• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Several Nonconvex Models for Image Deblurring under Poisson Noise?

    2016-05-22 11:22:35LIUGangHUANGTingzhu

    LIU Gang,HUANG Ting-zhu

    (School of Mathematical Sciences,University of Electronic Science and Technology of China,Chengdu 611731)

    1 Introduction

    Image deblurring under Poisson noise is a fundamental problem in image processing,which plays a critical role in a wide range of applications,and positron emission tomography(PET),see[1–6]and references therein.Without loss of generality,we only consider the square image with the size of n×n for simplicity,and all our results can be easily extended to general rectangular images with the size of m×n,because we deal with an image by pulling the columns of the two-dimensional matrix into a vector.Let f∈Rn2be the original image and g be the observed image corrupted by Poisson noise.Diff erent from the additive Gaussian white noise[7],the degradation process of Poisson noise is that each pixel of the observed image is modeled as an independent random variable under Poisson distribution whose expectation equals to the value of the corresponding pixel in the original image.In detail,according to the Poisson distribution,we have the following conditional probability distribution

    where b is a background parameter which is assumed to be known,fi,jrefers to the((j?1)n+i)th entry of the vector f,it is the(i,j)-th pixel location of the n×n image,and this notation remains valid throughout the paper unless otherwise specified.

    The estimation of the original image f from the observed image g is an inverse problem which is typically ill-posed[8].The Poisson noise degradation process limits the direct applications of the traditional least square fi delity term for Gaussian noise removal[9].In[10,11],the authors proposed some advanced regularization models for Poisson noise removal derived from a maximum a posteriori(MAP)framework.MAP is actually the same as maximizing the function P(g|f)by minimizing the negative logarithm of the likelihood function.After some calculations,one obtain the Kullback-Leibler divergence[8]

    It is easy to show that the function J0(f)is proper[10,12,13]and convex[11].In particular,if gi,j>0 for some(i,j),J0(f)is strictly convex.The function J0(f)usually serves as the fi delity term in the Poisson noise removal model for measuring the closeness of the solution to the observed data.

    During acquisition and transmission,Poisson images are often degraded by blur[14].We assume the blur matrix(denoted as H)is known,then the fidelity term for image deblurring under Poisson noise reads

    If the blurring marix H is nonsingular,then the fi delity term in(4)is strictly convex.However,due to the ill-condition of H,the minimizer of problem(4)does not lead to a satisfactory solution.To obtain reliable results,a popular and eff ective strategy is to add to(4)a regularization term J(f),also known as a priori knowledge of the original image[15].

    One of popular regularization terms is the total variation(TV)regularization term[10,16],and it can preserve imageedges well.In recent years,extensiveoptimization methods have been increasingly applied for solving TV based models;see,e.g.,[17–25].The original TV model in[16]is given in an isotropic form(ITV),and later on it is extended to an anisotropic variant(ATV)in[26].The mathematical defi nitions for both ITV and ATV in the discrete setting are given respectively as follows

    Here,|·|denotes the pointwise absolute value and ? :Rn2→ Rn2denotes the discrete gradient operator(under periodic boundary conditions):

    More details for the defi nition of the TV regularization can be found in[27,28].

    Let Dxand Dybe the matrices generated by the diff erence operator?xand?y,respectively.Let Df=(Dxf,Dyf),then

    In the literature of sparse representation,researchers reconstruct signals from under-determined systems by assuming that the signal is suffi ciently sparse or sparse in a transformed domain,for instancethewavelet transform[29,30].From thispoint of view,TV can be considered as imposing sparsity in the gradient domain[31,32].Mathematically,it amounts to minimizing the L0norm,J(f)= ∥Df∥0.To bypass the NP-hard of L0,the convex relaxation approach is used to replace L0by L1,which is actually the TV regularization.In order to guarantee the equivalence of L1and L0,theoretical results require the restricted isometry property(RIP)condition[33].However,the RIP condition often does not hold for image deblurring and denoising.Therefore,for better approximation of L0,several nonconvex penalties have been proposed and studied as variants of L1,such as Lp(p∈(0,1))[34],L1?L2[35,36].To the best of our knowledge,these nonconvex regularization terms are only considered to removal Gaussian noise and has not been applied to Poisson image restoration.

    In this paper,we extend the existing nonconvex regularizers Lpand L1?L2to Poisson image restoration.First,we propose two models with weighted diff erence of convex(DC).One is L1? αL2,the other is L1? αLOGSbased on the recent OGS regularizer[37-39].For these two DC models,we provide effi cient numerical algorithms and establish theconvergenceresultsbased on thesuccessiveupper-bound minimization(SUM)in[40].Second,we propose an L2/3model based on the results in[34].For this model,we develop an algorithm based on the symmetric alternating direction method of multipliers(SADMM)[41-43].Although the convergence of SADMM for nonconvex problemsisstill open,our numerical schemeishighly effi cient becauseof theclosed-form solution[34]of each subproblem involved,which isalso verifi ed by numerical experiments.Numerical results show that theproposed models achieve an enhanced gradient sparsity and yield restoration results competitive with some existing methods.

    The outline of this paper is as follows.In section 2,we give the formulations of the proposed models as well as numerical algorithms.The numerical results are given in section 3.Finally,we conclude this paper in section 4.

    2 Three nonconvex models and their solving algorithms

    First,to better understand the metrics of the nonconvex functions,we plot the 2-dimensional surfaces corresponding to L1?L2,L1?0.5L2,L1?0.5LOGSand L2/3in comparison with L0and L1in Figure 1.For the L0norm,the value is zero at origin,1 at axes,and 2 elsewhere.From the figure,we know that L2/3is most closed to L0,and that L1?0.5L2is better than L1?L2.All nonconvex metrics are more closed to L0than L1.In our numerical experiments,we will fi nd that our models are competitive with the L1based model and promote sparsity.

    2.1 Two DC models and their algorithms

    According to the above discussions,we propose our fi rst DC model,the L1?αL2model(Model 1),by combining the fi delity term and the regularization term

    The second DC model is the L1?αLOGSmodel(Model 2)shown as follows

    Given a vector v∈Rn2(relevant matrix or image V ∈Rn×n),let

    ?y?denotes the largest integer less than or equal to y.vi,j,K1,K2is the relevant vector of the matrix Vi,j,K1,K2,and then

    More details about LOGScan be found in[37–39].

    Figure 1:2-dimensional surfaces of diff erent metrics.From left top to right bottom,L 0,L 1,L 1?L 2,L 1?0.5L 2,L 1?0.5L OGS and L 2/3

    It isnot easy to solvetheabovetwo DC modelsdirectly.Based on SUM[40],weneed to fi nd the majorizers of the two functions.For simplicity,we only give the details for Model 1,and then similarly for Model 2.First,we use a linear function to approximate the L2norm as follows

    where?x,y?denotes the inner product(which isx y),and

    ii

    In the next section,we will show that Q1(f,fs)is a majorizer of P1(f)and that the sequence{fs}converges to the stationary point of P1(f).Here,we focus on the inner convex subproblem argmfin Q1(f,fs).We use the SADMM method[41-43]to solve it.SADMM is a variation of the classic ADMM,and its convergence speed is much faster than the classic ADMM[43].Moreover,we also consider the box constraint[0,255]on pixel values(similar work can be found in[44]).Then,we have

    In details,the constraint reads

    Then,the SADMM scheme for prlblem(11)is

    where f[k]denotes the k th iteration of SADMM which is diff erent from outer iterations fsin(10).SADMM always converges to one of the global minimizers for convex models[43].However,the object function of(11)is not always strong convex,so the solution isoften not unique.Thus we choose two suitable positiveparametersβ1,β2>0 to make the SADMM algorithm converges to our expected minimizer.

    In(12),for the A subproblem,variables(z,y1,y2,w)aredecoupled and then can be solved separately.For the f subproblem,it is a least square problem,which is easy to solve by a normal equation.With fast Fourier transforms(FFTs),this normal equation can be solved fast and easily[14,17].Therefore,all the former subproblems can be solved easily,and then the algorithm of Model 1 is provided.The algorithm for Model 2 is very similar to that for Model 1,thus we omit the details.

    Clearly,for the y1subproblem(y2is similar)

    Theminimization with respect to y1can begiven explicitly by thewell-known Shrinkage method[45].

    where sgn and “?” represent the signum function and the componentwise product,respectively.

    For the z subproblem

    Note that the minimization in problem(15)is separable with respect to each component.The solution of problem(15)is

    For the w subproblem

    For the f subproblem

    The minimizer can be obtained by equivalently solving the following normal equation

    2.2 Convergence analysis

    In this section,we will show that the sequence{fs}obtained from the proposed algorithm,i.e.(10),converges to a stationary point.

    Lemma 1 Supposeμ>0,0<α<1,Model 1 and Model 2 are proper,continuous and coercive.Then the minimizers exist.

    Proof We only prove the coercive property of Model 1.Obviously,we have

    The final part P1,0of the last equation(just as the TV Poisson deblurring)is coercive by[10].Therefore,when∥f∥→∞,P1,0→∞,and then P1→∞.The proof is complete.

    In particular,ifα=0,our Model 1 degenerates to the classic ATV model(L1norm).Ifα<0,our Model 1 is a sum of two convex function and also convex,this is not the scope of this paper.

    Lemma 2 For all f,fs,we have

    Proof In fact,since ∥Df∥2,1? ?Df,qs?is convex on f,then we can get the minimum is0.After simple calculation,wehave?∥Df∥2,1≤ ??Df,qs?.Then,P1(f)≤Q1(f,fs).In addition,it is easy to know P1(f)=Q1(f,f).

    Therefore,we have

    The second inequality comes from the generation of fs+1.

    Theorem 1 Under the assumptions in Lemma 1,any non-zero limit point of{fs}generated by(10)is a stationary point of P1(f).

    Assume that there exists a subsequence{fsj}coverging to a limit point u,then we have

    which implies(f,u;d)|f=u≥ 0, ? d.Therefore,we obtain(u;d)≥ 0, ? d,which implies that u is a stationary point of P1(f).

    On the other hand,it is easy to show that Q1(f,fs)is coercive on f.According to the generation of each fs+1,we know that the sequence{fs}is bounded.Then,the convergent subsequence of the sequence{fs}exists.The proof is now completed.

    2.3 The L 2/3 model and its solution algorithm

    Our third nonconvex model is the Lpmodel with 0

    It is very similar to(11),except the y1,y2subproblems.When p=1/2,2/3,these two subproblems have closed-form solutions from[34],and we choose p=2/3 in this paper since the results in[34]are better than those for p=1/2.That is,we only need to change the yisubproblems(13)of(11)according to the closed-form solution in[34].Although the convergence of SADMM for nonconvex problems is still open,our numerical scheme is highly effi cient because of the closed-form solution[34]of each subproblem involved,which is also verified by numerical experiments.We do not consider other p∈(0,1)because they do not have closed-form solutions.

    3 Numerical exp eriments

    Thequality of therestoration resultsismeasured quantitatively by using thesignalto-noiseratio(SNR)in decibel(d B)and thestructural similarity index(SSIM)[46].The SNR is defi ned as

    whereand f denote the original and restored images,respectively,fˉ denotes the mean of the original imagef?.

    As for SSIM,the reader can refer to[46]for more details.We only use it as a black box to measure the quality of the restoration images.The closer to 1 the SSIM is,the better the result is.

    We compare our methods with some other existing methods.One is the classic ATV method(L1)as in[25],and another method is the L0norm as in[31,47,48].In Model 1 and Model 2,we setα=1/2 based on the discussion in[36].We set the first outer iteration f1=g,the observed image.

    The original images are shown in Figure 2:2015,House,Lena,Peppers.The original images are blurred by three blur kernels:

    (i) Gaussian blur 5-by-5 with standard deviation 1(“G” for short);

    (ii) Motion blur 5-by-5 with angle of 45 degrees(“M” for short);

    (iii) Average blur 3-by-3(“A” for short).

    Then,they are corrupted by Poisson noise.The background parameter b is set to 10.The maximum value of the original image is fi xed at 255.For other parameters,we tune them based on the highest SSIM.

    Figure 2:Original images,from left to right,2015,House,Lena,Peppers

    The numerical results of the diff erent methods are shown in Table 1.The last three columns correspond to our methods,and “Bn”denotes blurred and noisy images.From thetable,wecan find that our nonconvex models arecompetitivewith theexiting methods,such as L0and L1methods.From[49],we know that the SSIM is more important than SNR,so we illuminate the SSIM more clearly.And through this,the advantages of our methods are highlighted.From Table 1,we can see that occasionally the results of our nonconvex models are worse than L1,but at lease one of the proposed models is better than L1.

    Moreover,wedisplay thedegraded imagesand restored imagesin Figure3 to Figure 6.Not only do the proposed models work well on horizonal or vertical edges by design,they can deal with natural images as well.From the figures,we can see the visual improvement is similar to those numerical advantages in Table 1.

    Table 1:Numerical comparisons for diff erent methods on SNR(d B)and SSIM(×10?4)

    Figure 3:Results of image“2015” under Average blur.From left top to right bottom,blurred and noisy image,the results of L 0,L 1,L 1?0.5L 2,L 1?L OGS and L 2/3

    Figure 4:Results of image “House” under Gaussian blur.From left top to right bottom,blurred and noisy image,the results of L 0,L 1,L 1?0.5L 2,L 1?L OGS and L 2/3

    Figure 5:Results of image “Lena” under Motion blur.From left top to right bottom,blurred and noisy image,the results of L 0,L 1,L 1?0.5L 2,L 1?L OGS and L 2/3

    Figure 6:Results of image “Peppers” under Gaussian blur.From left top to right bottom,blurred and noisy image,the results of L 0,L 1,L 1?0.5L 2,L 1?L OGS and L 2/3

    Next,for our Model 1 and Model 2,we will show that the outer iteration s is often selected by 2 or 3 which is suffi cient.It means that in many cases,we can use a linear function to approximate the L2norm,and the results are much close to the original results.

    In addition,we plot the function values and relative errors against the iterations in Figure 7 for Model 1 and Model 2 on image“Lena” under Gaussian blur.The function values are P1(f)for L1?0.5L2and P2(f)for L1?0.5LOGS.The relative errors are the relative errors of f between two inner iterations.From the figure,and after similar tests on other images and blurs,we fi nd that our two DC methods only need 1 to 3 outer iterations to get good results.Moreover,we can see that our algorithms for two DC models converge.Occasionally,in the inner iterations,we find that the function values may not decrease.It is because the inner convex approximate functions are diff erent from the original nonconvex functions,while the function values in the figure are the original functions.The same situation occurs for the relative errors.However,the function values of each fi nal inner iteration(the outer iteration function values)decrease,which verifies the theoretical convergence result.Moreover,from the figure,wealso see that sometimes a good convex approximate model may have a high accuracy of the original nonconvex model.For instance,in this example,only one outer iteration is enough.

    Figure 7:Function values and relative errors against the iterations of L 1?0.5L 2,L 1?0.5L OG S on image “Lena” under Gaussian blur.From left to right,function values against iterations of L 1?0.5L 2,relative errors against iterations of L 1?0.5L 2,function values against iterations of L 1?0.5L OGS,relative errors against iterations of L 1?0.5L OGS

    Sparsity In addition,we examine the sparsity of the gradient vectors Df.Defi ne a gradient vector of a pixel as non-sparse if both Dxf and Dyf at that pixel are larger than 1.5(every pixel in[0,255]).Then,we can calculate the percentage of nonsparse gradient vectors over the total number of pixels.The sparsity percentage of the examples is presented in Table 2,here we only list the results for Figure 3 to Figure 6.From the table,we can see that,all our methods promote sparsity through producing the more sparse gradients than L1and L0.This is the motivation of our nonconvex models.Sometimes,L2/3is the best,and sometimes our three methods are close to each other.The poor performance of L0is because that L0is not easy to solve and the numerical method is not best.

    Table 2:The percentages(%)of non-sparse gradient vectors Df of the results obtained with L 0,L 1,L 1?0.5L 2,L 1?0.5L OGS and L 2/3 regularization terms in comparison to Df of the original image

    4 Conclusion

    In thispaper,weproposed several nonconvex modelsand developed thecorresponding solution algorithms.For the two DC models,we found good convex approximate models to solve them.Under the SUM algorithm frame,wetheoretically prove that the algorithms converge to the stationary points,which is a typical situation for nonconvex problems.For the L2/3model,wedeveloped an algorithm based on SADMM.Moreover,according to the numerical tests,the proposed models achieved an enhanced gradient sparsity and yielded restoration results competitive with some existing methods.

    References:

    [1]Dupe F X,Fadili J M,Starck J L.A proximal iteration for deconvolving Poisson noisy images using sparse representations[J].IEEE Transactions on Image Processing,2009,18(2):310-321

    [2]Zanella R,Boccacci P,Zanni L,et al.Effi cient gradient projection methods for edge-preserving removal of Poisson noise[J].Inverse Problems,2009,25(4):045010

    [3]Keenan M R,Kotula P G.Accounting for Poisson noise in the multivariate analysis of ToF-SIMS spectrum images[J].Surface and Interface Analysis,2004,36(3):203-212

    [4]Bertero M,Boccacci P,Talenti G,et al.A discrepancy principle for Poisson data[J].Inverse Problems,2010,26(10):105004

    [5]Staglian′o A,Boccacci P,Bertero M.Analysis of an approximate model for Poisson data reconstruction and a related discrepancy principle[J].Inverse Problems,2011,27(12):125003

    [6]Le T,Chartrand R,Asaki T J.A variational approach to reconstructing images corrupted by Poisson noise[J].Journal of Mathematical Imaging and Vision,2007,27(3):257-263

    [7]Gonzalez R C,Woods R E.Digital Image Processing[M].USA:Prentice Hall Inc,2006

    [8]Csiszar I.Why least squares and maximum entropy?An axiomatic approach to inference for linear inverse problems[J].The Annals of Statistics,1991,19(4):2032-2066

    [9]Vio R,Bardslev J,Wamsteker W.Least-squares methods with Poissonian noise:analysis and comparison with the Richardson-Lucy algorithm[J].Astronomy&Astrophysics,2005,436(2):741-755

    [10]Bardsley J M,Luttman A.Total variation-penalized Poisson likelihood estimation for ill-posed problems[J].Advances in Computational Mathematics,2009,31(1-3):35-59

    [11]Chen D Q,Cheng L Z.Spatially adapted regularization parameter selection based on the local discrepancy function for Poissonian image deblurring[J].Inverse Problems,2012,28(1):015004

    [12]Bertsekas D P,Nedic A.Convex Analysis and Optimization[M].Belmont:Athena Scientifi c,2003

    [13]Bonnans J F,Gilbert J C,Lemarbbchal C,et al.Numerical Optimization:Theoretical and Practical Aspects[M].Berlin Heidelberg:Springer,2006

    [14]Hansen P C,Nagy J G,O’Leary D P.Deblurring Images:Matrices,Spectra,and Filtering[M].Philadelphia:Society for Industrial and Applied Mathematics,2006

    [15]Bertero M,Boccacci P,Desider`a G,et al.Image deblurring with Poisson data:from cells to galaxies[J].Inverse Problems,2009,25(12):123006

    [16]Rudin L I,Osher S,Fatemi E.Nonlinear total variation based noise removal algorithms[J].Physica D,1992,60(1-4):259-268

    [17]Wang Y L,Yang J F,Yin W T,et al.A new alternating minimization algorithm for total variation image reconstruction[J].SIAM Journal on Imaging Sciences,2008,1(3):248-272

    [18]Yang J F,Yin W T,Zhang Y,et al.A fast algorithm for edge-preserving variational multichannel image restoration[J].SIAM Journal on Imaging Sciences,2009,2(2):569-592

    [19]Esser E.Applications of Lagrangian-based alternating direction methods and connections to split Bregman[R].UCLA CAM Report,2009:9-31

    [20]Eckstein J,Bertsekas D P.On the Douglas-Rachford splitting method and the proximal point algorithm for maximal monotone operators[J].Mathematical Programming,1992,55(1-3):293-318

    [21]Wu C L,Tai X C.Augmented Lagrangian method,dual methods,and split Bregman iteration for ROF,vectorial TV,and high order models[J].SIAM Journal on Imaging Sciences,2010,3(3):300-339

    [22]Goldstein T,O’Donoghue B,Setzer S,et al.Fast alternating direction optimization methods[J].SIAM Journal on Imaging Sciences,2014,7(3):1588-1623

    [23]Chan T F,Golub G H,Mulet P.A nonlinear primal-dual method for total variation-based image restoration[J].SIAM Journal on Scientifi c Computing,1999,20(6):1964-1977

    [24]Cai J F,Osher S,Shen Z W.Split Bregman methods and frame based image restoration[J].Multiscale Modeling and Simulation,2010,8(2):337-369

    [25]Figueiredo M A T,Bioucas-Dias J M.Restoration of Poissonian images using alternating direction optimization[J].IEEE Transactions on Image Processing,2010,19(12):3133-3145

    [26]Esedoˉglu S,Osher S J.Decomposition of images by the anisotropic Rudin-Osher-Fatemi model[J].Communications on Pure and Applied Mathematics,2004,57(12):1609-1626

    [27]Chambolle A.An algorithm for total variation minimization and applications[J].Journal of Mathematical Imaging and Vision,2004,20(1-2):89-97

    [28]Guo X X,Li F,Ng M K.A fast?1-TV algorithm for image restoration[J].SIAM Journal on Scientifi c Computing,2009,31(3):2322-2341

    [29]Figueiredo M A T,Nowak R D.An EM algorithm for wavelet-based image restoration[J].IEEE Transactions on Image Processing,2003,12(8):906-916

    [30]Chai A,Shen Z.Deconvolution:a wavelet frame approach[J].Numerische Mathematik,2007,106(4):529-587

    [31]Xu L,Lu C W,Xu Y,et al.Image smoothing via L0gradient minimization[J].ACM Transactions on Graphics,2011,30(6):1-12

    [32]Asif M S,Romberg J.Fast and accurate algorithms for re-weighted?1-norm minimization[J].IEEE Transactions on Signal Processing,2013,61(23):5905-5916

    [33]Cand`es E J,Romberq J K,Tao T.Stable signal recovery from incomplete and inaccurate measurements[J].Communications on Pure and Applied Mathematics,2006,59(8):1207-1223

    [34]Cao W F,Sun J,Xu Z B.Fast image deconvolution using closed-form thresholding formulas of Lq(q=)regularization[J].Journal of Visual Communication and Image Representation,2013,24(1):31-41

    [35]Yin P H,Lou Y F,He Q,et al.Minimization of?1?2for compressed sensing[J].SIAM Journal on Scientifi c Computing,2015,37(1):A536-A563

    [36]Lou Y F,Zeng T Y,Osher S,et al.A weighted diff erence of anisotropic and isotropic total variation model for image processing[J].SIAM Journal on Imaging Sciences,2015,8(3):1798-1823

    [37]Liu G,Huang T Z,Liu J,et al.Total variation with overlapping group sparsity for image deblurring under impulse noise[J].PloS One,2015,10(4):e0122562

    [38]Liu J,Huang T Z,Selesnick I W,et al.Image restoration using total variation with overlapping group sparsity[J].Information Sciences,2015,295(20):232-246

    [39]Liu G,Huang T Z,Lv X G,et al.New explicit thresholding/shrinkage formulas for one class of regularization problems with overlapping group sparsity and their applications[OL].E-print,http://ar Xiv.org/abs/1312.6813,2013

    [40]Razaviyayn M,Hong M,Luo Z Q.A unifi ed convergence analysis of block successive minimization methods for nonsmooth optimization[J].SIAM Journal on Optimization,2013,23(2):1126-1153

    [41]Glowinski R.Numerical Methods for Nonlinear Variational Problems[M].Berlin Heidelberg:Springer,1984

    [42]Glowinski R,et al.On the convergence of operator-splitting methods[C]//Kuznetsov P,et al.,Numerical Methods for Scientifi c Computing,Variational Problems and Applications,2003:67-79

    [43]He B S,Liu H,Wang Z R,et al.A strictly contractive peaceman–rachford splitting method for convex programming[J].SIAM Journal on Optimization,2014,24(3):1011-1040

    [44]Chan R H,Tao M,Yuan X M.Constrained total variation deblurring models and fast algorithms based on alternating direction method of multipliers[J].SIAM Journal on Imaging Sciences,2013,6(1):680-697

    [45]Yang J F,Zhang Y,Yin W T.An effi cient TVL1 algorithm for deblurring multichannel images corrupted by impulsive noise[J].SIAM Journal on Scientifi c Computing,2009,31(4):2842-2865

    [46]Wang Z,Bovik A C,Sheikh H R,et al.Image quality assessment:from error visibility to structural similarity[J].IEEE Transactions on Image Processing,2004,13(4):600-612

    [47]Blumensath T,Yaghoobi M,Davies M E.Iterative hard thresholding and L0regularisation[C]//IEEE International Conference on Acoustics,Speech and Signal Processing(ICASSP),Honolulu,HI:IEEE,2007:877-880

    [48]Yan M.Restoration of images corrupted by impulse noise and mixed Gaussian impulse noise using blind inpainting[J].SIAM Journal on Imaging Sciences,2013,6(3):1227-1245

    [49]Wang Z,Bovik A C.Mean squared error:love it or leave it?A new look at signal fi delity measures[J].IEEE Signal Processing Magazine,2009,26(1):98-117

    免费看a级黄色片| 黄片小视频在线播放| 老熟妇仑乱视频hdxx| 久久国产精品人妻蜜桃| 久久香蕉国产精品| 夜夜看夜夜爽夜夜摸 | 精品午夜福利视频在线观看一区| 热re99久久国产66热| 动漫黄色视频在线观看| 国产蜜桃级精品一区二区三区| 侵犯人妻中文字幕一二三四区| 91大片在线观看| 亚洲色图 男人天堂 中文字幕| av中文乱码字幕在线| 日日爽夜夜爽网站| 国产成人影院久久av| 黄色视频,在线免费观看| 国产伦人伦偷精品视频| 免费av毛片视频| 丰满人妻熟妇乱又伦精品不卡| 一边摸一边抽搐一进一小说| av视频免费观看在线观看| 丁香欧美五月| 亚洲男人天堂网一区| 亚洲久久久国产精品| 三上悠亚av全集在线观看| 欧美日韩国产mv在线观看视频| 多毛熟女@视频| 亚洲成a人片在线一区二区| 99久久国产精品久久久| 色婷婷av一区二区三区视频| 91麻豆av在线| 黑丝袜美女国产一区| 亚洲国产看品久久| 妹子高潮喷水视频| 久久久久久久久中文| 在线观看免费高清a一片| 成人永久免费在线观看视频| 久久人妻av系列| 啪啪无遮挡十八禁网站| 1024香蕉在线观看| 午夜免费成人在线视频| 国产一区二区三区视频了| 九色亚洲精品在线播放| 国产精品国产高清国产av| 亚洲成人精品中文字幕电影 | 首页视频小说图片口味搜索| 久久久国产一区二区| 精品久久久久久电影网| 国产欧美日韩一区二区三| 一二三四在线观看免费中文在| 亚洲欧美精品综合久久99| 欧美黄色淫秽网站| 午夜免费激情av| 国产精品久久久久久人妻精品电影| 欧美中文日本在线观看视频| 老司机深夜福利视频在线观看| 国产av在哪里看| 90打野战视频偷拍视频| 日本wwww免费看| 亚洲av成人一区二区三| 丁香欧美五月| 一边摸一边抽搐一进一小说| e午夜精品久久久久久久| 精品日产1卡2卡| 性色av乱码一区二区三区2| 国产99白浆流出| 亚洲一区二区三区不卡视频| 99国产精品99久久久久| 午夜老司机福利片| 午夜老司机福利片| 国产熟女xx| 国产成人欧美| 国产亚洲精品第一综合不卡| 亚洲 欧美 日韩 在线 免费| 少妇的丰满在线观看| 女性生殖器流出的白浆| 中文字幕人妻丝袜一区二区| 神马国产精品三级电影在线观看 | 亚洲欧美一区二区三区黑人| 麻豆av在线久日| 如日韩欧美国产精品一区二区三区| 美女高潮喷水抽搐中文字幕| 热re99久久精品国产66热6| 欧美性长视频在线观看| 9191精品国产免费久久| av国产精品久久久久影院| 国产日韩一区二区三区精品不卡| 日本免费一区二区三区高清不卡 | 亚洲国产精品一区二区三区在线| 久9热在线精品视频| 中国美女看黄片| 亚洲精品一二三| 国产91精品成人一区二区三区| 波多野结衣高清无吗| 亚洲人成网站在线播放欧美日韩| 免费在线观看影片大全网站| 久久久国产精品麻豆| 精品一区二区三区四区五区乱码| 激情在线观看视频在线高清| 88av欧美| 99国产精品一区二区蜜桃av| 黄片大片在线免费观看| 极品教师在线免费播放| 日本黄色视频三级网站网址| 咕卡用的链子| 国产熟女xx| 激情视频va一区二区三区| 女性被躁到高潮视频| 女同久久另类99精品国产91| 国产免费现黄频在线看| 国产成人啪精品午夜网站| 在线观看66精品国产| 欧美激情 高清一区二区三区| 大型av网站在线播放| 18禁黄网站禁片午夜丰满| 欧美成狂野欧美在线观看| 女生性感内裤真人,穿戴方法视频| 亚洲精品美女久久久久99蜜臀| 美女午夜性视频免费| 亚洲成人久久性| 亚洲成人免费av在线播放| 久久精品国产亚洲av高清一级| 法律面前人人平等表现在哪些方面| 国产亚洲精品久久久久久毛片| 亚洲视频免费观看视频| av超薄肉色丝袜交足视频| 视频在线观看一区二区三区| 日本 av在线| 欧美日韩亚洲高清精品| 欧美+亚洲+日韩+国产| 国产高清激情床上av| 久久天堂一区二区三区四区| 俄罗斯特黄特色一大片| 欧美中文综合在线视频| 国产精品亚洲一级av第二区| 国产精品日韩av在线免费观看 | 欧美激情高清一区二区三区| 午夜福利在线免费观看网站| 亚洲精品中文字幕在线视频| 一级黄色大片毛片| 欧美一区二区精品小视频在线| 国产av在哪里看| 波多野结衣高清无吗| 国产深夜福利视频在线观看| 男人舔女人下体高潮全视频| 亚洲色图 男人天堂 中文字幕| 在线观看免费高清a一片| 成人国产一区最新在线观看| 国产成年人精品一区二区 | 99国产综合亚洲精品| 精品久久久久久,| 人人妻,人人澡人人爽秒播| 在线视频色国产色| 亚洲精品一二三| 美女高潮喷水抽搐中文字幕| 中文字幕另类日韩欧美亚洲嫩草| 日韩高清综合在线| 黄色毛片三级朝国网站| 成人av一区二区三区在线看| 久久精品影院6| 久久性视频一级片| 久久精品国产99精品国产亚洲性色 | 少妇裸体淫交视频免费看高清 | 国产精品久久久久成人av| 波多野结衣av一区二区av| 精品久久久久久久毛片微露脸| 免费人成视频x8x8入口观看| 国产成年人精品一区二区 | 桃红色精品国产亚洲av| 国产精品自产拍在线观看55亚洲| 亚洲精品美女久久久久99蜜臀| 成人免费观看视频高清| 18禁美女被吸乳视频| 国产极品粉嫩免费观看在线| 一边摸一边抽搐一进一出视频| 精品一区二区三卡| 午夜福利在线免费观看网站| 一边摸一边抽搐一进一小说| 免费搜索国产男女视频| 精品久久久久久久毛片微露脸| 成在线人永久免费视频| 亚洲七黄色美女视频| 日本免费a在线| 免费人成视频x8x8入口观看| 中文字幕色久视频| 一边摸一边做爽爽视频免费| 国产黄a三级三级三级人| 丝袜人妻中文字幕| 中出人妻视频一区二区| 久久精品国产99精品国产亚洲性色 | 久久久精品国产亚洲av高清涩受| 久久久久国内视频| 成人手机av| 人妻丰满熟妇av一区二区三区| 在线观看www视频免费| 免费少妇av软件| 亚洲精品美女久久av网站| 成年人免费黄色播放视频| 长腿黑丝高跟| 长腿黑丝高跟| 51午夜福利影视在线观看| 久9热在线精品视频| 国产欧美日韩一区二区精品| 国产人伦9x9x在线观看| 久久精品91蜜桃| 免费av毛片视频| 国产熟女午夜一区二区三区| 搡老乐熟女国产| 国产成人免费无遮挡视频| a级毛片黄视频| 欧美日韩精品网址| 在线观看免费视频日本深夜| 婷婷精品国产亚洲av在线| 在线天堂中文资源库| 狠狠狠狠99中文字幕| 精品欧美一区二区三区在线| 亚洲欧美一区二区三区久久| 999精品在线视频| 女生性感内裤真人,穿戴方法视频| bbb黄色大片| 99国产精品一区二区三区| 纯流量卡能插随身wifi吗| 成人亚洲精品一区在线观看| 精品一区二区三区四区五区乱码| 欧美精品啪啪一区二区三区| 免费av毛片视频| 别揉我奶头~嗯~啊~动态视频| 国产99久久九九免费精品| 国产精品影院久久| 一级片免费观看大全| 国内久久婷婷六月综合欲色啪| 12—13女人毛片做爰片一| 亚洲人成77777在线视频| 女人被狂操c到高潮| 欧美日韩精品网址| 亚洲熟妇中文字幕五十中出 | 女性被躁到高潮视频| 男人舔女人的私密视频| 日本黄色日本黄色录像| 欧美日韩视频精品一区| 亚洲精品一卡2卡三卡4卡5卡| 国产精品爽爽va在线观看网站 | 久久精品成人免费网站| 欧美乱色亚洲激情| 欧美日韩中文字幕国产精品一区二区三区 | 视频区图区小说| 亚洲av五月六月丁香网| 男女之事视频高清在线观看| 99久久99久久久精品蜜桃| 久热这里只有精品99| 日韩有码中文字幕| 亚洲精品国产区一区二| 日韩av在线大香蕉| 亚洲自偷自拍图片 自拍| 一二三四社区在线视频社区8| 亚洲avbb在线观看| 亚洲成人精品中文字幕电影 | 亚洲五月色婷婷综合| 国产精品av久久久久免费| 人人澡人人妻人| 久久精品夜夜夜夜夜久久蜜豆| 亚洲欧美激情综合另类| 国产乱人视频| 99riav亚洲国产免费| 欧美绝顶高潮抽搐喷水| 极品教师在线免费播放| 少妇的逼水好多| 我的女老师完整版在线观看| 高清在线国产一区| 男女下面进入的视频免费午夜| 免费在线观看成人毛片| 精品人妻偷拍中文字幕| 高清毛片免费观看视频网站| av福利片在线观看| 男女视频在线观看网站免费| 成人高潮视频无遮挡免费网站| 九九热线精品视视频播放| 国产精品一区二区免费欧美| 免费电影在线观看免费观看| 亚洲国产精品久久男人天堂| 2021天堂中文幕一二区在线观| 午夜精品在线福利| 久久精品91蜜桃| 国产精品久久久久久人妻精品电影| 欧美日本视频| 亚洲最大成人av| 国产成人a区在线观看| 亚洲片人在线观看| 极品教师在线视频| 久久国产乱子免费精品| 热99re8久久精品国产| 亚洲中文字幕一区二区三区有码在线看| 天美传媒精品一区二区| 亚洲中文日韩欧美视频| 女生性感内裤真人,穿戴方法视频| 国产又黄又爽又无遮挡在线| 久久久成人免费电影| 成年女人毛片免费观看观看9| ponron亚洲| 久久性视频一级片| 亚洲 欧美 日韩 在线 免费| 男人的好看免费观看在线视频| 亚洲国产精品合色在线| 国产高清有码在线观看视频| 人人妻人人看人人澡| 亚洲国产欧洲综合997久久,| 夜夜躁狠狠躁天天躁| 一进一出好大好爽视频| 别揉我奶头 嗯啊视频| 丁香欧美五月| 极品教师在线视频| 18禁黄网站禁片免费观看直播| 老司机午夜十八禁免费视频| 99久久久亚洲精品蜜臀av| 桃红色精品国产亚洲av| 国产精品久久久久久久电影| 日本一二三区视频观看| 亚洲人成网站在线播放欧美日韩| 18禁裸乳无遮挡免费网站照片| 老司机深夜福利视频在线观看| 最近视频中文字幕2019在线8| 国产av麻豆久久久久久久| 美女黄网站色视频| 中文字幕人妻熟人妻熟丝袜美| 日本 av在线| 亚洲欧美精品综合久久99| 人人妻人人澡欧美一区二区| 国内精品久久久久久久电影| 午夜免费成人在线视频| 久久99热6这里只有精品| 中文字幕av成人在线电影| 国产欧美日韩一区二区精品| 91久久精品电影网| 欧美日韩福利视频一区二区| 精品人妻偷拍中文字幕| 三级毛片av免费| 1000部很黄的大片| 亚洲欧美日韩高清专用| 两个人的视频大全免费| 国产淫片久久久久久久久 | 99国产精品一区二区蜜桃av| 日韩精品中文字幕看吧| 亚洲av熟女| 国产精品亚洲美女久久久| 舔av片在线| 免费av观看视频| 亚洲无线在线观看| 亚洲国产日韩欧美精品在线观看| 一级毛片久久久久久久久女| 国产亚洲精品av在线| a级毛片a级免费在线| 赤兔流量卡办理| 变态另类丝袜制服| 成人精品一区二区免费| 最近视频中文字幕2019在线8| 少妇的逼水好多| 国产亚洲欧美在线一区二区| 99久久99久久久精品蜜桃| 亚洲无线在线观看| 日日摸夜夜添夜夜添av毛片 | 国产视频内射| 久久国产乱子免费精品| 一卡2卡三卡四卡精品乱码亚洲| 18禁黄网站禁片免费观看直播| 免费看日本二区| 少妇人妻一区二区三区视频| 欧美极品一区二区三区四区| 嫩草影院入口| 午夜两性在线视频| 午夜精品在线福利| 老熟妇仑乱视频hdxx| 成人性生交大片免费视频hd| 亚洲精品亚洲一区二区| 色视频www国产| 午夜福利18| 成人鲁丝片一二三区免费| 午夜福利18| 国产成人欧美在线观看| 一a级毛片在线观看| 老司机福利观看| 3wmmmm亚洲av在线观看| 亚洲av电影不卡..在线观看| 亚洲精品成人久久久久久| 精品熟女少妇八av免费久了| 亚洲经典国产精华液单 | 99久久成人亚洲精品观看| 婷婷精品国产亚洲av在线| 男女视频在线观看网站免费| netflix在线观看网站| 亚洲av美国av| 欧美极品一区二区三区四区| 国产高潮美女av| 久久久久国内视频| 午夜免费男女啪啪视频观看 | 亚洲三级黄色毛片| 热99在线观看视频| xxxwww97欧美| 丁香欧美五月| 国产精品久久电影中文字幕| 欧美午夜高清在线| 亚洲三级黄色毛片| 久久久精品欧美日韩精品| 欧美日韩国产亚洲二区| 51午夜福利影视在线观看| 国产精品国产高清国产av| 亚洲精品影视一区二区三区av| 欧美最新免费一区二区三区 | 久久精品国产亚洲av涩爱 | 亚洲中文字幕一区二区三区有码在线看| 国产精品嫩草影院av在线观看 | 日韩中字成人| 尤物成人国产欧美一区二区三区| 十八禁网站免费在线| 日日摸夜夜添夜夜添小说| 淫秽高清视频在线观看| 一本综合久久免费| 欧美黑人巨大hd| 熟女电影av网| 简卡轻食公司| 色在线成人网| 免费黄网站久久成人精品 | 人人妻人人看人人澡| 欧美性感艳星| 欧美激情久久久久久爽电影| 午夜福利在线观看吧| 久久精品91蜜桃| 99精品久久久久人妻精品| 97碰自拍视频| 精品午夜福利视频在线观看一区| 亚洲综合色惰| 欧美最黄视频在线播放免费| 热99在线观看视频| 99久久成人亚洲精品观看| 深夜精品福利| 99久久99久久久精品蜜桃| 精品免费久久久久久久清纯| 久久国产精品影院| 午夜精品久久久久久毛片777| 波多野结衣高清无吗| 又爽又黄无遮挡网站| 午夜a级毛片| 久久人妻av系列| 国产成人福利小说| 特级一级黄色大片| 欧美xxxx黑人xx丫x性爽| 不卡一级毛片| 国产视频内射| 国产精品av视频在线免费观看| 九色国产91popny在线| 亚洲精品粉嫩美女一区| 国产免费男女视频| www.www免费av| 国产免费一级a男人的天堂| 51国产日韩欧美| 亚洲国产精品999在线| 国内久久婷婷六月综合欲色啪| 男女床上黄色一级片免费看| 脱女人内裤的视频| 18禁在线播放成人免费| av福利片在线观看| 精品人妻熟女av久视频| 婷婷色综合大香蕉| 亚洲人成网站高清观看| a级毛片a级免费在线| 人妻制服诱惑在线中文字幕| 免费观看的影片在线观看| 成人国产一区最新在线观看| 亚洲av电影不卡..在线观看| 亚洲18禁久久av| 少妇的逼水好多| а√天堂www在线а√下载| 女同久久另类99精品国产91| 欧美xxxx性猛交bbbb| 成人三级黄色视频| 国产aⅴ精品一区二区三区波| 色哟哟·www| 日韩国内少妇激情av| 18禁裸乳无遮挡免费网站照片| 欧美一区二区精品小视频在线| 成人鲁丝片一二三区免费| 99久久精品热视频| 亚洲av中文字字幕乱码综合| 日日干狠狠操夜夜爽| 在线天堂最新版资源| 国产美女午夜福利| 最新中文字幕久久久久| 国产探花在线观看一区二区| 制服丝袜大香蕉在线| 欧美日韩综合久久久久久 | 老司机福利观看| 在线免费观看的www视频| 色综合婷婷激情| 色播亚洲综合网| 我的老师免费观看完整版| xxxwww97欧美| 国产欧美日韩一区二区三| a级一级毛片免费在线观看| 亚洲七黄色美女视频| 久久精品91蜜桃| 欧美色欧美亚洲另类二区| 久久婷婷人人爽人人干人人爱| 看免费av毛片| а√天堂www在线а√下载| 久久精品91蜜桃| 欧美色欧美亚洲另类二区| 久久精品国产亚洲av香蕉五月| 可以在线观看毛片的网站| 我要搜黄色片| 久久精品91蜜桃| 桃色一区二区三区在线观看| 国产91精品成人一区二区三区| 在线国产一区二区在线| 亚洲精华国产精华精| 在线观看av片永久免费下载| 精品久久久久久成人av| 精品久久国产蜜桃| 婷婷亚洲欧美| 日韩有码中文字幕| 日本 av在线| 国产av麻豆久久久久久久| 岛国在线免费视频观看| 日本黄大片高清| 国产精品伦人一区二区| 天堂动漫精品| 搞女人的毛片| 在现免费观看毛片| 亚洲国产精品sss在线观看| 国产高清三级在线| av在线天堂中文字幕| 国产视频一区二区在线看| 无人区码免费观看不卡| 日韩欧美一区二区三区在线观看| 18+在线观看网站| 最近最新免费中文字幕在线| 波多野结衣高清无吗| 国内久久婷婷六月综合欲色啪| 亚洲无线在线观看| 日本成人三级电影网站| 97超级碰碰碰精品色视频在线观看| 日韩欧美一区二区三区在线观看| 9191精品国产免费久久| 99riav亚洲国产免费| 人人妻人人澡欧美一区二区| 真实男女啪啪啪动态图| 一个人免费在线观看电影| 欧美三级亚洲精品| 中出人妻视频一区二区| 国产黄a三级三级三级人| 99久久九九国产精品国产免费| 亚洲人成电影免费在线| 草草在线视频免费看| 在线国产一区二区在线| 十八禁人妻一区二区| 午夜福利18| 久久久精品大字幕| 久久6这里有精品| 日韩免费av在线播放| 日本在线视频免费播放| 国产精品自产拍在线观看55亚洲| 夜夜看夜夜爽夜夜摸| 一级av片app| 少妇的逼好多水| 少妇高潮的动态图| 少妇人妻精品综合一区二区 | 极品教师在线视频| 精品久久国产蜜桃| 三级男女做爰猛烈吃奶摸视频| aaaaa片日本免费| 97超视频在线观看视频| 少妇熟女aⅴ在线视频| 别揉我奶头~嗯~啊~动态视频| 亚洲片人在线观看| 91在线观看av| 午夜精品在线福利| 亚洲人成网站在线播| 成年女人永久免费观看视频| 又紧又爽又黄一区二区| 首页视频小说图片口味搜索| 99在线人妻在线中文字幕| 国语自产精品视频在线第100页| x7x7x7水蜜桃| 亚州av有码| 久久久久国产精品人妻aⅴ院| 国产美女午夜福利| 宅男免费午夜| 少妇熟女aⅴ在线视频| 国产麻豆成人av免费视频| 我的女老师完整版在线观看| 99国产精品一区二区三区| 亚洲人成电影免费在线| 一进一出好大好爽视频| 久久精品国产亚洲av涩爱 | 欧美在线黄色| 亚洲中文日韩欧美视频| 美女cb高潮喷水在线观看| eeuss影院久久| 少妇的逼水好多| 国产精华一区二区三区| 美女免费视频网站| 波多野结衣巨乳人妻| 亚洲五月婷婷丁香| 搡老岳熟女国产| 男女那种视频在线观看| 91在线精品国自产拍蜜月| 97碰自拍视频| 久久久久久久亚洲中文字幕 | 我的老师免费观看完整版| 国产久久久一区二区三区| 日韩欧美免费精品| 91久久精品电影网| 午夜久久久久精精品| 天美传媒精品一区二区| 国产乱人视频| 又黄又爽又刺激的免费视频.|