• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Contribution of vortex Rossby wave to spiral rainband formation in tropical cyclones*

    2014-06-01 12:30:01RUANKun阮鯤

    RUAN Kun (阮鯤)

    Key Laboratory of Virtual Geographic Environment of Ministry of Education, College of Geographic Science, Nanjing Normal University, Nanjing 210046, China

    College of Meteorology and Oceanography, PLA University of Science and Technology, Nanjing 211101, China, E-mail: forward_rk@163.com

    ZHA Yong (查勇)

    Key Laboratory of Virtual Geographic Environment of Ministry of Education, College of Geographic Science, Nanjing Normal University, Nanjing 210046, China

    HUANG Hong (黃泓)

    School of Atmospheric Science, Key Laboratory of Mesoscale Severe Weather, Nanjing University, Nanjing 210093, China

    College of Meteorology and Oceanography, PLA University of Science and Technology, Nanjing 211101, China

    HU You-bin (胡友彬)

    College of Meteorology and Oceanography, PLA University of Science and Technology, Nanjing 211101, China

    Contribution of vortex Rossby wave to spiral rainband formation in tropical cyclones*

    RUAN Kun (阮鯤)

    Key Laboratory of Virtual Geographic Environment of Ministry of Education, College of Geographic Science, Nanjing Normal University, Nanjing 210046, China

    College of Meteorology and Oceanography, PLA University of Science and Technology, Nanjing 211101, China, E-mail: forward_rk@163.com

    ZHA Yong (查勇)

    Key Laboratory of Virtual Geographic Environment of Ministry of Education, College of Geographic Science, Nanjing Normal University, Nanjing 210046, China

    HUANG Hong (黃泓)

    School of Atmospheric Science, Key Laboratory of Mesoscale Severe Weather, Nanjing University, Nanjing 210093, China

    College of Meteorology and Oceanography, PLA University of Science and Technology, Nanjing 211101, China

    HU You-bin (胡友彬)

    College of Meteorology and Oceanography, PLA University of Science and Technology, Nanjing 211101, China

    (Received May 13, 2013, Revised August 7, 2013)

    The contribution of the vortex Rossby wave (VRW) to the spiral rainband in the tropical cyclones (TCs) is studied in the framework of a barotropic non-divergent TC-like vortex model. The spectral function expanding method is used to analyze the disturbance evolution of a defined basic state vortex. The results show that the numerical solution of the model is a superposition of the continuous spectrum component (non-normal modes) and the discrete spectrum component (normal modes). Only the eyewall and the rainbands in the inner core-region in a TC are related to the VRW normal modes, whereas the continuous spectrum wave components play an important role in the formation of secondary-, principal-, and distant- rainbands, especially the outer rainband, through an indirect way. The continuous spectrum can promote the development of the TC circulation for the occurrence of a mesoscale instability. The convection under a favorable moisture condition will trigger the inertial-gravitational wave to cause the formation of unstable spiral bandliked-disturbances outside of the eyewall. The complicated interaction between the basic state-vortex and the VRW disturbances will cause a positive feedback between the TC circulation and the rainband.

    tropical cyclone, spiral bands, vortex Rossby wave, continuous spectrum, discrete spectrum

    Introduction

    The spiral cloud (rain) bands in the TCs were detected in the earliest radar observations, but their formation and thermodynamic and dynamic roles in hurricanes are still not well understood[1].

    According to the wave characteristics, their formation could be explained by using the gravitational wave theory[2]and the vortex Rossby wave (VRW)[3]. When the spiral bands are divided into two classes: the inner and outer bands, they are explained with different mechanisms. The inner rainbands are characterized by the convectively coupled VRW. The movement of the outer rainbands follows the low-level vector winds associated with the azimuthally averaged low-level flow and the radially outward cross-band flow caused by the downdraft-induced cold pool in the boundary layer[4]. Huang and Zhang proposed thatonly the instability of the mixed vortex Rossby- inertial gravitational wave can interpret the generation of the eyewall, the inner and outer spiral bands at the same time[5].

    The exact wave mechanisms leading to the spiral band formation remain unclear, especially, the relative contribution of the vortex Rossby and inertial gravitational wave, which is difficult to be separated within a complicated model. It might be settled with the aid of simple models. In this paper, the role of the vortex Rossby wave will be illustrated by using a baratropic non-divergent tropical cyclone-scale vortex model. This model is the most simplified model of the tropical cyclone-scale vortex and can describe the important properties of the VRW.

    Using a Rankine vortex as the basic flow, Smith and Montgomery proposed that, in a barotropic nondivergent model, the solution is a superposition of the shear wave (continuous spectrum) component and the Rossby edge wave (discrete spectrum) component[6]. Carr and Williams[7]argued that a continuous spectrum disturbance will propagate against the vertical flow (retrogress) more rapidly at smaller radii due to the larger gradient of the symmetric vorticity closer to the center. This variable of retrogression would then tend to counteract the effect of the tilting mechanism and thus decrease the rate of symmetrization. However, the effect of the variable retrogression might be small in the tangential wind profile of a tropical cyclone vortex, decreasing relatively gradually with the radius. Based on their work, Shapiro and Montgomery pointed out that the individual normal modes on the vortex have a fixed structure, they are not affected by the tilting mechanism that ultimately reduces the amplitudes of the asymmetries associated with the continuous part of the spectrum[8].

    In a tropical cyclone-like vortex, the discrete modal instability of the pure VRW can account for the generation of the eyewall and the inner spiral bands, but cannot directly account for the generation of the outer spiral bands[5]. Hence, a problem arises, whether the VRW contributes nothing to the outer spiral bands or not, that will be addressed in this paper. It will be resolved in a way of the wave spectrum analysis[9]. In this way, the continuous spectrum (non-normal modes) and the discrete spectrum (normal modes) are decomposed from the disturbed fields to obtain non-mode solutions in the atmosphere. Therefore, the role of the VRW continuous spectrum in the generation of spiral bands in the TCs can be made clear in this paper.

    1. Model and methodology

    1.1Non-divergent barotropic model

    In this study, we use a linearized non-divergent barotropic model on the -fplane. In a cylindrical coordinate-system, the equations can be expressed as:

    Utilizing Eqs.(1), (2) and (3), the following vorticity equation can be obtained

    In order to obtain the eigenvalues and the eigenfunctions numerically, let where λ is the azimuth angle, n is the azimuthal wave-number, σ=σr+iσiis the frequency. Then, substitute it into Eq.(6) to get

    Dividing the radius r from 0 (Vortex center) tointo N sections with an equal distance, discretize Eq.(8) and consider corresponding boundary conditions:

    then, the solution of Eqs.(1)-(3) will become an eigenvalue problem in the matrix form as follows

    1.2Methods to distinguish continuous spectrum from discrete spectrum

    Fig.1 Radial profile of relative vorticity and velocity

    After the spectral points and functions are obtained, we shall distinguish the continuous spectral points from the discrete spectral points. The order of matrix TX(=A-1B) is different with the change of the grid distance[9]. For instance, if the grid number is N, there are (N-1) computed eigenvalues and their corresponding eigenfunctions. In our study, the domainsize of all computation is 200 km in the radial direction, i.e.,=200 km , and the corresponding grid distance is Δr(=/ N). N will be changed as needed.

    The number of the computed spectral points increases with the increase of resolution, but the distribution of the discrete spectral points shall not become denser, whereas the continuous spectral points become denser. In this way, the continuous spectrum can be distinguished from the discrete spectrum.

    The continuous spectrum may be turned into a numerical discrete spectrum in the numerical computation, so the real continuous spectrum shall be identified firstly. Theoretically, the continuous spectrum exists when the wave equation is singular. As for the model used in this paper, when the coefficient before the differential quotient in Eq.(10) is zero, this equation will become singular, and the frequencies of the continuous spectrum shall be located in the region

    Fig.2 Distribution of spectral points (σr) as the function of the radial grid number (s-1)

    Taking account of both the enough exact description of spectral functions and the computation precision, N is taken as 100 in most cases of this study. Then there exist 99 spectral points and corresponding functions, and all of them are located within [0,0.0047 s-1]. The spectral points labeled with 89 and 90 are a couple of the growing (decaying) discrete spectrum modes and the remaining points are all continuous spectral points when they are sorted in the ascending order of the propagation frequency.

    Fig.3 Stream function and relative vorticity of unstable disturbance when r<100 km

    2. Structure and evolution of wave spectrum

    2.1Discrete spectrum

    As mentioned above, the discrete spectrum only includes two spectral points, wherein the one labeled with 89 is a growing, i.e. unstable, mode. Figure 3shows the horizontal distribution, i.e., the distribution on r-λ plane, of the stream function and the relative vorticity of this unstable disturbance, wherein, the relative vorticity,is obtained from its stream function, ψ, as

    Fig.4 Evolution of stream function for unstable disturbance when r<100 km (m2/s)

    where Δ is the Laplace operator in the cylindrical coordinates.

    As shown in Fig.3, both the relative vorticity () and the stream function (ψ) of the unstable disturbance have two opposite-phase extremum centers along the radius, which correspond to the RMWs and the RMV of, respectively. The maximum amplitude of the unstable disturbance appears at the RMWs and decays quickly outside of this radius. Both the stream function and the relative vorticity have a spiral bandlike structure within the region between two peak values.

    The unstable discrete spectrum will grow exponentially. The evolution of its stream function or the relative vorticity can be known by using the computed growth rate (σi) and the phase velocity (cr), where cr=σr/n. It will take 2nπ/σrhours for the unstable disturbance to rotate around the center of the vortex clockwise for a positive cror anticlockwise for a negative cr. Let the azimuthal wave number n=3, its computed propagation frequency σ=2.998× 10-3s-1. As shown in Fig.4, the stream function of the unstable disturbance rotates clockwise in a cycle of about 1.75 h. The basic–state vortex rotates anticlockwise as defined, so the unstable perturbation propagates against the basic flow.

    2.2Continuous spectrum

    With the increase of N, the spectral points and the identifiable modes of the continuous spectrum will increase, but their radial structures change following similar laws. For simplicity, the case of =20N is considered as an example to illustrate the radial structure variation of the continuous spectrum modes. There are 19 spectral points including 17 continuous spectrum modes and 2 discrete spectrum modes labeled with 17 and 18. The continuous spectral points labeled as 1-16 and 19 are turned into the computed discrete spectral points. Their radial structures exhibit no smooth wave properties, but with critical layers at the radius where these spectral functions or their firstorder derivatives are disconnected (Fig.5). The locations of the critical layers are closer to the vortex center from the model boundary with the increase of the label index. The propagation frequencies of the discrete spectrum perturbations are in the order of those of the continuous spectrum perturbation propagating relatively faster.

    A single mode of the continuous spectrum has no evident physical meaning because of discontinuity of the continuous spectrum itself and its first-order derivative, so its evolution shall be described reasonably and correctly by using the concept of wave packet[9]. When N is taken to be 100, the stream function ()rΨof each mode is discretized as an (1)N- dimensional vector. The stream function of continuous spectrum wave packet is computed by using the following formula

    Fig.5 Radial structure of perturbation stream function in ascending order of propagation frequency (=20)N

    Fig.6 Evolution of horizontal stream function for continuous spectrum wave packet when r<200 km (m2/s)

    3. Discussions

    The theory of idealized tropical cyclone-like vortices suggests that the flow field near the center of a storm contains normal-mode disturbances of the general size and shape of the secondary rainbands in the inner-core region outside of the eyewall zone. The numerical solution shown in Section 2 corresponds well to the analytical solution proposed by Smith and Montgomery with a barotropic nondivergent model[6]. However, the analytical method can only be used to study some special basic-state vortex, such as the Rankine vortex, the numerical method used in this paper can analyze more complex and realistic basicstate vortices, which will result in more credible and valuable conclusions.

    The numerical solution of the non-divergent barotropic model in this study is a superposition of the continuous spectrum component and the discrete spectrum component of the VRW. Such disturbances exhibit different structural characteristics. In order to distinguish the relative contribution of the discrete spectrum components from the continuous spectrum ones, the schematic diagram of the radar reflectivity in a North Hemisphere TC[12]is cited (Fig.7).

    Fig.7 Schematic illustration of radar reflectivity in a North Hemisphere tropical cyclone with a double eyewall[12]

    The development of the discrete spectrum wave packetdψ, which is computed following Eq.(13), for the two modes labeled as 89 and 90, shows the unstable growth of such modes (Fig.8). As shown in the figure, the wave packet exhibits a two-peak structure along the radial direction initially, but the energy is accumulated rapidly near the RMWs after about 2 h’s evolution. The wave packet has no evident variation outside of this radius. Such modes extract energy fromthe basic-state vortex and decrease the rate of symmetrization under the linear assumption with the nonlinear effects neglected. Compared the structure of the unstable discrete spectrum mode with the schematic illustration shown in Fig.7, it can be inferred that the developing discrete spectrum (normal mode) component most likely applies to the smaller, more transient, secondary rainbands.

    Fig.8 Time evolution of the discrete spectrum wave packet as the function of radius

    The primary eyewall and some of the rainbands in the inner core of a TC are related to the VRW normal modes. The unbalanced property of the wave outside the stagnation radius of the VRW is one of the important causes for the formation of the unstable outer spiral bands in the TCs. Accordingly, the outer spiral band in the actual TCs can be identified to possess properties of the inertial-gravitational wave[5].

    Fig.9 Time evolution of the continuous spectrum wave packet as the function of radius

    In the general circulation, the west winds can be nourished by continuous spectrum disturbances[13]. Similarly, it can be inferred that the continuous spectrum of the VRW may enhance the basic state vortex, which will favor the development of mesoscale instabilities. Such assumption is verified by the time evolution of the continuous spectrum wave packetcψ as shown in Fig.9. It can be seen that the amplitudes of the continuous spectrum wave packet are reduced ultimately with time on the whole, which shows an energy transfer from the asymmetries associated with the continuous spectrum to the symmetric basic-state vortex. Such energy transfer mainly occurs in the regions corresponding to the eyeall, principal-, and distantrainband zone shown in Fig.7. Such energy transfer is dominant, especially in the distant rainband region.

    The spiralband-liked region exhibited by the continuous spectrum wave packet (as shown in Fig.6) often corresponds to the potential instability region in the actual TCs. In such a zone, the convection will occur under a favorable moisture condition. As a result, the inertial-gravitational wave will be triggered[10]. In fact, the inertial-gravitational wave triggered by the direct effect of the latent heat release will cause the formation of the unstable spiral bandlike disturbances outside of the eyewall, which was verified in the numerical simulations[14].

    4. Conclusions

    The contribution of the VRW to the spiral rainband in the TCs is studied in the framework of a barotropic non-divergent vortex model. In contrast to previous similar studies, a more complex profile of the basic flow, which is similar to the radial wind profile of some real TCs, is defined using empirical formulas. Then the spectral function expanding method is used to analyze the disturbances for this basic state vortex.

    The results show that the numerical solution is a superposition of the shear wave (continuous spectrum) component and the Rossby edge wave (discrete spectrum) component. All stable spectral points belong to the continuous spectrum, whereas the discrete spectrum only includes the growing and decaying spectral points. The numerical results are consistent with the analytical solution for a simpler basic flow.

    The eyewall and some of the rainbands in the inner core of a TC are mainly related to the VRW normal modes. The unstable perturbation propagates against the cyclonic basic-state vortex and extracts energy from the symmetric basic-state vortex. In such a zone, the continuous spectrum wave packet decays evidently as shown in Fig.9, so the energy is transferred from the disturbances associated with these modes into the basic-state vortex. Moller and Montgomery proposed that, for the disturbance amplitudes of 40% of the basic-state PV at the radius of the maximum wind, a discrete normal mode propagating cyclonically around the vortex is excited as a by-product of the process by which the energy is transferred from the asymmetries into the basic state (axisymmetrization)[15]. Such a process is also observed in our simple model. The continuous spectrum part of the VRW can help developing the discrete normal mode of the VRW and facilitate the formation of unstable inner spiral bands.

    The continuous spectrum components also playan important role in the formation of spiral bands outside of the inner core of a TC, especially the distant rainband, through an indirect way. They can promote the development of the TC circulation favorable for the occurrence of mesoscale instability. Under a desired moisture condition, the real potential instability will be triggered to favor the development of convection. Then the unstable spiral bands will form as a result of the propagation of the inertial gravity wave. At the same time, in such a rainband zone, the energies transfer from the asymmetries associated with the continuous spectrum to the symmetric basic-state vortex, which will result in an asymmetry-induced intensification of the basic flow.

    It can be concluded that the complicated interaction between the basic state-vortex and the VRW disturbances, including the normal modes and the continuous spectrum components, will result in a positive feedback between the TC circulation and the spiral rainband. However, the detailed process and the dynamic mechanism remain a challenge for further studies.

    [1] CHEN Y., YAU M. K. Spiral bands in a simulated hurricane. Part I: Vortex Rossby wave verification[J]. Journal of the Atmospheric Sciences, 2001, 58(15): 2128-2145.

    [2] CHOW K. C., CHAN K. L. and LAU A. K. H. Generation of moving spiral bands in tropical cyclones[J]. Journal of the Atmospheric Sciences, 2002, 59(20): 2930-2950.

    [3] WANG Y. Vortex Rossby waves in a numerically simulated tropical cyclone. Part II: The role in tropical cyclone structure and intensity change[J]. Journal of the Atmospheric Sciences, 2002, 59(7): 1239-1262.

    [4] LI Q., WANG Y. A comparison of inner and outer spiral rainbands in a numerically simulated tropical cyclone[J]. Monthly Weather Review, 2012, 140(9): 2782-2805.

    [5] HUANG Hong, ZHANG Ming. Unstable dynamical properties of spiral cloud bands in tropical cyclones[J]. Acta Meteorologica Sinica, 2009, 23(4): 485-493.

    [6] SMITH G. S., MONTGOMERY M. T. Vortex axisymmetrization and its dependence on azimuthal wave number or asymmetric radial structure changes[J]. Quarterly Journal of the Royal Meteorological Society, 1995, 121(527): 1615-1650.

    [7] CARR L. E. III , WILLIAMS R. T. Barotropic vortex stability to perturbations from axisymmetry[J]. Journal of the Atmospheric Sciences, 1989, 46(20): 3177-3191.

    [8] SHAPIRO L. J., MONTGOMERY M. T. A three-dimensional balance theory for rapidly rotating vortices[J]. Journal of the Atmospheric Sciences, 1993, 50(19): 3322-3335.

    [9] ZHANG Li-feng, ZHANG Ming. Characteristic waves of transversal disturbance at barotropic shear flow, II: Spectral function[J]. Acta Meteorologica Sinica, 2001, 59(2): 143-156(in Chinese).

    [10] NOLAN D. S., MONTGOMERY M. T. Nonhydrostatic, three-dimensional perturbations to balanced, hurricanelike vortices. Part I: Linearized formulation, stability, and evolution[J]. Journal of the Atmospheric Sciences, 2002, 59(21): 2989-3020.

    [11] ZHANG Ming, HUANG Hong and ZHANG Li-feng. Atmospheric wave spectrum analysis and instability (Vol. 3)-Perturbations in tropical cyclones[M]. Beijing, China, Meteorological Press, 2010, 19-22(in Chinese).

    [12] HOUZE R. A. Jr. Clouds in tropical cyclones[J]. Monthly Weather Review, 2010, 138(2): 293-344.

    [13] ZHANG Li-feng, ZHANG Ming. Evolution of the structure of the global disturbance and its expression in spherical Rossby wave envelope[J]. Climatic and Environmental Research, 2005, 10(3): 430-442.

    [14] CHEN Xue-jing. Impact of thermal effects on spiral bands of tropical cyclone[D]. Master Thesis, Nanjing, China: PLA University of Science and Technology, 2011(in Chinese).

    [15] MOLLER J. D., MONTGOMERY M. T. Vortex Rossby waves and hurricane intensification in a barotropic model[J]. Journal of the Atmospheric Sciences, 1999, 56(11): 1674-1687.

    10.1016/S1001-6058(14)60081-0

    * Project supported by the National Nature Science Foundation of China (Grant No. 40905021) the Chinese Postdoctoral Science Foundation (Grant No. 2011M500894).

    Biography: RUAN Kun (1978-), Male, Ph. D. Candidate,

    Lecturer

    HUANG Hong,

    E-mail: hhong7782@163.com

    丰满的人妻完整版| 每晚都被弄得嗷嗷叫到高潮| 欧美大码av| www.www免费av| 一进一出好大好爽视频| 曰老女人黄片| 两人在一起打扑克的视频| 日韩三级视频一区二区三区| 午夜视频精品福利| 怎么达到女性高潮| 在线观看免费视频日本深夜| 色av中文字幕| 狠狠狠狠99中文字幕| 免费少妇av软件| 少妇熟女aⅴ在线视频| 成人三级做爰电影| 久久人妻熟女aⅴ| av在线播放免费不卡| 手机成人av网站| 日本在线视频免费播放| 日韩大码丰满熟妇| 国产精品,欧美在线| 一边摸一边做爽爽视频免费| 级片在线观看| 国产精华一区二区三区| 深夜精品福利| www.自偷自拍.com| netflix在线观看网站| 操美女的视频在线观看| 香蕉丝袜av| 在线观看免费视频网站a站| 97人妻天天添夜夜摸| 久久久久久久久免费视频了| 亚洲色图 男人天堂 中文字幕| 91精品三级在线观看| 一区二区三区高清视频在线| 精品高清国产在线一区| 精品无人区乱码1区二区| 极品教师在线免费播放| 美女大奶头视频| 777久久人妻少妇嫩草av网站| 国产av一区在线观看免费| 成人手机av| 琪琪午夜伦伦电影理论片6080| 精品人妻1区二区| 熟妇人妻久久中文字幕3abv| 亚洲av电影不卡..在线观看| 一级片免费观看大全| 亚洲成人国产一区在线观看| 老熟妇仑乱视频hdxx| 国产亚洲精品av在线| 欧美另类亚洲清纯唯美| 高清毛片免费观看视频网站| 天堂√8在线中文| 国产精品久久久久久亚洲av鲁大| 亚洲专区字幕在线| 久久伊人香网站| 日韩大码丰满熟妇| 国产黄a三级三级三级人| 国产三级在线视频| 成年版毛片免费区| 淫妇啪啪啪对白视频| 精品国产一区二区久久| 日本a在线网址| 国产一卡二卡三卡精品| ponron亚洲| 久久久久国产精品人妻aⅴ院| 在线播放国产精品三级| 99精品久久久久人妻精品| 欧美激情高清一区二区三区| 一进一出好大好爽视频| 纯流量卡能插随身wifi吗| 久久精品国产综合久久久| 99久久综合精品五月天人人| 青草久久国产| 国产成人精品在线电影| 亚洲成人国产一区在线观看| 欧美+亚洲+日韩+国产| 欧美性长视频在线观看| 最新美女视频免费是黄的| 亚洲人成电影免费在线| 极品教师在线免费播放| 午夜免费观看网址| 亚洲 国产 在线| 国产精品1区2区在线观看.| 人人澡人人妻人| 国产成人欧美在线观看| 这个男人来自地球电影免费观看| 欧美激情极品国产一区二区三区| 久久久国产精品麻豆| 日本五十路高清| 亚洲中文字幕日韩| 韩国av一区二区三区四区| av天堂久久9| 欧美av亚洲av综合av国产av| 国产精品一区二区精品视频观看| 免费一级毛片在线播放高清视频 | 老司机深夜福利视频在线观看| 天堂影院成人在线观看| e午夜精品久久久久久久| 久久亚洲真实| 老汉色av国产亚洲站长工具| 美女大奶头视频| 精品国产超薄肉色丝袜足j| 欧美 亚洲 国产 日韩一| 午夜久久久久精精品| 性少妇av在线| 一区二区三区精品91| 久久中文字幕一级| 欧美激情 高清一区二区三区| 97碰自拍视频| 麻豆成人av在线观看| 一区二区三区国产精品乱码| 国产精品亚洲av一区麻豆| 国产单亲对白刺激| av片东京热男人的天堂| 一边摸一边抽搐一进一小说| 嫩草影院精品99| 天堂√8在线中文| 精品人妻在线不人妻| 国产男靠女视频免费网站| 国产亚洲精品久久久久久毛片| 免费一级毛片在线播放高清视频 | 国产精品影院久久| 少妇 在线观看| 757午夜福利合集在线观看| 国产1区2区3区精品| 国产高清videossex| 成年女人毛片免费观看观看9| 如日韩欧美国产精品一区二区三区| 国产精品自产拍在线观看55亚洲| 美女高潮喷水抽搐中文字幕| 最好的美女福利视频网| 国产一级毛片七仙女欲春2 | 啦啦啦观看免费观看视频高清 | 男人舔女人的私密视频| 亚洲中文字幕日韩| 老司机深夜福利视频在线观看| 国产精品野战在线观看| 日韩欧美在线二视频| 无人区码免费观看不卡| 青草久久国产| 久久天躁狠狠躁夜夜2o2o| 久久中文字幕一级| 亚洲精品粉嫩美女一区| 日韩欧美一区视频在线观看| 日韩免费av在线播放| 在线观看免费视频日本深夜| 欧美日韩瑟瑟在线播放| 男男h啪啪无遮挡| 50天的宝宝边吃奶边哭怎么回事| 亚洲第一欧美日韩一区二区三区| 国产麻豆成人av免费视频| 桃红色精品国产亚洲av| 一级片免费观看大全| 黄频高清免费视频| 久久人妻福利社区极品人妻图片| 国产亚洲欧美在线一区二区| 免费av毛片视频| 99re在线观看精品视频| 亚洲欧美日韩无卡精品| 日韩精品青青久久久久久| 久久国产精品影院| 少妇熟女aⅴ在线视频| 国产亚洲精品av在线| 免费一级毛片在线播放高清视频 | 欧美av亚洲av综合av国产av| 黑人巨大精品欧美一区二区蜜桃| 女人被躁到高潮嗷嗷叫费观| 侵犯人妻中文字幕一二三四区| 色婷婷久久久亚洲欧美| 精品国产国语对白av| 国产精品电影一区二区三区| 国产日韩一区二区三区精品不卡| 大码成人一级视频| 可以免费在线观看a视频的电影网站| 国产极品粉嫩免费观看在线| 精品欧美国产一区二区三| a在线观看视频网站| 日本 欧美在线| 久久久久久久精品吃奶| а√天堂www在线а√下载| 亚洲中文av在线| 亚洲国产日韩欧美精品在线观看 | 亚洲第一av免费看| 国产野战对白在线观看| 日韩精品青青久久久久久| 自线自在国产av| 亚洲中文字幕一区二区三区有码在线看 | 男女午夜视频在线观看| 日韩免费av在线播放| 免费在线观看日本一区| 国产aⅴ精品一区二区三区波| 色av中文字幕| 国产精品永久免费网站| 在线播放国产精品三级| av天堂久久9| 久久国产精品人妻蜜桃| 伦理电影免费视频| 久久人妻av系列| 中文字幕最新亚洲高清| 伦理电影免费视频| 级片在线观看| 91大片在线观看| 国内精品久久久久精免费| 亚洲色图综合在线观看| 成人欧美大片| 国产1区2区3区精品| 热re99久久国产66热| 亚洲国产欧美网| 91在线观看av| 一本大道久久a久久精品| 一本大道久久a久久精品| 日韩国内少妇激情av| 岛国在线观看网站| 日韩精品中文字幕看吧| 午夜福利影视在线免费观看| 欧美另类亚洲清纯唯美| 99久久国产精品久久久| 亚洲人成电影观看| 男人的好看免费观看在线视频 | 热re99久久国产66热| 久久精品国产综合久久久| 韩国av一区二区三区四区| 搞女人的毛片| 成人国产综合亚洲| 九色亚洲精品在线播放| 亚洲欧美日韩另类电影网站| 黄网站色视频无遮挡免费观看| 无遮挡黄片免费观看| 国产一区二区在线av高清观看| 在线天堂中文资源库| 女性生殖器流出的白浆| av在线天堂中文字幕| 亚洲av第一区精品v没综合| 高清黄色对白视频在线免费看| 国产精品久久久久久人妻精品电影| 亚洲黑人精品在线| 中国美女看黄片| 一边摸一边抽搐一进一小说| 久久性视频一级片| 国产极品粉嫩免费观看在线| 极品人妻少妇av视频| 国产区一区二久久| 精品久久蜜臀av无| 国产精品永久免费网站| 黄片播放在线免费| 波多野结衣巨乳人妻| 成人永久免费在线观看视频| 岛国在线观看网站| 国产视频一区二区在线看| 精品国产超薄肉色丝袜足j| 国产欧美日韩一区二区三区在线| av天堂在线播放| 久久狼人影院| 久久精品国产清高在天天线| 天堂√8在线中文| 淫秽高清视频在线观看| 亚洲国产精品999在线| 国产成人系列免费观看| 男女做爰动态图高潮gif福利片 | 免费女性裸体啪啪无遮挡网站| 狠狠狠狠99中文字幕| 丝袜人妻中文字幕| 操出白浆在线播放| 少妇的丰满在线观看| 美女扒开内裤让男人捅视频| 9191精品国产免费久久| 国产精品久久久久久亚洲av鲁大| 久久久国产精品麻豆| 香蕉国产在线看| 黄色丝袜av网址大全| 人人澡人人妻人| 亚洲午夜精品一区,二区,三区| 变态另类成人亚洲欧美熟女 | 大型av网站在线播放| 18禁裸乳无遮挡免费网站照片 | 视频区欧美日本亚洲| 亚洲熟妇中文字幕五十中出| 国产精品二区激情视频| 久久久久久大精品| 亚洲一码二码三码区别大吗| 夜夜爽天天搞| 18禁裸乳无遮挡免费网站照片 | 韩国精品一区二区三区| 91成人精品电影| av在线播放免费不卡| 免费在线观看完整版高清| 一二三四社区在线视频社区8| 国产精品九九99| av在线天堂中文字幕| 久久精品成人免费网站| 欧美成人一区二区免费高清观看 | 亚洲性夜色夜夜综合| 欧美在线一区亚洲| 久久香蕉激情| 中出人妻视频一区二区| 日本在线视频免费播放| 国产成人免费无遮挡视频| 老熟妇乱子伦视频在线观看| 丝袜在线中文字幕| 亚洲伊人色综图| 在线免费观看的www视频| 啦啦啦 在线观看视频| 色播亚洲综合网| 日本一区二区免费在线视频| 久久久久国产一级毛片高清牌| www.熟女人妻精品国产| 国产熟女xx| 欧美日韩黄片免| 99国产极品粉嫩在线观看| 精品国产一区二区三区四区第35| 国产午夜精品久久久久久| 国产高清有码在线观看视频 | 欧美丝袜亚洲另类 | 久久久国产欧美日韩av| 亚洲av成人av| cao死你这个sao货| 桃红色精品国产亚洲av| 国产精品秋霞免费鲁丝片| 9色porny在线观看| 在线观看舔阴道视频| 国产精品99久久99久久久不卡| 色哟哟哟哟哟哟| 国产主播在线观看一区二区| 90打野战视频偷拍视频| 国产精品久久视频播放| 久久久国产成人免费| 法律面前人人平等表现在哪些方面| 99国产精品99久久久久| 国产视频一区二区在线看| 18禁观看日本| 成人三级黄色视频| 淫秽高清视频在线观看| 午夜福利视频1000在线观看 | 亚洲成人久久性| 午夜福利一区二区在线看| 90打野战视频偷拍视频| 日本 欧美在线| 久久草成人影院| 色综合婷婷激情| 国产亚洲精品久久久久久毛片| 波多野结衣高清无吗| 19禁男女啪啪无遮挡网站| 丝袜人妻中文字幕| 女人被狂操c到高潮| 淫妇啪啪啪对白视频| 国产乱人伦免费视频| 亚洲国产精品999在线| 99国产精品免费福利视频| 亚洲精品中文字幕一二三四区| 热99re8久久精品国产| 国产精品一区二区免费欧美| 免费在线观看视频国产中文字幕亚洲| 亚洲中文字幕一区二区三区有码在线看 | 丰满人妻熟妇乱又伦精品不卡| 欧美乱码精品一区二区三区| 亚洲成人久久性| 他把我摸到了高潮在线观看| 国产精品精品国产色婷婷| 久久香蕉激情| 久久人人爽av亚洲精品天堂| 岛国在线观看网站| 精品电影一区二区在线| 亚洲成av片中文字幕在线观看| 一级,二级,三级黄色视频| 欧美丝袜亚洲另类 | 亚洲男人天堂网一区| 搡老妇女老女人老熟妇| 女警被强在线播放| 久久青草综合色| 一区二区三区激情视频| 一级毛片女人18水好多| 老司机在亚洲福利影院| 此物有八面人人有两片| 天堂动漫精品| 真人一进一出gif抽搐免费| 亚洲欧洲精品一区二区精品久久久| 91在线观看av| 午夜视频精品福利| 国产欧美日韩精品亚洲av| 日韩大码丰满熟妇| 久久草成人影院| 91在线观看av| 波多野结衣高清无吗| 亚洲熟妇熟女久久| 这个男人来自地球电影免费观看| 国产成人啪精品午夜网站| 日韩国内少妇激情av| 日本五十路高清| 亚洲熟妇熟女久久| 精品熟女少妇八av免费久了| 久久久久久久久免费视频了| 欧美激情久久久久久爽电影 | 在线观看日韩欧美| 高潮久久久久久久久久久不卡| 久久香蕉精品热| 免费少妇av软件| 叶爱在线成人免费视频播放| 在线av久久热| 欧美乱码精品一区二区三区| 国产精品综合久久久久久久免费 | 电影成人av| 亚洲第一欧美日韩一区二区三区| 不卡av一区二区三区| 免费看a级黄色片| 琪琪午夜伦伦电影理论片6080| 国产麻豆成人av免费视频| 黄色毛片三级朝国网站| 在线观看66精品国产| 一级a爱片免费观看的视频| 高清黄色对白视频在线免费看| 首页视频小说图片口味搜索| 看片在线看免费视频| 国产一区二区三区视频了| АⅤ资源中文在线天堂| 一级作爱视频免费观看| 国产精品久久电影中文字幕| 成人永久免费在线观看视频| 国产高清视频在线播放一区| 午夜影院日韩av| 亚洲成av片中文字幕在线观看| АⅤ资源中文在线天堂| 午夜精品久久久久久毛片777| 欧美久久黑人一区二区| 亚洲成人久久性| 国产精品日韩av在线免费观看 | 精品福利观看| 在线观看一区二区三区| 日韩av在线大香蕉| 校园春色视频在线观看| 国产免费男女视频| 亚洲第一av免费看| 亚洲五月天丁香| 丰满人妻熟妇乱又伦精品不卡| 亚洲一区中文字幕在线| 国产av一区二区精品久久| 日韩大码丰满熟妇| 国产av一区在线观看免费| 一级a爱视频在线免费观看| 国产精品一区二区三区四区久久 | 亚洲国产毛片av蜜桃av| 亚洲七黄色美女视频| 中文字幕色久视频| 亚洲一区中文字幕在线| 色综合亚洲欧美另类图片| 丝袜人妻中文字幕| 午夜久久久久精精品| 色哟哟哟哟哟哟| 亚洲中文av在线| 免费在线观看黄色视频的| 亚洲av片天天在线观看| 亚洲国产精品sss在线观看| 性色av乱码一区二区三区2| 夜夜夜夜夜久久久久| 手机成人av网站| 午夜免费观看网址| 丝袜人妻中文字幕| 免费少妇av软件| 久久久久久国产a免费观看| 18禁黄网站禁片午夜丰满| 亚洲av成人一区二区三| 欧美在线黄色| 久久天躁狠狠躁夜夜2o2o| 色av中文字幕| 国产亚洲av高清不卡| 十八禁网站免费在线| 亚洲人成伊人成综合网2020| 激情在线观看视频在线高清| 男人舔女人下体高潮全视频| 国产精品久久视频播放| 日日夜夜操网爽| 久久人人97超碰香蕉20202| 国产成人精品在线电影| 一卡2卡三卡四卡精品乱码亚洲| 精品少妇一区二区三区视频日本电影| 国产私拍福利视频在线观看| 波多野结衣一区麻豆| 精品国产国语对白av| 亚洲第一av免费看| 免费搜索国产男女视频| 人人妻人人澡欧美一区二区 | 亚洲熟妇熟女久久| 18禁黄网站禁片午夜丰满| 色婷婷久久久亚洲欧美| 免费av毛片视频| 国产欧美日韩一区二区精品| 亚洲自偷自拍图片 自拍| 在线永久观看黄色视频| 一级作爱视频免费观看| 在线国产一区二区在线| 久久精品aⅴ一区二区三区四区| 国产色视频综合| 可以在线观看毛片的网站| 精品久久久久久,| 亚洲五月天丁香| 夜夜躁狠狠躁天天躁| 亚洲伊人色综图| 在线观看午夜福利视频| 啦啦啦韩国在线观看视频| 婷婷精品国产亚洲av在线| 日本 欧美在线| 亚洲色图综合在线观看| 国产av在哪里看| 99riav亚洲国产免费| 男男h啪啪无遮挡| 丁香欧美五月| 欧美色视频一区免费| 一本大道久久a久久精品| 久久精品aⅴ一区二区三区四区| 中文字幕人妻熟女乱码| 久久精品亚洲熟妇少妇任你| 色综合亚洲欧美另类图片| 非洲黑人性xxxx精品又粗又长| 欧美日韩精品网址| 国产精品二区激情视频| 最新在线观看一区二区三区| 精品不卡国产一区二区三区| 色综合站精品国产| 熟女少妇亚洲综合色aaa.| 妹子高潮喷水视频| 高清黄色对白视频在线免费看| 我的亚洲天堂| 午夜影院日韩av| 桃红色精品国产亚洲av| 在线国产一区二区在线| 国产精品香港三级国产av潘金莲| 黄片大片在线免费观看| 久久久久久久久中文| 欧美在线黄色| 国产欧美日韩一区二区精品| 亚洲色图av天堂| АⅤ资源中文在线天堂| 欧美另类亚洲清纯唯美| 韩国精品一区二区三区| 中亚洲国语对白在线视频| 91九色精品人成在线观看| 在线观看免费视频网站a站| 国产精品美女特级片免费视频播放器 | 99国产综合亚洲精品| 国产av一区在线观看免费| 涩涩av久久男人的天堂| 午夜福利视频1000在线观看 | 一进一出好大好爽视频| 99香蕉大伊视频| 手机成人av网站| 天堂√8在线中文| 亚洲av电影不卡..在线观看| 日韩精品青青久久久久久| 国产精品 国内视频| 成人精品一区二区免费| 免费在线观看完整版高清| 国产亚洲欧美98| 亚洲电影在线观看av| 啪啪无遮挡十八禁网站| 日日爽夜夜爽网站| 午夜a级毛片| 首页视频小说图片口味搜索| 亚洲三区欧美一区| 日本a在线网址| 午夜日韩欧美国产| av欧美777| 97超级碰碰碰精品色视频在线观看| 色哟哟哟哟哟哟| 国产高清有码在线观看视频 | 欧美不卡视频在线免费观看 | 久久久久久久久免费视频了| 此物有八面人人有两片| 免费看十八禁软件| 757午夜福利合集在线观看| 天堂√8在线中文| 多毛熟女@视频| 中文字幕人成人乱码亚洲影| 午夜精品久久久久久毛片777| 黑人巨大精品欧美一区二区mp4| 免费看美女性在线毛片视频| 黄片播放在线免费| 在线永久观看黄色视频| 国产97色在线日韩免费| 动漫黄色视频在线观看| 日本 欧美在线| 一本大道久久a久久精品| 老汉色av国产亚洲站长工具| 久久国产精品人妻蜜桃| 巨乳人妻的诱惑在线观看| 免费在线观看黄色视频的| 国产一级毛片七仙女欲春2 | 国产亚洲欧美在线一区二区| 欧洲精品卡2卡3卡4卡5卡区| 亚洲欧美日韩无卡精品| 无人区码免费观看不卡| 亚洲成人免费电影在线观看| 中亚洲国语对白在线视频| 精品国产国语对白av| 日本精品一区二区三区蜜桃| 最新美女视频免费是黄的| 美女午夜性视频免费| 97超级碰碰碰精品色视频在线观看| 亚洲 国产 在线| 在线观看免费日韩欧美大片| 亚洲专区国产一区二区| 51午夜福利影视在线观看| 麻豆一二三区av精品| 美女高潮到喷水免费观看| 最新美女视频免费是黄的| 男人舔女人下体高潮全视频| 欧美一级毛片孕妇| 黑人巨大精品欧美一区二区蜜桃| 69精品国产乱码久久久| 日本黄色视频三级网站网址| cao死你这个sao货| 一边摸一边抽搐一进一出视频| 俄罗斯特黄特色一大片| 亚洲av成人一区二区三| av有码第一页|