherosclerosis[41].

    Bacterial LPSs play a pivotal role in the development of atherosclerosis. They may interact with low-density lipoproteins (LDLs) and in fluence their metabolism, inducing the production of oxidized LDL through release of superoxide anions (O2?) [42,43] and endothelial dysfunction [44, 45]. Oxidized LDL is one the major triggers of the in flammatory cascade, promoting transformation of macrophages into foam cells by enhancing the levels of proinflammatory mediators such as interleukin-1 and tumor necrosis factor α [46, 47].

    Depending on the concentrations of LPS, different pathways are activated (Figure 2) [48–50]. It is possible to distinguish among:

    ? high-dose LPS;

    ? low-dose LPS;

    ? superlow-dose LPS.High doses of LPS induce production of several proin flammatory cytokines in macrophages through marked activation of nuclear factor κB and mitogen-activated protein kinases, as well as the negative regulators IκBα (negative regulator of nuclear factor κB), phosphatidylinositol 3-kinases, mitogen-activated protein kinase phosphatase 1, and interleukin-10 as a compensatory mechanism to control excessive in flammation [51–53].

    The main pathway elicited in this action involves TLR4, which activates the interleukin-1 receptor associated kinases (1, 2, and 4) via the myeloid differentiation primary response 88 (MyD88) adaptor molecule [54]. TLR4 is expressed among other tissues on cardiomyocytes and foam cells. Kiechl et al. [55] described a common polymorphism associated with low levels of circulating in flammatory mediators and reduced risk of atherosclerosis, thus enhancing the importance of TLR4 in atherosclerosis development [56].

    Particularly signi ficant are recent data obtained by Maitra et al. [48] showing an important contribution to in flammation by low-dose LPS through hepatocyte nuclear factor 1 homeobox B and downregulation of phosphatidylinositol 3-kinase–dependent negative regulators of in flammatory genes. In this context, an important role is played by generation of mitochondrial reactive oxygen species.

    Surprisingly, superlow doses of LPS were associated with mitochondrial fission and cell necroptosis in murine macrophages [50]. “Necroptosis” refers to a molecular pathway of regulated necrosis induced by in flammatory molecules, such as Toll-like receptors, interferon-γ, death receptors, and intracellular RNA and DNA sensors through receptor- interacting protein kinase 3 (RIPK3)- and mixed-lineage kinase domain-like (MLKL)-dependent molecular cascades, involving degradation of mitofusin 1 and activation ofdynamin-related protein 1[57].

    Besides LPS triggering in flammation, a novel role for low-dose LPS was characterized in cholesterol metabolism, acting at the very first step of atherosclerosis: a reduction of the levels of proteins involved in reverse cholesterol transport, such as the ATP-binding cassette transporters ABCA1 and ABCG1 and scavenger receptor SR-B1 [49].

    Reverse cholesterol transport is an established atheroprotective mechanism, determining cholesterol efflux from foam cells accumulated in atherosclerotic lesions [58]. There is a complex interplay in cholesterol systemic balance in and out of intimal macrophages and vascular smooth muscle cells between TLR4 and liver X receptors (LXRs) based on reciprocal inhibition of each other [59, 60].

    Higashimori et al. [61] provided further data from aortic plaque analysis in apolipoprotein E/Toll-like receptor 2 (TLR2) and apolipoprotein E/TLR4 double-knockout mice that outlined the already described bacterial LPS-activated TLR2/TLR4/MyD88 pathway promoting intracellular cholesterol accumulation.

    LXRs are distributed in macrophages, the liver,and the small intestine, and promote reverse cholesterol transport through expression of the sterol transporters ABCA1 and ABCG1 in macrophages,degradation of LDL receptor, very low density lipoprotein receptor, and adiponectin receptor 2, and enhancement of liver expression of cholesterol-7-αhydroxylase, thus increasing cholesterol oxidation and bile acid formation, with subsequent reduction of atherosclerotic burden [62–64].

    Moreover, the interplay between the bacterial LPS-mediated TLR2/TLR4 pathway and LXRs has recently been described in plaque destabilization and vascular remodeling, involving matrix metalloproteinase 9 production by endothelial cells, macrophages, and vascular smooth muscle cells. While TLR4 mediates activation of metalloproteinases,LXRα blocks TLR2/TLR4-dependent stimulation[65–67].

    Figure 2 High, Low and Superlow Doses of Lipopolysaccharide and Atherosclerosis.

    Another important in flammatory trigger involved in gut microbiota–mediated atherosclerotic promotion is trimethylamineN-oxide (TMAO), a proatherogenic compound derived from the metabolism of phosphatidylcholine by the gut flora [68]. Systemic levels of three metabolites of phosphatidylcholine(choline, TMAO, and betaine) were described as eligible predictors of the risk of cardiovascular disease in large clinical cohorts with use of a metabolomic approach [69, 70].

    TMAO is produced in a two-step process, starting with degradation of dietary phosphatidylcholine or carnitine (especially from red meats)by specific intestinal bacterial strains, such asPrevotella, into the precursor trimethylamine. The second step occurs in the liver, where trimethylamine is converted into TMAO by flavin monooxygenase 3 [69, 70].

    TMAO promotes atherosclerosis through two main pathways (Figure 3):

    ? accumulation of cholesterol in macrophages by inhibition of reverse cholesterol transport through an increase in the levels of scavenger receptors CD36 and SR-A at the cell surface[68];

    ? decreased synthesis of bile acids from cholesterol and their transporters in the liver [69].

    Hypercoagulability plays a crucial role in obesity-related chronic in flammation, because of upregulation of tissue factor expression in the intestinal microvasculature, increased production of factors II (prothrombin), VII, IX, and X and well-known procoagulant vitamin K–dependent clotting mediators, and reduced fibrinolytic capacity [71, 72].

    Antiatherogenic Effects

    The gut microbiota may exert atheroprotective effects through suppression of the in flammatory cascade, reduction of cholesterol accumulation in macrophages, and insulin resistance.Protocatechuic acid, a microbiota-derived metabolite of cyanidin 3-O-β-glucoside, was found to promote cholesterol efflux from macrophages,thus showing a profound antiatherogenic effect[73]. Protocatechuic acid downregulates miR-10b,whose targets are cholesterol transporter ABCA1 and ABCG1 mRNAs, thus increasing their expression (Figure 4) [70, 74].

    Moreover, dietary intake–derived anthocyanin pigment Cy-3-G was described as a regulator of the LXRα/ABCG1 axis, inhibiting TLR4-mediated proin flammatory signaling in macrophages, promoting cholesterol depletion and subsequent disrupting lipid rafts [75].

    Valuable evidence from studies with probiotics showed a key role played by several specific intestinal bacterial strain, such asLactobacillus plantarumDSM9843 andL. plantarum299v:Karlsson et al. [76] outlinedin men with carotid atherosclerosis that changes in bacterial diversity promoted production of SCFAs with antiatherogenic effects.

    Similarly, other strains used in this approach demonstrated decreased levels of the proin flammatory cytokine interleukin-6, reduced adhesion of monocytes to endothelial cells, and LDL synthesis reduction [77].

    Figure 3 Trimethylamine-N-Oxide(TMAO) Pathways in Atherosclerosis Development.

    Figure 4 Protocatechuic Acid Antiatherogenic Effects.

    The Gut Microbiota: Therapeutic Prospects and a Look to the Future

    Studies in humans and mice emphasize the delicate contribution of the gut microbiota in modifying the risk of obesity, insulin resistance and atherosclerosis.

    Different bacterial species play a pivotal role in this complex relationship, leading either to metabolic syndrome or a lean phenotype. Recent observational and interventional studies con firm a potent correlation among diets rich in choline and trimethylamines, altered gut microbiota composition,probiotics and anthocyanin metabolism and cardiovascular disease.

    Many additional investigations are required to reveal the many hidden aspects of the gut microbiota’s role in this complex relationship with the host and the subsequent implications for its role in atherosclerotic in flammation.

    Further studies to clarify the specific gut composition involved in cardiometabolic syndrome and atherogenesis are needed for greater use of targeted approaches, such as antibiotics, microbiota transplant, probiotics, or specific immunotherapy.Further exploration of the metabolic pathway leading to TMAO, a wide investigation on probiotics,and investigation of the relationship between the gut microbiota and adipose tissue–associated activated macrophages offer the most promising mechanisms for therapies.

    Conflicts of Interest

    The authors declare no Conflict of interest.

    REFERENCES

    1. Turnbaugh PJ, Ley RE, Hamady M, Fraser-Liggett CM, Knight R, Gordon JI. The human microbiome project. Nature 2007;449:804–10.

    2. De Vos WM, Nieuwdorp M.Genomics: a gut prediction. Nature 2013;498:48–9.

    3. Reyes A, Haynes M, Hanson N,Angly FE, Heath AC, Rohwer F,et al. Viruses in the faecal microbiota of monozygotic twins and their mothers. Nature 2010;466:334–8.

    4. Valtonen VV. Infection as a risk factor for infarction and atherosclerosis. Ann Med 1991;23:539–43.

    5. Human Microbiome Project Consortium. Structure, function and diversity of the healthy human microbiome. Nature 2012;486:207–14.

    6. Knaapen M, Kootte RS, Zoetendal EG, de Vos WM, Dallinga-Thie GM, Levi M, et al. Obesity, nonalcoholic fatty liver disease,and atherothrombosis: a role for the intestinal microbiota? Clin Microbiol Infect 2013;19:331–7.

    7. Mueller S, Saunier K, Hanisch C, Norin E, Alm L, Midtvedt T,et al. Differences in fecal microbiota in different European study populations in relation to age, gender, and country: a cross-sectional study. Appl Environ Microbiol 2006;72:1027–33.

    8. Tsai F, Coyle WJ. The microbiome and obesity: is obesity linked to our gut flora? Curr. Gastroenterol Rep 2009;11:307–13.

    9. Sommer F, B?ckhed F. The gut microbiota – masters of host development and physiology. Nat Rev Microbiol 2013;11:227–38.

    10. Tremaroli V, B?ckhed F. Functional interactions between the gut microbiota and host metabolism. Nature 2012;489:242–9.

    11. Kootte RS, Vrieze A, Holleman F,Dallinga-Thie GM, Zoetendal EG,De Vos WM, et al. The therapeutic potential of manipulating gut microbiota in obesity and type 2 diabetes mellitus. Diabetes Obes Metab 2012;14:112–20.

    12. Haapamaki J, Roine RP, Turunen U, Farkkila MA, Arkkila PE.Increased risk for coronary heart disease, asthma, and connective tissue diseases in in flammatory bowel disease. J Crohns Colitis 2011;5:41–7.

    13. Lang CC, Brown RM, Kinirons MT, Deathridge MA, Guengerich FP, Kelleher D, et al. Decreased intestinal CYP3A in celiac disease:reversal after successful gluten-free diet: a potential source of interindividual variability in first-pass drug metabolism. Clin Pharmacol Ther 1996;59:41–6.

    14. Thompson AL. Developmental origins of obesity: early feeding environments, infant growth, and the intestinal microbiome. Am J Hum Biol 2012;24:350–60.

    15. Greenblum S, Turnbaugh PJ,Borenstein E. Metagenomic systems biology of the human gut microbiome reveals topological shifts associated with obesity and in flammatory bowel disease. Proc Natl Acad Sci U S A 2012;109:594–9.

    16. Tilg H, Kaser A. Gut microbiome,obesity, and metabolic dysfunction.J Clin Invest 2011;121:2126–32.

    17. Ley RE, B?ckhed F, Turnbaugh P,Lozupone CA, Knight RD, Gordon JI. Obesity alters gut microbial ecology. Proc Natl Acad Sci U S A 2005;102:11070–5.

    18. Ley RE, Turnbaugh PJ, Klein S,Gordon JI. Microbial ecology:human gut microbes associated with obesity. Nature 2006;444:1022–3.

    19. Cani PD, Amar J, Iglesias MA,Poggi M, Knauf C, Bastelica D,et al. Metabolic endotoxemia initiates obesity and insulin resistance.Diabetes 2007;56:1761–72.

    20. Duncan SH, Lobley GE, Holtrop G, Ince J, Johnstone AM, Louis P,et al. Human colonic microbiota associated with diet, obesity and weight loss. Int J Obes (Lond)2008;32:1720–4.

    21. Schwiertz A, Taras D, Sch?fer K, Beijer S, Bos NA, Donus C,et al. Microbiota and SCFA in lean and overweight healthy subjects. Obesity (Silver Spring)2010;18:190–5.

    22. Turnbaugh PJ, Ley RE, Mahowald MA, Magrini V, Mardis ER,Gordon JI. An obesity-associated gut microbiome with increased capacity for energy harvest. Nature 2006;444:1027–31.

    23. B?ckhed F, Manchester JK,Semenkovich CF, Gordon JI.Mechanisms underlying the resistance to diet-induced obesity in germ-free mice. Proc Natl Acad Sci U S A 2007;104:979–84.

    24. Karlsson FH, Tremaroli V,Nookaew I, Bergstr?m G, Behre CJ, Fagerberg B, et al. Gut metagenome in European women with normal, impaired and diabetic glucose control. Nature 2013;498:99–103.

    25. Vrieze A, Van Nood E, Holleman F,Saloj?rvi J, Kootte RS, Bartelsman JFWM, et al. Transfer of intestinal microbiota from lean donors increases insulin sensitivity in individuals with metabolic syndrome.Gastroenterology 2012;143:913–6.e7.

    26. Zhang H, DiBaise JK, Zuccolo A,Kudrna D, Braidotti M, Yu Y, et al.Human gut microbiota in obesity and after gastric bypass. Proc Natl Acad Sci U S A 2009;106:2365–70.

    27. Sj?str?m L, Lindroos AK, Peltonen M, Torgerson J, Bouchard C,Carlsson B, et al. Lifestyle, diabetes, and cardiovascular risk factors 10 years after bariatric surgery. N Engl J Med 2004;351:2683–93.

    28. Sj?str?m L, Narbro K, Sj?str?m CD, Karason K, Larsson B, Wedel H, et al. Effects of bariatric surgery on mortality in Swedish obese subjects. N Engl J Med 2007;357:741–52.

    29. Furet JP, Kong LC, Tap J, Poitou C, Basdevant A, Bouillot JL, et al.Differential adaptation of human gut microbiota to bariatric surgery-induced weight loss: links with metabolic and low-grade in flammation markers. Diabetes 2010;59:3049–57.

    30. Kong LC, Tap J, Aron-Wisnewsky J, Pelloux V, Basdevant A, Bouillot JL, et al. Gut microbiota after gastric bypass in human obesity:increased richness and associations of bacterial genera with adipose tissue genes. Am J Clin Nutr 2013;98:16–24.

    31. Apovian CM, Bigornia S, Mott M,Meyers MR, Ulloor J, Gagua M, et al.Adipose macrophage in filtration is associated with insulin resistance and vascular endothelial dysfunction in obese subjects. Arterioscler Thromb Vasc Biol 2008;28:1654–9.

    32. Wentworth JM, Naselli G, Brown WA, Doyle L, Phipson B, Smyth GK, et al. Pro-in flammatory CD11c+CD206+adipose tissue macrophages are associated with insulin resistance in human obesity.Diabetes 2010;59:1648–56.

    33. Manco M, Putignani L, Bottazzo GF. Gut microbiota, lipopolysaccharides, and innate immunity in the pathogenesis of obesity and cardiovascular risk. Endocr Rev 2010;31:817–44.

    34. Ghoshal S, Witta J, Zhong J, De VilliersW, Eckhardt E.Chylomicrons promote intestinal absorption of lipopolysaccharides.J Lipid Res 2009;50:90–7.

    35. Cani PD, Possemiers S, Van de Wiele T, Guiot Y, Everard A,Rottier O, et al. Changes in gut microbiota control in flammation in obese mice through a mechanism involving GLP-2-driven improvement of gut permeability. Gut 2009;58(8):1091–103.

    36. den Besten G, van Eunen K, Groen AK, Venema K, Reijngoud DJ,Bakker BM. The role of shortchain fatty acids in the interplay between diet, gut microbiota, and host energy metabolism. J Lipid Res 2013;54:2325–40.

    37. Sanz Y, Santacruz A, Gauf fin P.Gut microbiota in obesity and metabolic disorders. Proc Nutr Soc 2010;69:434–41.

    38. Cani PD, Delzenne NM Interplay between obesity and associated metabolic disorders: new insights into the gut microbiota. Curr Opin Pharmacol 2009;9:737–43.

    39. Clarke TB, Davis KM, Lysenko ES, Zhou AY, Yu Y, Weiser JN.Recognition of peptidoglycan from the microbiota by Nod1 enhances systemic innate immunity. Nat Med 2010;16:228–31.

    40. Vijay-Kumar M, Gewirtz AT. Role of flagellin in Crohn’s disease:emblematic of the progress and enigmas in understanding in flammatory bowel disease. In flamm Bowel Dis 2009;15:789–95.

    41. Westerterp M, Berbée JF, Pires NM, van Mierlo GJ, Kleemann R,Romijn JA, et al. Apolipoprotein C-I is crucially involved in lipopolysaccharide- induced atherosclerosis development in apolipoprotein E-knockout mice.Circulation 2007;116:2173–81.

    42. Konter JM, Parker JL, Baez E,Li SZ, Ranscht B, Denzel M,et al. Adiponectin attenuates lipopolysaccharide-induced acute lung injury through suppression of endothelial cell activation. J Immunol 2012;188:854–63.

    43. Dayoub JC, Ortiz F, Lopez LC,Venegas C, Del Pino-Zumaquero A,Roda O, et al. Synergism between melatonin and atorvastatin against endothelial cell damage induced by lipopolysaccharide. J Pineal Res 2011;51:324–30.

    44. Yang Y, Li Q, Deng Z, Zhang Z,Xu J, Qian G, et al. Protection from lipopolysaccharide-induced pulmonary microvascular endothelial cell injury by activation of hedgehog signaling pathway. Mol Biol Rep 2011;38:3615–22.

    45. Koide N, Morikawa A, Tumurkhuu G, Dagvadorj J, Hassan F, Islam S, et al. Lipopolysaccharide and interferon-gamma enhance Fasmediated cell death in mouse vascular endothelial cells via augmentation of Fas expression. Clin Exp Immunol 2007;150:553–60.

    46. Howell KW, Meng X, Fullerton DA, Jin C, Reece TB, Cleveland JC Jr. Toll-like receptor 4 mediates oxidized LDL-induced macrophage differentiation to foam cells. J Surg Res 2011;171:e27–31.

    47. Pataki M, Lusztig G, Robenek H.Endocytosis of oxidized LDL and reversibility of migration inhibition in macrophage-derived foam cells in vitro. A mechanism for atherosclerosis regression? Arterioscler Thromb 1992;12:936–44.

    48. Maitra U, Deng H, Glaros T,Baker B, Capelluto DG, Li Z, et al.Molecular mechanisms responsible for the selective and low-grade induction of proin flammatory mediators in murine macrophages by lipopolysaccharide. J Immunol 2012;189:1014–23.

    49. Maitra U, Li L. Molecular mechanisms responsible for the reduced expression of cholesterol transporters from macrophages by low-dose endotoxin. Arterioscler Thromb Vasc Biol 2013;33:24–33.

    50. Baker B, Geng S, Chen K, Diao N,Yuan R, Xu X, et al. Molecular and cellular mechanisms responsible for cellular stress and low-grade in flammation induced by a superlow dose of endotoxin. J Biol Chem 2014;290:6670–8.

    51. Kobayashi K, Hernandez LD, Galan JE, Janeway CA Jr, Medzhitov R,Flavell RA. IRAK-M is a negative regulator of Toll-like receptor signaling. Cell 2002;110:191–202.

    52. Akita N, Tsujita M, Yokota T,Gonzalez FJ, Ohte N, Kimura G,et al. High density lipoprotein turnover is dependent on peroxisome proliferator-activated receptor alpha in mice. J Atheroscler Thromb 2010;17:1149–59.

    53. Genolet R, Wahli W, Michalik L.PPARs as drug targets to modulate in flammatory responses? Curr Drug Targets In flamm Allergy 2004;3:361–75.

    54. Burns K, Martinon F, Esslinger C,Pahl H, Schneider P, Bodmer JL,et al. MyD88, an adapter protein involved in interleukin-1 signaling.J Biol Chem 1998;273:12203–9.

    55. Kiechl S, Lorenz E, Reindl M,Wiedermann CJ, Oberhollenzer F,Bonora E, et al. Toll-like receptor 4 polymorphisms and atherogenesis.N Engl J Med 2002;347:185–92.

    56. Schilling J, Lai L, Sambandam N, Dey CE, Leone TC, Kelly DP.Toll-like receptor-mediated in flammatory signaling reprograms cardiac energy metabolism by repressing peroxisome proliferatoractivated receptor gamma coactivator-1 signaling. Circ Heart Fail 2011;4:474–82.

    57. Pasparakis M, Vandenabeele P.Necroptosis and its role in in flammation. Nature 2015;517:311–20.

    58. Tall AR, Yvan-Charvet L, Terasaka N, Pagler T, Wang N. HDL, ABC transporters and cholesterol efflux:implications for the treatment of atherosclerosis. Cell Metab 2008;7;365–75.

    59. Cao F, Castrillo A, Tontonoz P, Re F, Byrne GI. Chlamydia pneumoniae–induced macrophage foam cell formation is mediated by Toll-like receptor 2. Infect Immun 2007;75:753–9.

    60. Chen S, Sorrentino R, Shimada K, Bulut Y, Doherty TM, Crother TR, et al. Chlamydia pneumoniae-induced foam cell formation requires MyD88-dependent and-independent signaling and is reciprocally modulated by liver X receptor activation. J Immunol 2008;181:7186–93.

    61. Higashimori M, Tatro JB, Moore KJ, Mendelsohn, ME, Galper JB,Beasley D. Role of Toll-like receptor 4 in intimal foam cell accumulation in apolipoprotein E–de ficient mice. Arterioscler Thromb Vasc Biol 2001;31:50–7.

    62. Chiang, JY, Kimmel R, Stroup D.Regulation of cholesterol 7a-hydroxylasegene (CYP7A1) transcription by the liver orphan receptor (LXRa).Gene 2001;262:257–65.

    63. Zelcer N, Tontonoz P. Receptors as integrators of metabolic and in flammatory signaling. J Clin Invest 2006;116:607–14.

    64. Hong C, Duit S, Jalonen P, Out R,Scheer L, Sorrentino V, et al. The E3 ubiquitin ligase IDOL induces the degradation of the low density lipoprotein receptor family members VLDLR and ApoER 2. J Biol Chem 2010;285:19720–6.

    65. Li H, Xu H, Sun B. Lipopolysaccharide regulates MMP-9 expression through TLR4/NF-κB signaling in human arterial smooth muscle cells. Mol Med Rep 2012;6:774–8.

    66. Paolillo R, Iovene MR, Romano Carratelli C, Rizzo A. Induction of VEGF and MMP-9 expression by Toll-like receptor 2/4 in human endothelial cells infected withChlamydiapneumoniae.Int J Immunopathol Pharmacol 2012;25:377–86.

    67. Castrillo A, Joseph SB, Marathe C,Mangelsdorf DJ, Tontonoz P. Liver X receptor-dependent repression of matrix metalloproteinase-9 expression in macrophages. J Biol Chem 2003;278:10443–9.

    68. Wang Z, Klipfell E, Bennett BJ,Koeth R, Levison BS, Dugar B,et al. Gut flora metabolism of phosphatidylcholine promotes cardiovascular disease. Nature 2011;472:57–63.

    69. Koeth RA, Wang Z, Levison BS,Buffa JA, Org E, Sheehy BT, et al.Intestinal microbiota metabolism of l-carnitine, a nutrient in red meat,promotes atherosclerosis. Nat Med 2013;19:576–85.

    70. Wang D, Xia M, Yan X, Li D,Wang L, Xu Y, et al. Gut microbiota metabolism of anthocyanin promotes reverse cholesterol transport in mice via repressing miRNA-10b.Circ Res 2012;111:967–81.

    71. Nieuwdorp M, Stroes ESG, Meijers JCM, Büller H. Hypercoagulability in the metabolic syndrome. Curr Opin Pharmacol 2005;5:155–9.

    72. van der Poll T, Levi M, Braxton CC,Coyle SM, Roth M, ten Cate JW,et al. Parenteral nutrition facilitates activation of coagulation but not of fibrinolysis during human endotoxemia. J Infect Dis 1998;177:793–5.

    73. Wang D, Wei X, Yan X, Jin T, Ling W. Protocatechuic acid, a metabolite of anthocyanins, inhibits monocyte adhesion and reduces atherosclerosis in apolipoprotein E–de ficient mice. J Agric Food Chem 2010;58;12722–8.

    74. Hazen SL, Smith JD. An antiatherosclerotic signaling cascade involving intestinal microbiota, microRNA-10b, and ABCA1/ABCG1-mediated reverse cholesterol transport. Circ Res 2012;111:948–50.

    75. Fu Y, Zhou E, Wei Z, Wang W,Wang T, Yang Z, et al. Cyanidin-3-O-β-glucoside ameliorates lipopolysaccharide-induced acute lung injury by reducing TLR4 recruitment into lipid rafts. Biochem Pharmacol 2014;90:126–34.

    76. Karlsson C, Ahrné S, Molin G,Berggren A, Palmquist I, Fredrikson GN, et al. Probiotic therapy to men with incipient arteriosclerosis initiates increased bacterial diversity in colon: a randomized controlled trial. Atherosclerosis 2010;208:228–33.

    77. Naruszewicz M, Johansson ML,Zapolska-Downar D, Bukowska H.Effect of Lactobacillus plantarum 299v on cardiovascular disease risk factors in smokers. Am J Clin Nutr 2002;76:1249–55.

    bbb黄色大片| 亚洲第一欧美日韩一区二区三区| 免费高清视频大片| 国产精品乱码一区二三区的特点| 色综合婷婷激情| 夜夜躁狠狠躁天天躁| 人妻久久中文字幕网| 桃色一区二区三区在线观看| 午夜精品一区二区三区免费看| 免费在线观看亚洲国产| 婷婷丁香在线五月| 国产精品 欧美亚洲| 精品国产乱子伦一区二区三区| 中文字幕高清在线视频| 午夜精品一区二区三区免费看| 色综合欧美亚洲国产小说| av福利片在线| 最近视频中文字幕2019在线8| 我要搜黄色片| 美女高潮喷水抽搐中文字幕| 欧美日韩瑟瑟在线播放| 欧美 亚洲 国产 日韩一| 午夜精品久久久久久毛片777| 久久中文字幕一级| 人人妻,人人澡人人爽秒播| 成人国产一区最新在线观看| 亚洲成人免费电影在线观看| 亚洲精品一卡2卡三卡4卡5卡| 不卡一级毛片| 中文字幕高清在线视频| 成人精品一区二区免费| 欧洲精品卡2卡3卡4卡5卡区| 午夜福利成人在线免费观看| 亚洲一卡2卡3卡4卡5卡精品中文| 桃色一区二区三区在线观看| 非洲黑人性xxxx精品又粗又长| 99久久精品国产亚洲精品| 亚洲五月婷婷丁香| 亚洲精品中文字幕一二三四区| 色精品久久人妻99蜜桃| 久久中文看片网| 99热只有精品国产| 身体一侧抽搐| 在线a可以看的网站| 一级黄色大片毛片| 可以免费在线观看a视频的电影网站| e午夜精品久久久久久久| 国模一区二区三区四区视频 | 国内揄拍国产精品人妻在线| 神马国产精品三级电影在线观看 | 欧美性猛交╳xxx乱大交人| 国产精品自产拍在线观看55亚洲| 久久精品国产亚洲av香蕉五月| 18禁国产床啪视频网站| av在线播放免费不卡| 男人舔女人下体高潮全视频| 午夜a级毛片| www.999成人在线观看| 欧美三级亚洲精品| 免费看a级黄色片| 国产精品一区二区三区四区免费观看 | 高清毛片免费观看视频网站| 亚洲中文av在线| 亚洲国产欧洲综合997久久,| 91麻豆精品激情在线观看国产| 99在线人妻在线中文字幕| 日韩欧美三级三区| 老司机靠b影院| 亚洲精品在线观看二区| 一边摸一边做爽爽视频免费| 在线a可以看的网站| 亚洲电影在线观看av| 亚洲av成人一区二区三| xxx96com| 中文字幕高清在线视频| 99久久综合精品五月天人人| 久久久久久久久免费视频了| 成人永久免费在线观看视频| 亚洲一区二区三区不卡视频| 中文字幕av在线有码专区| 成人国产综合亚洲| 天天一区二区日本电影三级| 久久婷婷成人综合色麻豆| 午夜两性在线视频| 久久久久亚洲av毛片大全| 变态另类成人亚洲欧美熟女| 日韩中文字幕欧美一区二区| 亚洲av五月六月丁香网| 夜夜看夜夜爽夜夜摸| 欧美精品啪啪一区二区三区| 亚洲在线自拍视频| 午夜日韩欧美国产| 欧美性长视频在线观看| 两个人的视频大全免费| 免费在线观看影片大全网站| 欧美+亚洲+日韩+国产| 不卡av一区二区三区| 亚洲电影在线观看av| 亚洲,欧美精品.| 久久久久久久午夜电影| 色播亚洲综合网| 国产精品精品国产色婷婷| 日本a在线网址| av视频在线观看入口| 久久久精品国产亚洲av高清涩受| 桃红色精品国产亚洲av| 后天国语完整版免费观看| 国产成人欧美在线观看| 日日夜夜操网爽| 久久热在线av| 一级毛片女人18水好多| 18禁黄网站禁片午夜丰满| 热99re8久久精品国产| 国产精品久久电影中文字幕| 成人18禁高潮啪啪吃奶动态图| 欧美国产日韩亚洲一区| 国产精品久久电影中文字幕| 欧美一级毛片孕妇| 欧美中文日本在线观看视频| 成人18禁在线播放| 亚洲人成网站高清观看| 窝窝影院91人妻| 又黄又爽又免费观看的视频| 人妻久久中文字幕网| 久久午夜综合久久蜜桃| 亚洲中文日韩欧美视频| 精品国产乱子伦一区二区三区| 99久久99久久久精品蜜桃| 特级一级黄色大片| 人妻丰满熟妇av一区二区三区| 黄色毛片三级朝国网站| 国产午夜精品论理片| 亚洲成人免费电影在线观看| 久久亚洲精品不卡| 日本精品一区二区三区蜜桃| а√天堂www在线а√下载| 午夜老司机福利片| 日本在线视频免费播放| 国产精品亚洲美女久久久| 一区二区三区高清视频在线| 午夜免费观看网址| 精品免费久久久久久久清纯| 精品一区二区三区四区五区乱码| 制服人妻中文乱码| 亚洲国产日韩欧美精品在线观看 | 国产97色在线日韩免费| 亚洲 欧美一区二区三区| 757午夜福利合集在线观看| 国产精品久久久久久亚洲av鲁大| 亚洲国产欧洲综合997久久,| 大型av网站在线播放| 国内精品久久久久久久电影| 欧美一级a爱片免费观看看 | 欧美日韩乱码在线| 欧美黄色淫秽网站| 可以在线观看毛片的网站| 国产午夜福利久久久久久| 国产不卡一卡二| 久久中文字幕一级| 亚洲成人久久爱视频| 最近最新中文字幕大全电影3| 亚洲国产欧美网| ponron亚洲| 亚洲国产欧洲综合997久久,| 国产成人影院久久av| 亚洲avbb在线观看| 国产熟女xx| 悠悠久久av| 精品乱码久久久久久99久播| 中亚洲国语对白在线视频| 欧美另类亚洲清纯唯美| 欧美乱码精品一区二区三区| 伊人久久大香线蕉亚洲五| 亚洲精品美女久久久久99蜜臀| 成年人黄色毛片网站| 最新美女视频免费是黄的| 午夜激情av网站| 欧美在线黄色| 国产精品av久久久久免费| 久久这里只有精品19| 日日夜夜操网爽| 我的老师免费观看完整版| 久久精品夜夜夜夜夜久久蜜豆 | 熟女少妇亚洲综合色aaa.| 日韩欧美在线乱码| 两个人的视频大全免费| 国产精品,欧美在线| 亚洲精华国产精华精| 欧洲精品卡2卡3卡4卡5卡区| 欧美乱码精品一区二区三区| 久久精品人妻少妇| 亚洲精品粉嫩美女一区| 黄片大片在线免费观看| 亚洲精品国产一区二区精华液| 欧美激情久久久久久爽电影| 97人妻精品一区二区三区麻豆| 国内毛片毛片毛片毛片毛片| 免费在线观看成人毛片| 中文字幕av在线有码专区| 日本免费一区二区三区高清不卡| 中文字幕人妻丝袜一区二区| 日韩高清综合在线| 天堂影院成人在线观看| 黄色成人免费大全| 黄色女人牲交| 色精品久久人妻99蜜桃| √禁漫天堂资源中文www| 亚洲午夜精品一区,二区,三区| 日韩精品免费视频一区二区三区| 岛国在线免费视频观看| 精品日产1卡2卡| 超碰成人久久| 美女免费视频网站| 正在播放国产对白刺激| 曰老女人黄片| 亚洲美女视频黄频| 大型av网站在线播放| 欧洲精品卡2卡3卡4卡5卡区| 激情在线观看视频在线高清| 五月伊人婷婷丁香| 亚洲aⅴ乱码一区二区在线播放 | 美女免费视频网站| 亚洲国产精品成人综合色| www.精华液| 久久国产精品影院| 国产私拍福利视频在线观看| 99riav亚洲国产免费| 黑人欧美特级aaaaaa片| 亚洲成人免费电影在线观看| 18禁国产床啪视频网站| 久久九九热精品免费| 中文字幕久久专区| 国内少妇人妻偷人精品xxx网站 | 母亲3免费完整高清在线观看| 女人被狂操c到高潮| 不卡av一区二区三区| 国产真人三级小视频在线观看| 男女视频在线观看网站免费 | 精品国产美女av久久久久小说| 丝袜人妻中文字幕| 国产片内射在线| 在线观看免费视频日本深夜| 精品乱码久久久久久99久播| 午夜福利在线观看吧| 中文字幕最新亚洲高清| 一级黄色大片毛片| 亚洲av美国av| 青草久久国产| 啦啦啦韩国在线观看视频| 国产精品综合久久久久久久免费| 亚洲av日韩精品久久久久久密| 国产日本99.免费观看| 日本熟妇午夜| 色哟哟哟哟哟哟| 他把我摸到了高潮在线观看| 免费人成视频x8x8入口观看| 亚洲男人的天堂狠狠| 午夜日韩欧美国产| 亚洲中文字幕日韩| 日韩精品免费视频一区二区三区| 亚洲熟妇中文字幕五十中出| tocl精华| 久久国产精品人妻蜜桃| 人妻夜夜爽99麻豆av| 欧美性猛交╳xxx乱大交人| 亚洲第一电影网av| 精品少妇一区二区三区视频日本电影| 国产精品久久久久久精品电影| 一级片免费观看大全| 老司机午夜福利在线观看视频| 两性午夜刺激爽爽歪歪视频在线观看 | 男女床上黄色一级片免费看| 欧美乱妇无乱码| 中文字幕久久专区| 久久久久久免费高清国产稀缺| 亚洲,欧美精品.| 成人手机av| 精品国产乱子伦一区二区三区| 亚洲 欧美 日韩 在线 免费| 免费av毛片视频| 桃红色精品国产亚洲av| 日日爽夜夜爽网站| 国产精品久久久久久亚洲av鲁大| 久久久久久国产a免费观看| 91麻豆av在线| 中文字幕av在线有码专区| 全区人妻精品视频| 久久久久亚洲av毛片大全| 美女高潮喷水抽搐中文字幕| 无人区码免费观看不卡| 国产乱人伦免费视频| 久久久久久久久久黄片| 午夜免费激情av| 一本精品99久久精品77| 亚洲专区国产一区二区| 搡老岳熟女国产| 我要搜黄色片| 国产区一区二久久| 中文字幕av在线有码专区| 老汉色∧v一级毛片| 丰满人妻一区二区三区视频av | 国产久久久一区二区三区| 精品国产亚洲在线| 黄色视频不卡| av片东京热男人的天堂| 国产伦在线观看视频一区| 村上凉子中文字幕在线| 亚洲精华国产精华精| 最新美女视频免费是黄的| 黄色成人免费大全| 男女床上黄色一级片免费看| 99在线视频只有这里精品首页| 中文字幕av在线有码专区| 日韩欧美国产一区二区入口| 久久中文字幕一级| √禁漫天堂资源中文www| 国产一级毛片七仙女欲春2| 麻豆国产97在线/欧美 | 麻豆一二三区av精品| 国产精品久久久久久亚洲av鲁大| 性色av乱码一区二区三区2| 国产精品久久电影中文字幕| 黑人巨大精品欧美一区二区mp4| 岛国视频午夜一区免费看| 午夜精品久久久久久毛片777| 欧美高清成人免费视频www| 亚洲美女黄片视频| 亚洲国产精品成人综合色| 制服人妻中文乱码| 亚洲成人久久性| 嫩草影院精品99| 最新在线观看一区二区三区| 亚洲最大成人中文| 久久精品夜夜夜夜夜久久蜜豆 | 国产久久久一区二区三区| 亚洲 欧美 日韩 在线 免费| 亚洲,欧美精品.| 免费在线观看亚洲国产| 国产亚洲精品一区二区www| 丁香欧美五月| 久久久国产精品麻豆| 后天国语完整版免费观看| 精品久久久久久久人妻蜜臀av| 日本五十路高清| 亚洲av第一区精品v没综合| 人妻丰满熟妇av一区二区三区| 亚洲全国av大片| 中文字幕熟女人妻在线| 久久久久性生活片| 亚洲专区字幕在线| 日本 av在线| 香蕉国产在线看| 国产激情偷乱视频一区二区| 精品人妻1区二区| 搡老妇女老女人老熟妇| 欧美极品一区二区三区四区| 亚洲av五月六月丁香网| 五月玫瑰六月丁香| 日本一区二区免费在线视频| 国产伦一二天堂av在线观看| 午夜a级毛片| tocl精华| 香蕉久久夜色| 黄片小视频在线播放| 国产亚洲欧美98| 不卡av一区二区三区| 精品国产美女av久久久久小说| 欧美日韩福利视频一区二区| 欧美日韩瑟瑟在线播放| 99在线人妻在线中文字幕| 欧美一级毛片孕妇| 欧美一区二区精品小视频在线| 亚洲国产精品成人综合色| 禁无遮挡网站| 国产激情偷乱视频一区二区| 国产一区在线观看成人免费| 热99re8久久精品国产| 在线观看免费视频日本深夜| 欧美性猛交╳xxx乱大交人| 黑人欧美特级aaaaaa片| 美女大奶头视频| 久久久国产成人免费| 欧美激情久久久久久爽电影| 琪琪午夜伦伦电影理论片6080| 色尼玛亚洲综合影院| 伊人久久大香线蕉亚洲五| 在线观看午夜福利视频| 亚洲一区二区三区不卡视频| 亚洲国产欧洲综合997久久,| 校园春色视频在线观看| 午夜免费成人在线视频| 高清毛片免费观看视频网站| 两性午夜刺激爽爽歪歪视频在线观看 | a在线观看视频网站| 国产午夜精品论理片| 老汉色av国产亚洲站长工具| √禁漫天堂资源中文www| 亚洲精品一区av在线观看| 香蕉国产在线看| 亚洲色图av天堂| 国产精品精品国产色婷婷| 欧美一级a爱片免费观看看 | 黄色丝袜av网址大全| 亚洲成人中文字幕在线播放| 1024手机看黄色片| 手机成人av网站| 九九热线精品视视频播放| 国产片内射在线| 亚洲国产精品sss在线观看| 午夜精品久久久久久毛片777| 中出人妻视频一区二区| 熟妇人妻久久中文字幕3abv| 久久久国产精品麻豆| 怎么达到女性高潮| 久久精品国产清高在天天线| 亚洲七黄色美女视频| x7x7x7水蜜桃| 免费人成视频x8x8入口观看| 免费av毛片视频| 免费观看人在逋| 国产精品一及| 黄色视频不卡| 真人一进一出gif抽搐免费| 国产黄片美女视频| 久久久久久久午夜电影| 91老司机精品| 国产av一区二区精品久久| 校园春色视频在线观看| 免费看a级黄色片| 亚洲人成电影免费在线| 日韩中文字幕欧美一区二区| a级毛片在线看网站| 欧美精品啪啪一区二区三区| 露出奶头的视频| 中文字幕久久专区| 久久精品国产清高在天天线| 免费看日本二区| 男女午夜视频在线观看| 欧美人与性动交α欧美精品济南到| 一二三四在线观看免费中文在| 成在线人永久免费视频| 国产探花在线观看一区二区| 禁无遮挡网站| 99热这里只有是精品50| 国产精品香港三级国产av潘金莲| 国产成人av教育| 少妇熟女aⅴ在线视频| 亚洲美女视频黄频| 狂野欧美激情性xxxx| 亚洲 国产 在线| 久久久国产成人免费| 国产亚洲精品久久久久久毛片| 欧美zozozo另类| 国产亚洲精品一区二区www| 欧美性猛交黑人性爽| 日韩大尺度精品在线看网址| 在线视频色国产色| 国产av又大| 波多野结衣巨乳人妻| 国产精品一区二区三区四区久久| 禁无遮挡网站| 精品不卡国产一区二区三区| 久久精品影院6| 国产97色在线日韩免费| 波多野结衣高清无吗| 18禁美女被吸乳视频| 搡老熟女国产l中国老女人| 美女黄网站色视频| 亚洲一卡2卡3卡4卡5卡精品中文| 欧美成人午夜精品| 亚洲自拍偷在线| 一级作爱视频免费观看| 欧美+亚洲+日韩+国产| 一区福利在线观看| 美女免费视频网站| 久久午夜亚洲精品久久| 精品少妇一区二区三区视频日本电影| 久久久久久久精品吃奶| 午夜老司机福利片| 无限看片的www在线观看| 欧美性猛交╳xxx乱大交人| 成人欧美大片| 国产午夜福利久久久久久| 18禁裸乳无遮挡免费网站照片| 亚洲色图av天堂| 久久天堂一区二区三区四区| 中文字幕精品亚洲无线码一区| 日韩免费av在线播放| bbb黄色大片| 亚洲avbb在线观看| 欧美黑人精品巨大| 久久久久性生活片| 我的老师免费观看完整版| 日韩欧美一区二区三区在线观看| 蜜桃久久精品国产亚洲av| 一区福利在线观看| 夜夜爽天天搞| 欧美日韩精品网址| 两个人视频免费观看高清| 法律面前人人平等表现在哪些方面| www日本黄色视频网| 国内精品久久久久久久电影| 日韩欧美国产一区二区入口| 午夜亚洲福利在线播放| 国产伦在线观看视频一区| 男人舔奶头视频| 免费看美女性在线毛片视频| 国产高清有码在线观看视频 | 亚洲精品一区av在线观看| 97超级碰碰碰精品色视频在线观看| 女人高潮潮喷娇喘18禁视频| 欧美色欧美亚洲另类二区| 欧美最黄视频在线播放免费| 国产免费av片在线观看野外av| 国产日本99.免费观看| 午夜福利在线在线| 男插女下体视频免费在线播放| 亚洲电影在线观看av| 亚洲精品美女久久久久99蜜臀| 天堂动漫精品| bbb黄色大片| 露出奶头的视频| 在线观看免费午夜福利视频| 亚洲色图 男人天堂 中文字幕| www.精华液| 久久久久久人人人人人| 香蕉久久夜色| 一区二区三区国产精品乱码| 女人爽到高潮嗷嗷叫在线视频| 在线观看舔阴道视频| 色老头精品视频在线观看| 舔av片在线| 国产亚洲精品一区二区www| 黄色视频,在线免费观看| 亚洲国产日韩欧美精品在线观看 | av片东京热男人的天堂| 国产男靠女视频免费网站| 国产视频内射| 村上凉子中文字幕在线| 精品日产1卡2卡| 草草在线视频免费看| 国产片内射在线| 欧美黄色片欧美黄色片| 午夜精品一区二区三区免费看| 久久久水蜜桃国产精品网| 国产成人精品久久二区二区免费| 欧美日韩亚洲综合一区二区三区_| 在线观看舔阴道视频| 男女之事视频高清在线观看| 色老头精品视频在线观看| 精品久久久久久久末码| 国产亚洲精品久久久久久毛片| 给我免费播放毛片高清在线观看| 亚洲精品中文字幕在线视频| 精品熟女少妇八av免费久了| 国产av在哪里看| 亚洲一区高清亚洲精品| 欧美在线黄色| 高清在线国产一区| 深夜精品福利| 国产激情欧美一区二区| 少妇粗大呻吟视频| 在线看三级毛片| 亚洲国产精品999在线| 女人被狂操c到高潮| 午夜a级毛片| www.精华液| 国产高清视频在线观看网站| 50天的宝宝边吃奶边哭怎么回事| 国产三级黄色录像| 黄色丝袜av网址大全| 十八禁网站免费在线| 免费观看精品视频网站| 琪琪午夜伦伦电影理论片6080| 天天躁狠狠躁夜夜躁狠狠躁| 久久精品国产99精品国产亚洲性色| 黄色 视频免费看| 亚洲一卡2卡3卡4卡5卡精品中文| 国产成人av激情在线播放| 琪琪午夜伦伦电影理论片6080| 国产伦在线观看视频一区| 亚洲18禁久久av| 黑人操中国人逼视频| 久久久国产精品麻豆| 亚洲专区字幕在线| 老汉色∧v一级毛片| 国内精品久久久久久久电影| 动漫黄色视频在线观看| 可以在线观看的亚洲视频| 欧美又色又爽又黄视频| 亚洲五月天丁香| 欧美日韩黄片免| 午夜老司机福利片| 久久精品人妻少妇| 欧美另类亚洲清纯唯美| 亚洲国产精品999在线| 亚洲第一电影网av| www日本在线高清视频| 免费看十八禁软件| 国产高清视频在线播放一区| 99在线视频只有这里精品首页| 中文资源天堂在线| 母亲3免费完整高清在线观看| 日本黄大片高清| 国产亚洲欧美98| 日本黄色视频三级网站网址| 狂野欧美白嫩少妇大欣赏| 12—13女人毛片做爰片一| 国产69精品久久久久777片 | 啦啦啦韩国在线观看视频| 天天添夜夜摸| 三级毛片av免费| 国产一区在线观看成人免费| 日本一本二区三区精品| 天堂动漫精品|