趙蓓,姚婕,郭生龍
·論著·
Stanniocalcin-1對(duì)大鼠神經(jīng)元缺血性損傷的保護(hù)作用
趙蓓1a,姚婕2,郭生龍1b
目的:探討Stanniocalcin-1(STC-1)對(duì)神經(jīng)元缺血性損傷的保護(hù)作用及其可能的作用機(jī)制。方法:分離培養(yǎng)大鼠大腦皮質(zhì)神經(jīng)元,缺氧/缺糖處理構(gòu)建神經(jīng)元缺血性損傷模型。構(gòu)建過(guò)表達(dá)STC-1的重組逆轉(zhuǎn)錄病毒并轉(zhuǎn)染細(xì)胞;UCP2 siRNA轉(zhuǎn)染抑制解偶聯(lián)蛋白2(UCP2)表達(dá);實(shí)時(shí)熒光定量PCR(qRT-PCR)和Western Blotting檢測(cè)STC-1和UCP2的mRNA及蛋白表達(dá);乳酸脫氫酶(LDH)方法測(cè)定LDH漏出量和噻唑蘭(MTT)方法測(cè)定細(xì)胞生長(zhǎng)活力;檢測(cè)Caspase-3活性。結(jié)果:成功建立缺氧/缺糖神經(jīng)細(xì)胞損傷模型。過(guò)表達(dá)STC-1,缺氧/缺糖損傷的神經(jīng)元LDH漏出量減少(P<0.01),細(xì)胞生長(zhǎng)活力顯著升高(P<0.05),Caspase-3活性降低(P<0.05),且Bcl-2蛋白表達(dá)量增多(P<0.01);另外STC-1下游分子UCP2的mRNA和蛋白表達(dá)量顯著增加(P<0.01);另外,在過(guò)表達(dá)STC-1且抑制UCP2的情況下,細(xì)胞生長(zhǎng)活力明顯下降(P<0.05)。結(jié)論:STC-1對(duì)缺血性損傷的神經(jīng)細(xì)胞起保護(hù)作用,可能通過(guò)調(diào)控UCP2來(lái)保護(hù)神經(jīng)細(xì)胞。
神經(jīng)細(xì)胞缺血性損傷;Stanniocalcin-1;過(guò)表達(dá);解偶聯(lián)蛋白2
近年來(lái),心腦血管疾病發(fā)病率升高,腦卒中已成為第二大死因[1-4]。它具有高發(fā)病率、高病死率、高致殘率的特點(diǎn)[5-7]。目前,腦卒中引起的缺血性神經(jīng)細(xì)胞損傷無(wú)有效治療。人類(lèi)斯鈣素(stanniocalcin-1,STC-1)于1995年發(fā)現(xiàn)[8],不同的細(xì)胞都有表達(dá),包括神經(jīng)細(xì)胞、脂肪細(xì)胞和巨核細(xì)胞甚至癌細(xì)胞[9-11]。有文獻(xiàn)稱(chēng)STC-1在腦神經(jīng)元中表達(dá)量較高[12],并且對(duì)神經(jīng)元的缺氧性損傷具有保護(hù)作用[13],但STC-1通過(guò)調(diào)控哪些分子保護(hù)神經(jīng)元,還沒(méi)有明確的報(bào)道。因此本實(shí)驗(yàn)探討過(guò)表達(dá)STC-1對(duì)缺血性損傷神經(jīng)元的保護(hù)作用及可能的分子機(jī)制。
1.1 材料
1.1.1 實(shí)驗(yàn)動(dòng)物 懷孕16 d的Wistar大鼠,由中國(guó)醫(yī)學(xué)科學(xué)院實(shí)驗(yàn)動(dòng)物中心提供。
1.1.2 主要試劑和設(shè)備 DMEM培養(yǎng)基購(gòu)自美國(guó)Gibco公司;乳酸脫氫酶(lactic dehydrogenase,LDH)試劑盒購(gòu)自上海碧云天生物技術(shù)公司;小牛血清及馬血清購(gòu)自中國(guó)醫(yī)學(xué)科學(xué)院天津血研所;Caspase-3檢測(cè)試劑盒購(gòu)自上海浩然生物技術(shù)有限公司;MTT購(gòu)自上海生工公司;反轉(zhuǎn)錄試劑盒購(gòu)自賽默飛世爾科技公司;SYBR Premix Ex Taq II購(gòu)自大連寶生物工程有限公司;解偶聯(lián)蛋白2(uncou-pling protein-2,UCP2)兔多抗、B淋巴細(xì)胞瘤-2(B-cell lymphoma-2,Bcl-2)兔多抗、GAPDH兔多抗購(gòu)自北京博奧森生物技術(shù)有限公司;STC-1羊多抗購(gòu)自美國(guó)Santa Cruz Biotechnology公司;Earle's液購(gòu)自森貝伽(南京)生物公司。高速常溫離心機(jī)、移液器購(gòu)自德國(guó)Eppendoff公司;蛋白凝膠成像系統(tǒng)、普通PCR儀購(gòu)自美國(guó)Bio-Rad公司;超凈工作臺(tái)購(gòu)自北京醫(yī)療設(shè)備廠產(chǎn)品。電泳儀購(gòu)自英國(guó)Syngene公司;紫外分光光度計(jì)購(gòu)自美國(guó)Thermo Scientific公司。
1.2 方法
1.2.1 大腦皮質(zhì)神經(jīng)元的培養(yǎng)和鑒定 于無(wú)菌條件下取出懷孕16 d大鼠的胎鼠,將其大腦皮質(zhì)分離并置于預(yù)冷的DMEM培養(yǎng)基中,加入0.25%胰蛋白酶在37℃孵育30 min,然后用移液槍反復(fù)吹打,使細(xì)胞分離,形成密度為1.0×109/L的細(xì)胞懸液,接種于涂有多聚-D-賴氨酸的24孔板上,置于37℃、5%CO2細(xì)胞培養(yǎng)箱中培養(yǎng),培養(yǎng)基為含血清的DMEM培養(yǎng)基(內(nèi)含:10%小牛血清、10%馬血清、1×105U/L青霉素、1× 105U/L鏈霉素,pH 7.2~7.4)。24 h細(xì)胞貼壁后換液除去死細(xì)胞。第6天加入10 μmol/L阿糖胞苷培養(yǎng)24 h抑制非神經(jīng)元的生長(zhǎng)。培養(yǎng)第9天的細(xì)胞4%多聚甲醛于室溫下固定25 min,PBS清洗后0.2%Triton X-100室溫作用30 min,加入5%脫脂奶粉的PBS溶液封閉30 min,兔抗鼠MAP2多抗(1∶100)4℃過(guò)夜孵育,PBS清洗后加入FITC標(biāo)記的羊抗兔二抗(1∶100),37℃孵育1 h,熒光顯微鏡下觀察。本實(shí)驗(yàn)嚴(yán)格按照國(guó)家衛(wèi)生和醫(yī)學(xué)研究委員會(huì)對(duì)實(shí)驗(yàn)用動(dòng)物護(hù)理和使用的指導(dǎo)方針,并經(jīng)我院實(shí)驗(yàn)動(dòng)物倫理委員會(huì)批準(zhǔn)。
1.2.2 神經(jīng)元缺氧/缺糖損傷及MTT測(cè)定 取培養(yǎng)9 d的神經(jīng)元細(xì)胞,分為2組:缺氧/缺糖損傷組和正常組。將缺氧/缺糖損傷組的原培養(yǎng)液換為無(wú)糖Earle’s液,培養(yǎng)皿放入通入95%N2和5%CO2混合氣體的缺氧罐內(nèi);正常組換成含糖的Earle’s液,各培養(yǎng)8 h,然后取出培養(yǎng)皿,棄去Earle’s液,換為無(wú)血清的DMEM,置于培養(yǎng)箱中培養(yǎng)16 h。
MTT測(cè)定:將要檢測(cè)的細(xì)胞按照每孔為1×105個(gè)細(xì)胞量接種于96孔板,每孔加入MTT溶液(5 g/L)20 μL,置于37℃、5%CO2的培養(yǎng)箱中培養(yǎng)4 h后,小心棄掉孔內(nèi)培養(yǎng)液,每孔再加入二甲基亞砜150 μL,室溫下振蕩10 min,于OD值為490 nm處測(cè)量各孔的吸光度值,設(shè)置4個(gè)重復(fù),取其平均數(shù)作為實(shí)驗(yàn)結(jié)果。
1.2.3 載體構(gòu)建及病毒感染 據(jù)報(bào)道T29H細(xì)胞表達(dá)STC-1的量比較高,因此TRIZOL法提取8×105個(gè)T29H細(xì)胞的總RNA,反轉(zhuǎn)成cDNA。擴(kuò)增STC-1基因全長(zhǎng)的上游引物:5’-ATGGATCCATGCTCCAAAACTCAGCAGTGCTTC-3’(粗體代表BamHI酶切位點(diǎn));下游引物:5’-CGGAATTCTTATGCACTCTCATGGGATGTGCG-3’(粗體代表EcoRI酶切位點(diǎn))。PCR擴(kuò)增條件:預(yù)變性94℃2 min,變形94℃30 s,退火56℃1 min,延伸72℃2 min,35個(gè)循環(huán),延伸72℃10 min。將擴(kuò)增產(chǎn)物加到1%的瓊脂糖凝膠中進(jìn)行電泳,回收且雙酶切,與用同樣雙酶切過(guò)的pBabe/嘌呤霉素逆轉(zhuǎn)錄病毒載體連接,轉(zhuǎn)化到DH5a細(xì)胞中,篩選陽(yáng)性克隆,按照質(zhì)粒小提試劑盒說(shuō)明書(shū)提取質(zhì)粒并用上述酶雙酶切,瓊脂糖凝膠電泳結(jié)果正確的陽(yáng)性克隆送上海英駿生物技術(shù)有限公司測(cè)序。將測(cè)序正確的質(zhì)粒轉(zhuǎn)染進(jìn)293T細(xì)胞產(chǎn)生逆轉(zhuǎn)錄病毒,獲取含病毒的上清液并貯存于-70℃。用病毒溶液感染缺氧/缺糖損傷的神經(jīng)元,感染24 h后用嘌呤霉素(1.5 μg/mL)篩選細(xì)胞5 d,獲得過(guò)表達(dá)STC-1的細(xì)胞。
1.2.4 細(xì)胞轉(zhuǎn)染 為了獲得過(guò)表達(dá)STC-1且抑制UCP2的細(xì)胞,利用Turbofect轉(zhuǎn)染試劑將UCP2的小干擾RNA(siRNA:5’-GCUAAAGUCCGGUUACAGATT-3’)和非特異性siRNA分別轉(zhuǎn)染到過(guò)表達(dá)STC-1的細(xì)胞中,抑制UCP2的表達(dá)。分為3組:只過(guò)表達(dá)STC-1的缺氧/缺糖損傷的神經(jīng)元(pBabe-STC-1)組、過(guò)表達(dá)STC-1+抑制UCP2處理的缺氧/缺糖損傷的神經(jīng)元(pBabe-STC-1+UCP2 siRNA)組、過(guò)表達(dá)STC-1+轉(zhuǎn)染非特異性siRNA(STC-1+非特異性siRNA)組。
1.2.5 實(shí)時(shí)熒光定量PCR(qRT-PCR) 收集要進(jìn)行檢測(cè)的細(xì)胞,用TRIZOL裂解細(xì)胞提取細(xì)胞總RNA,利用反轉(zhuǎn)錄試劑盒將總RNA反轉(zhuǎn)錄成cDNA,進(jìn)行qRTPCR的基因擴(kuò)增檢測(cè),見(jiàn)表1。qRT-PCR反應(yīng)程序:預(yù)變性94℃10 min;58℃1 min,72℃1 min,共40個(gè)循環(huán);后延伸72℃10 min。反應(yīng)體系(20 μL):cDNA模板1 μL,上下游引物各0.5 μL,SYBR Premix Ex Taq II 10 μL和滅菌蒸餾水8 μL。
表1 qRT-PCR引物
1.2.6 蛋白免疫印記(Western Blot)裂解細(xì)胞,提取其中的蛋白質(zhì),測(cè)定濃度,加上樣Buffer,置于沸水中5 min,取20 μg蛋白質(zhì)樣品進(jìn)行SDS-PAGE電泳,轉(zhuǎn)移到PVDF膜后,用相應(yīng)一抗4℃孵育過(guò)夜包括UCP2兔多抗、Bcl-2兔多抗、GAPDH兔多抗、STC-1羊多抗,稀釋度均為1∶500,PBS洗3次去除多余的抗體,室溫孵育二抗2 h包括羊抗兔二抗和小鼠抗羊二抗,二抗稀釋度為1∶1 000,通過(guò)凝膠成像系統(tǒng)觀察結(jié)果。
1.2.7 過(guò)表達(dá)STC-1的免疫熒光檢測(cè) 過(guò)表達(dá)后的細(xì)胞用4%多聚甲醛室溫作用25 min,PBS清洗,用0.2% Triton X-100的PBS溶液室溫作用30 min,加入5%脫脂奶粉的PBS溶液封閉25 min,STC-1羊多抗(1∶100)4℃過(guò)夜孵育,PBS清洗后加FITC標(biāo)記的鼠抗羊二抗(1∶100),37℃孵育1 h,DAPI作用15 min,熒光顯微鏡下觀察。培養(yǎng)第9天的細(xì)胞做相同處理,作為對(duì)照組。1.2.8 LDH和Caspase-3活性檢測(cè) 收集培養(yǎng)上清液,依據(jù)文獻(xiàn)[14],按照試劑盒的說(shuō)明測(cè)定培養(yǎng)液中LDH和Caspase-3的活性。
1.3 統(tǒng)計(jì)學(xué)處理
采用SPSS16.0統(tǒng)計(jì)軟件進(jìn)行分析,計(jì)量資料以(均數(shù)±標(biāo)準(zhǔn)差)表示,t檢驗(yàn),單因素方差分析,P<0.05為差異有統(tǒng)計(jì)學(xué)意義。
2.1 皮質(zhì)神經(jīng)元的鑒定和神經(jīng)元缺血性損傷上調(diào)STC-1的表達(dá)
MAP2的免疫熒光鑒定顯示神經(jīng)元細(xì)胞體及樹(shù)突均有著色,在隨機(jī)視野的150個(gè)細(xì)胞中,純度達(dá)90%以上(圖1A)。MTT法測(cè)定細(xì)胞活力顯示正常組和缺氧/缺糖損傷組細(xì)胞活力分別為(0.560±0.020)、(0.230± 0.003),后者低于前者(P<0.05),表明缺氧/缺糖性處理成功。正常組和缺氧/缺糖損傷組的STC-1 mRNA表達(dá)量分別為(1.01±0.02)、(1.89±0.05),蛋白表達(dá)量分別為(1.02±0.05)、(2.02±0.25),差異有統(tǒng)計(jì)學(xué)意義(P<0.05),這提示缺氧/缺糖損傷可引起神經(jīng)元STC-1表達(dá)量上調(diào)(圖1B)。
圖1 皮質(zhì)神經(jīng)元鑒定和神經(jīng)元缺血性損傷上調(diào)STC-1的表達(dá)
2.2 STC-1在細(xì)胞中過(guò)表達(dá)
本實(shí)驗(yàn)構(gòu)建STC-1的過(guò)表達(dá)載體,包裝成逆轉(zhuǎn)錄病毒感染細(xì)胞,并檢測(cè)細(xì)胞中STC-1的mRNA和蛋白含量是否過(guò)表達(dá)。實(shí)驗(yàn)分組:①實(shí)驗(yàn)組(pBabe-STC-1):過(guò)表達(dá)STC-1的缺血性損傷的神經(jīng)元;②對(duì)照組:正常神經(jīng)元;③陰性組(pBabe):用含有空載體的逆轉(zhuǎn)錄病毒感染缺氧/缺糖損傷的神經(jīng)元。對(duì)照組、陰性組和實(shí)驗(yàn)組的STC-1的mRNA表達(dá)量分別為(0.90± 0.05)、(1.90±0.80)、(7.60±1.50),STC-1蛋白表達(dá)量分別為(1.06±0.04)、(2.03±0.50)、(8.30±0.31),實(shí)驗(yàn)組的STC-1表達(dá)量較陰性組明顯升高(P<0.01),見(jiàn)圖2A。另外,STC-1免疫熒光實(shí)驗(yàn)結(jié)果顯示STC-1過(guò)表達(dá)后其在細(xì)胞內(nèi)的分布明顯增多,見(jiàn)圖2B-C,說(shuō)明STC-1的過(guò)表達(dá)實(shí)驗(yàn)成功。
圖2 病毒轉(zhuǎn)染后各組STC-1的表達(dá)情況
2.3 STC-1過(guò)表達(dá)對(duì)神經(jīng)細(xì)胞起到保護(hù)作用
對(duì)照組、陰性組和實(shí)驗(yàn)組的細(xì)胞活力分別為(0.48±0.03)、(0.27±0.01)、(0.40±0.01),實(shí)驗(yàn)組的細(xì)胞活力明顯高于陰性組(P<0.05)。另外對(duì)照組、陰性組和實(shí)驗(yàn)組的LDH漏出量分別是(6.25±0.60)、(18.62± 0.80)、(8.53±0.20),實(shí)驗(yàn)組的LDH漏出量明顯少于陰性組(P<0.01)。
2.4 STC-1過(guò)表達(dá)使Caspase-3活性降低及Bcl-2蛋白水平升高
對(duì)照組、陰性組和實(shí)驗(yàn)組的Caspase-3活性分別為(0.08±0.01)、(0.29±0.03)、(0.11±0.02),實(shí)驗(yàn)組的Caspase-3活性較陰性組降低(P<0.05)。對(duì)照組、陰性組和實(shí)驗(yàn)組的Bcl-2蛋白相對(duì)表達(dá)量分別是(1.10±0.02)、(1.96±0.06)、(5.86±0.04),實(shí)驗(yàn)組的Bcl-2蛋白表達(dá)量較陰性組顯著升高(P<0.01)(圖3A)。這表明,過(guò)表達(dá)STC-1可對(duì)神經(jīng)元的缺氧/缺糖損傷起到保護(hù)作用。
2.5 STC-1過(guò)表達(dá)使UCP2表達(dá)量升高而減少神經(jīng)元的缺氧/缺糖損傷
為了探討STC-1對(duì)缺氧/缺糖損傷的神經(jīng)細(xì)胞保護(hù)作用的機(jī)制,本實(shí)驗(yàn)進(jìn)一步檢測(cè)其下游蛋白分子UCP2的表達(dá)變化。對(duì)照組、陰性組和實(shí)驗(yàn)組的UCP2 mRNA表達(dá)量分別為(1.30±0.06)、(1.96±0.30)、(5.90± 0.20),實(shí)驗(yàn)組高于陰性組(P<0.01)。對(duì)照組、陰性組和實(shí)驗(yàn)組的UCP2蛋白水平表達(dá)量分別為(1.07±0.06)、(2.10±0.20)、(6.20±0.50),對(duì)照組的UCP2蛋白水平表達(dá)量較陰性組升高(P<0.01,圖3B),與mRNA檢測(cè)結(jié)果一致。同時(shí),在STC-1過(guò)表達(dá)的情況下,本實(shí)驗(yàn)利用siRNA干擾UCP2的表達(dá),通過(guò)MTT方法檢測(cè)細(xì)胞活力。qRT-PCR結(jié)果顯示,pBabe組和(pBabe-STC-1+ UCP2 siRNA)組STC-1 mRNA水平表達(dá)量分別為(1.85±0.05)、(6.05±1.20),后者顯著高于前者(P<0.01);(STC-1+非特異性siRNA)組和(pBabe-STC-1+ UCP2 siRNA)組UCP21mRNA水平表達(dá)量分別為(5.95±0.50)、(2.36±0.89),(pBabe-STC-1+UCP2 siRNA)組低于(STC-1+非特異性siRNA)組,有顯著性差異(P<0.01)。說(shuō)明STC-1過(guò)表達(dá)成功且UCP2干擾實(shí)驗(yàn)成功。MTT檢測(cè)結(jié)果顯示,(STC-1+非特異性siRNA)組細(xì)胞活力(0.47±0.03)顯著高于(pBabe-STC-1+ UCP2 siRNA)組(0.23±0.06),差異有統(tǒng)計(jì)學(xué)意義(P<0.05),所以下調(diào)UCP2可抑制過(guò)表達(dá)STC-1后對(duì)神經(jīng)細(xì)胞的保護(hù)作用。因此推測(cè),STC-1可能通過(guò)對(duì)UCP2的調(diào)控來(lái)起到保護(hù)神經(jīng)細(xì)胞的作用。
圖3 各組BCl-2(A)、UCP2(B)蛋白表達(dá)
神經(jīng)元是構(gòu)成神經(jīng)系統(tǒng)最主要的部分,如何保護(hù)神經(jīng)元免受損傷是現(xiàn)代醫(yī)學(xué)研究一直試圖解決的問(wèn)題[15-17]。STC-1對(duì)多種細(xì)胞都有保護(hù)作用,尤其在缺血性損傷中。有研究表明,心肌細(xì)胞低氧可誘發(fā)STC-1表達(dá)上調(diào),并且起到保護(hù)心肌細(xì)胞免受缺氧損傷的作用[18,19]。也有報(bào)道表明,在肺臟和腎臟中,缺血也會(huì)通過(guò)上調(diào)STC-1的表達(dá)來(lái)保護(hù)細(xì)胞[20,21]。本實(shí)驗(yàn)通過(guò)對(duì)大鼠胎鼠大腦皮質(zhì)細(xì)胞缺氧/缺糖處理建立神經(jīng)元缺血性損傷模型,檢測(cè)到STC-1表達(dá)量呈上調(diào)趨勢(shì),過(guò)表達(dá)STC-1,檢測(cè)細(xì)胞生長(zhǎng)活力和LDH漏出量發(fā)現(xiàn)細(xì)胞生長(zhǎng)活力增強(qiáng)并且LDH漏出量減少,表明STC-1對(duì)神經(jīng)元的缺血性損傷有保護(hù)作用。
Caspase-3在細(xì)胞凋亡途徑中起重要作用,它的啟動(dòng)會(huì)造成細(xì)胞凋亡[22-25]。當(dāng)細(xì)胞表面死亡受體發(fā)生活化后,Caspase-3相繼促使下游反應(yīng)發(fā)生,使很多細(xì)胞重要的蛋白質(zhì),例如細(xì)胞骨架蛋白等,發(fā)生裂解,破壞這些蛋白質(zhì)正常的生理功能,從而導(dǎo)致細(xì)胞凋亡,因此,Caspase-3被稱(chēng)為死亡蛋白酶,是哺乳動(dòng)物凋亡的關(guān)鍵蛋白酶[26-29]。本實(shí)驗(yàn)中,過(guò)表達(dá)STC-1檢測(cè)到缺氧/缺糖損傷的神經(jīng)元中Caspase-3的活性降低,使細(xì)胞免受凋亡。另外Bcl-2也是細(xì)胞凋亡過(guò)程中的一類(lèi)調(diào)節(jié)因子,它的作用與Caspase-3相反,起抑制細(xì)胞凋亡的作用。本實(shí)驗(yàn)中,過(guò)表達(dá)STC-1上調(diào)Bcl-2的表達(dá),與Caspase-3的調(diào)控相反,說(shuō)明缺氧/缺糖損傷的神經(jīng)元凋亡過(guò)程受到抑制。
UCP2是解偶聯(lián)蛋白家族之一,位于線粒體內(nèi)膜,使線粒體氧化與磷酸化脫偶聯(lián),導(dǎo)致能量以熱的形式散發(fā),因其與氧自由基生成以及鈣代謝等方面有極大的關(guān)系而備受關(guān)注[30-33]。而UCP2有減少自由基生成的功能[34-37]。有文獻(xiàn)表明,STC-1在很多系統(tǒng)中通過(guò)誘導(dǎo)UCPs的表達(dá)抑制超氧化物生成[38]。神經(jīng)元缺血會(huì)產(chǎn)出大量的氧自由基[6],本實(shí)驗(yàn)發(fā)現(xiàn),過(guò)表達(dá)缺氧/缺糖損傷的神經(jīng)細(xì)胞中的STC-1,可使UCP2的表達(dá)量上升,從而保護(hù)缺氧/缺糖性損傷的神經(jīng)元。
目前,關(guān)于腦卒中引起的缺血性神經(jīng)元損傷的研究還不是很成熟。本實(shí)驗(yàn)構(gòu)建缺氧/缺糖損傷的神經(jīng)細(xì)胞,過(guò)表達(dá)STC-1可以增強(qiáng)缺氧/缺糖神經(jīng)元的生長(zhǎng)活力并且降低細(xì)胞凋亡,表明STC-1對(duì)細(xì)胞具有一定的保護(hù)作用;可能通過(guò)UCP2抑制氧自由基的生成和調(diào)控凋亡相關(guān)蛋白來(lái)保護(hù)神經(jīng)細(xì)胞免受缺血性損傷。綜上,STC-1可作為治療缺血性神經(jīng)疾病的潛在靶標(biāo)分子,其保護(hù)作用及機(jī)制有待進(jìn)一步研究。
[1]Sarti C,Rastenyte D,Cepaitis Z,et al.International trends in mortality from stroke,1968 to 1994[J].Stroke,2000,31:1588-1601.
[2]Szabo SM,Levy AR,Rao SR,et al.Increased risk of cardiovascular and cerebrovascular diseases in individuals with ankylosing spondylitis:A population-based study[J].Arthritis Rheumatism,2011,63:3294-3304.
[3]Tan CE,Glantz SA.Association between smoke-free legislation and hospitalizations for cardiac,cerebrovascular,and respiratory diseases a meta-analysis[J].Circulation,2012,126:2177-2183.
[4]Chen Y,Graziano JH,Parvez F,et al.Arsenic exposure from drinking water and mortality from cardiovascular disease in Bangladesh:prospective cohort study[J].BMJ,2011,342:d2431.
[5]Banerjee C,Snelling B,Hanft S,et al.Bilateral cerebral infarction in the setting of pituitary apoplexy:a case presentation and literature review [J].Pituitary,2014,18:352-358.
[6]Sanderson TH,Reynolds CA,Kumar R,et al.Molecular mechanisms of ischemia-reperfusion injury in brain:pivotal role of the mitochondrial membranepotentialin reactiveoxygen speciesgeneration[J].Mol Neurobiol,2013,47:9-23.
[7]李榮,趙幸娟,田紅梅.河南省腦卒中病情惡化2568例危險(xiǎn)因素分析[J].神經(jīng)損傷與功能重建,2015,10:289-290.
[8]Hasilo CP,McCudden CR,Gillespie JR,et al.Nuclear targeting of stanniocalcin to mammary gland alveolar cells during pregnancy and lactation[J].Am J Physiol Endocrinol Metab,2005,289:E634-642.
[9]Serlachius M,Zhang KZ,Andersson LC.Stanniocalcin in terminally differentiated mammalian cells[J].Peptides,2004,25:1657-1662.
[10]Fujiwara Y,Sugita Y,Nakamori S,et al.Assessment of Stanniocalcin-1 mRNA as a molecular marker for micrometastases of various human cancers[J].Int J Oncol,2000,16:799-804.
[11]Shirakawa M,Fujiwara Y,Sugita Y,et al.Assessment of stanniocalcin-1 as a prognostic marker in human esophageal squamous cell carcinoma [J].Oncol Rep,2012,27:940-946.
[12]Zhang KZ,Westberg JA,Paetau A,et al.High expression of stanniocalcin in differentiated brain neurons[J].Am J Pathol,1998,153:439-445.
[13]Yeung HY,Lai KP,Chan HY,et al.Hypoxia-inducible factor-1-mediated activation of stanniocalcin-1 in human cancer cells[J].Endocrinology, 2005,146:4951-4960.
[14]Koh JY,Choi DW.Quantitative determination of glutamate mediated cortical neuronal injury in cell culture by lactate dehydrogenase efflux assay[J].J Neurosci Methods,1987,20:83-90.
[15]Cho WJ,Joo SP,Kim TS,et al.Pituitary apoplexy presenting as isolated third cranial nerve palsy with ptosis:two case reports[J].J Korean Neurosurg Soc,2009,45:118-121.
[16]Wang GX,Li GR,Wang YD,et al.Characterization of neuronal cell death in normal and diabetic rats following exprimental focal cerebral ischemia[J].Life Sci,2001,69:2801-2810.
[17]楊清平,陳海光,李學(xué)蘭.護(hù)理干預(yù)對(duì)腦卒中后抑郁病人神經(jīng)功能康復(fù)的影響[J].護(hù)理學(xué)雜志,2004,19:62-63.
[18]Westberg JA,Serlachius M,Lankila P,et al.Hypoxic preconditioning induces elevated expression of stanniocalcin-1 in the heart[J].Am J Physiol Heart Circ Physiol,2007,293:H1766-1771.
[19]Al-Shudiefat AA,Sharma AK,Bagchi AK,et al.Oleic acid mitigates TNF-alpha-induced oxidative stress in rat cardiomyocytes[J].Mol Cell Biochem,2013,372:75-82.
[20]Block GJ,Ohkouchi S,Fung F,et al.Multipotent stromal cells are activated to reduce apoptosis in part by upregulation and secretion of stanniocalcin-1[J].Stem Cells,2009,27:670-681.
[21]Shi X,Wang J,Qin Y.Recombinant adeno-associated virus-delivered hypoxia-inducible Stanniocalcin-1 expression effectively inhibits hypoxiainduced cell apoptosis in cardiomyocytes[J].J Cardiovasc Pharmacol, 2014,64:522-529.
[22]Brentnall M,Rodriguez-Menocal L,De Guevara RL,et al.Caspase-9,caspase-3 and caspase-7 have distinct roles during intrinsic apoptosis[J]. BMC Cell Biol,2013,14:32-32.
[23]Fang J,Song XW,Tian J,et al.Overexpression of microRNA-378 attenuates ischemia-induced apoptosis by inhibiting caspase-3 expression in cardiac myocytes[J].Apoptosis,2012,17:410-423.
[24]Kang JW,Kim JH,Song K,et al.Kaempferol and quercetin,components of Ginkgo biloba extract(EGb 761),induce caspase-3-dependent apoptosis in oral cavity cancer cells[J].Phytother Res,2010,24:S77-S82.
[25]D'amelio M,Cavallucci V,Cecconi F.Neuronal caspase-3 signaling: not only cell death[J].Cell Death Differ,2010,17:1104-1114.
[26]Kaufmann T,Strasser A,Jost PJ.Fas death receptor signalling:roles of Bid and XIAP[J].Cell Death Differ,2012,19:42-50.
[27]Snigdha S,Smith ED,Prieto GA,et al.Caspase-3 activation as a bifurcation point between plasticity and cell death[J].Neurosci Bull,2012, 28:14-24.
[28]Ye Y,Li Z,Xing D.Nitric oxide promotes MPK6-mediated caspase-3-like activation in cadmium‐induced Arabidopsis thaliana programmed cell death[J].Plant Cell Environ,2013,36:1-15.
[29]D’Amelio M,Sheng M,Cecconi F.Caspase-3 in the central nervous system:beyond apoptosis[J].Trends Neurosci,2012,35:700-709.
[30]Diano S,Horvath TL.Mitochondrial uncoupling protein 2(UCP2)in glucose and lipid metabolism[J].Trends Mol Med,2012,18:52-58.
[31]Toda C,Diano S.Mitochondrial UCP2 in the central regulation of metabolism[J].Best Pract Res Clin Endocrinol Metab,2014,28:757-764.
[32]Sparks LM,Xie H,Koza RA,et al.A high-fat diet coordinately downregulates genes required for mitochondrial oxidative phosphorylation in skeletal muscle[J].Diabetes,2005,54:1926-1933.
[33]Allister EM,Robson-Doucette CA,Prentice KJ,et al.UCP2 regulates the glucagon response to fasting and starvation[J].Diabetes,2013,62: 1623-1633.
[34]Sheikh-Hamad D.Mammalian stanniocalcin-1 activates mitochondrial antioxidant pathways:new paradigms for regulation of macrophages and endothelium[J].Am J Physiol Renal Physiol,2010,298:F248-254.
[35]Souza BMd,Assmann TS,Kliemann LM,et al.The role of uncoupling protein 2(UCP2)on the development of type 2 diabetes mellitus and its chronic complications[J].Arq Bras Endocrinol Metabol,2011,55:239-248.
[36]Tian XY,Wong WT,Xu A,et al.Uncoupling protein-2 protects endothelial function in diet-induced obese mice[J].Circ Res,2012,110:1211-1216.
[37]Salminen A,Kaarniranta K,Kauppinen A.Crosstalk between oxidative stress and SIRT1:impact on the aging process[J].Int J Mol Sci,2013, 14:3834-3859.
[38]Huang L,Belousova T,Chen M,et al.Overexpression of stanniocalcin-1 inhibits reactive oxygen species and renal ischemia/reperfusion injury in mice[J].Kidney Int,2012,82:867-877.
(本文編輯:王晶)
Protective Effect of Stanniocalcin-1 on Neuron of Rats after Ischemic Injury
ZHAO Bei1a,YAO Jie2,GUO Sheng-long1b.1.a.Department of Medical Insurance,b.Department of Neurology,Shaanxi Provincial People’s Hospital,Xi’an 710068,China;2.Department of Neurology,The Second Affiliated Hospital of Xi’an Jiao Tong University,Xi’an 710004,China
Objective:To investigate the protective effect of Stanniocalcin-1(STC-1)on neurons after ischemic injury.Methods:The neurons were isolated from rat cortex and cultured.The cultured neurons were then subjected to anoxic and glucose-deprived injury.The retroviral of STC-1 overexpression was constructed and transfected into the neurons,which were also transfected with uncoupling protein 2(UCP2)siRNA to inhibit the UCP2 expression.The relative mRNA and protein expression levels of STC-1 and UCP2 were detected by qRTPCR and Western Blotting.The amount of LDH leakage was determined by LDH method,and cell growth and viability was determined by MTT method.The activity of Caspase-3 was detected.Results:The model of nerve cells with anoxic and OGD was constructed successfully.The up-regulation of STC-1 was verified,the amount of LDH leakage(P<0.01)and Caspase-3 activity were significantly reduced(P<0.05)whereas cell growth activity (P<0.05)and the protein expression of Bcl-2 were significantly increased with STC-1 overexpression(P<0.01). Moreover,the expression of UCP2,a downstream gene of STC-1,was also increased by STC-1 overexpression (P<0.01).The cell growth activity was obviously reduced with STC-1 overexpression and UCP2 inhibition(P<0.05).Conclusion:STC-1 may protect neurons against ischemic injury through regulating UCP2.
R741;R743.3
A DOI 10.16780/j.cnki.sjssgncj.2016.04.001
1.陜西省人民醫(yī)院a.醫(yī)保辦 b.神經(jīng)內(nèi)科西安 710068
2.西安交通大學(xué)醫(yī)學(xué)院第二附屬醫(yī)院神經(jīng)內(nèi)科西安 710004
2015-08-31
郭生龍huiqingguohn@163. com