• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Shock Initiation Characteristics of Explosives at Near-ambient Temperatures

    2016-05-08 13:19:08TANKaiyuanWENShanggangHANYong
    含能材料 2016年9期
    關鍵詞:潛藏毛毯情調

    TAN Kai-yuan, WEN Shang-gang, HAN Yong

    (1. Institute of Chemical Materials, CAEP, Mianyang 621999, China; 2. Robust Munitions Center, CAEP, Mianyang 621999, China)

    1 Introduction

    2 Experimental

    2.1 Experimental Set-up

    The experimental set-up used to study the shock initiation process in explosives at various near-ambient temperatures is shown in Fig.1. A planewave lens with additional booster explosive was used to create a high-pressure shock wave in the inert materials. With the proper choice of explosive and inert materials, the pressure of the shock wave entering the test sample can be tailored. In this study, the booster explosive was a HMX-based high explosive with detonation pressure of 36 GPa. The inert materials consisted of two layers; the lower layer was an aluminum plate, which was also a part of the sample heater or cooler. The upper layer was a Teflon plate, which worked as an adiabatic layer to keep the booster explosive from heating or cooling. The sample assembly consisted of several explosive discs, gauge packages containing manganin pressure gauges were embedded between individual discs[8-11].

    Fig.1 Experimental set-up used to study the shock initiation process in explosives at various initial temperatures near ambient

    1—detontor, 2—explosive planewave lens, 3—booster explosive,4—teflon plate, 5—aluminium plate, 6—heater or fan cooler,7—temperature controller, 8—themocouple, 9—manganin gauges

    An electric-stove heater was used to heat the bottom and top of the explosive plates. And a gap (1.0 mm) existed between sample side surface and the heater to avoid confinement when the samples expand with heat. A thermocouple was located at the center of samples to monitor inner temperature of the test explosives. Both the heater and thermocouple were connected to a temperature controller, which could control the heat rate and ensure the sample to be heated to a preset temperature. In this work, the heat rate was about 5 ℃·min-1. For the low

    temperature conditions, a fan cooler was designed separately to cool samples to the temperature below ambient. Similar to the heater, the fan cooler was also controlled by the temperature controller and cool the samples at the rate of about 3 ℃·min-1.

    2.2 Experimental Conditions

    To study the effects of near-ambient temperature changes on the shock initiation behavior of explosives, it is necessary to make sure that the input conditions for each kind of explosive are almost the same at different initial temperatures. Table 1 shows the details of experiment information for PBX-1 (a HMX/TATB composite explosive) and PBX-2 (a TATB based insensitive high explosive).

    It is clear from Table 1 that in this work the input systems of shock initiation experiments for each kind of explosive are highly uniform. The density at 20 ℃ of each material was floatation measured and had a high degree of uniformity. However, it is worth noting that the lower insert layer (Al plate), which is used to tailor the input pressure, has difference in thickness for the two explosives (a 35 mm thick Al plate for PBX-1 and a 23 mm thick Al plate for PBX-2 ). Besides, the shock initiation tests under four temperature conditions (5, 20, 40 ℃and 75 ℃) have carried out for PBX-1 but three temperature conditions (5, 40 ℃and 75 ℃) for PBX-2.

    Table 1 Information of shock initiation experiments at different temperatures for PBX-1 and PBX-2

    samplestemperature/℃densityofsample/g·cm-3boosterexplosivetheupperinertlayerthelowerinertlayerdepthofpressuregauges/mmPBX-1PBX-25204075540751.851.90Ф50mm×50mmPBX9505withdensityof1.86g·cm-3Ф50mm×10mmTeflonwithdensityof2.16g·cm-3Ф50mm×35mmAlplatewithdensityof2.70g·cm-3Ф50mm×23mmAlplatewithdensityof2.70g·cm-30,3,6,9

    3 Reactive Flow Modeling

    The ignition and growth reactive flow model of shock initiation and detonation has been used to understand many shock initiation and detonation studies of solid explosives and propellants in several 1D, 2D, and 3D codes.[12-13]The model uses two Jones-Wilkins-Lee (JWL) equations of state, one for the unreacted explosive and the other for the reaction products, in the temperature-dependent form:

    (1)

    (2)

    WherepEandpPare the pressure, GPa (the subscript E represent the unreacted explosive, and the subscript P represent the reaction products);Vis relative volume, cm3;T0is temperature of the unreacted explosive,K;TPis temperature of the reaction products,K;ωis the Grueneisen coefficient,CVis the average heat capacity, GPa·K-1;A,B,R1andR2are constants. The unreacted explosive equation of state is fitted to the available shock Hugoniot data, and the reaction product equation of state is fitted to cylinder test and other metal acceleration data.

    當上述兩種翻譯方法都不能滿足翻譯的要求時,就需要使用意譯翻譯法。這與我國傳統(tǒng)教學中只可意會,不可言傳的方法類似,將句子中潛藏的意思挖掘出來并加以翻譯,例如“a wet blanket”是指一個人沒有情調,而不是英文詞匯表示的原本的濕毛毯的意思。因此在我們學習過程中遇到翻譯不通的句子時,可嘗試使用意譯法。

    The reaction rate law for the conversion of explosive to products is

    0

    (3)

    WhereFis the fraction reacted,tis time in μs,ρis the current density in g·cm-3,ρ0is the initial density, g·cm-3;pis the pressure, GPa; andI,G1,G2,a,b,c,d,e,g,x,y,z,Figmax,FG1max, andFG2minare constants. This three-term reaction rate law represents the three stages of reaction generally observed during shock initiation and detonation of pressed solid explosives[14].Table 2 contains the modeling parameters for PBX-1 and PBX-2, and the Grueneisen parameters used for the inert materials are listed in Table 3.

    4 Results and Discussion

    4.1 Experimental Results

    The shock initiation pressure evolution for the two explosives were measured using embedded manganin gauges over the temperature range from 5 ℃ to 75 ℃. Fig.2 shows the measured pressure histories at the four gauge positions(0,3,6,9 mm) in PBX-1 under the conditions of 5, 20, 40 ℃ and 75 ℃ respectively.

    It can be found from Fig.2 that the input pressure (the pressure of shock wave entering the test samples), which is measured by the first manganin gauges at 0mm depth, is about 10 GPa for all the four temperature conditions. The gauge records show rapid pressure increases, indicating the rapid growth of shock wave. Fig.3 shows the peak pressure of gauges at different depth under the four temperature conditions, and Fig.4 shows the time for shock wave running from 0 mm to 9 mm under the four temperature conditions.

    Table 2 Ignition and growth modeling parameters for PBX-1 and PBX-2

    parametersunreactedJWLPBX-1PBX-2A/GPa9.32×1057.781×104B/GPa-5.35-4.8R114.1011.30R21.411.13w0.88670.8867CV/GPa·K-12.781×10-32.487×10-3T0/K298298parametersproductJWLPBX-1PBX-2A/GPa852.4654.67B/GPa18.027.1236R14.64.45R21.31.2w0.380.35CV/GPa·K-11.0×10-31.0×10-3E00.1020.069reactionratesparametersPBX-1PBX-2parametersPBX-1PBX-2a00.22b0.6670.667c0.2770.667d0.6670.111e0.3330.333g1.01.0x20.07.0y2.01.0z2.03.0I7.4×10114.0×106Figmax0.30.5FG1max0.50.5FG2min0.50G148.00.48G2400400

    Table 3 Grueneisen parameters for inert materials

    inertρ/g·cm-3shearmodul/GPaC/km·s-1S1S2S3γ0aTeflon2.1602.331.681.1232.98-5.80.590Al2.70327.65.241.4001.970.48

    a. 5 ℃b. 20 ℃

    c. 40 ℃d. 75 ℃

    Fig.2 Measured pressure histories at the four gauge positions in PBX-1 under different temperature conditions

    Fig.3 The peak pressure of gauges at different depth of PBX-1 under the four temperature conditions

    Fig.4 The time for shock wave running from 0mm to 9mm depth of PBX-1 under the four temperature conditions

    It can be found from Fig.3 that when shock wave (or detonation wave) running to 9 mm depth of the samples, no increase in peak pressure occurs for the conditions of 40 ℃ and 75 ℃, however, for 5 ℃ and 20 ℃, the peak pressure grows to about 34 GPa, which is close to the detonation pressure of PBX-1. These results indicate that when the PBX-1 is impacted by a shock wave of about 10 GPa at near-ambient temperatures, the run distance to detonation is between 6 mm and 9 mm for 5 ℃, about 6 mm for 20 ℃ and between 3 mm and 6 mm for 40 ℃ and 75 ℃. Besides, from Fig.4, it can be found that the time for shock wave running from 0 mm to 9 mm decreases as the initial temperature increases.

    All the results above clearly show that the near-ambient temperature changes affect shock initiation characteristics of the PBX-1: as temperature changing from 5 ℃ to 75 ℃, the pressure in shock front grows more rapidly, the run distance to detonation becomes shorter, and the PBX-1 becomes more sensitive to shock. For this trend, one reasonable cause may has been that the thermal expansion with heat led to a higher concentration of voids or other defects in the samples, these can increase the “hot spots” and consequently make the explosives easier to be initiated.

    Fig.5 shows the measured pressure histories at the four gauge positions in PBX-2 under the conditions of 5, 40 ℃ and 75 ℃ respectively.

    It can be seen from Fig.5 that the input pressure is about 15 GPa for all the three temperature conditions. Fig. 6 shows the peak pressure of gauges at different depth under the three temperature conditions, and Fig.7 shows the time for shock wave running from 0 mm to 9 mm under the three temperature conditions.

    a. 5 ℃b. 40 ℃

    c. 75 ℃

    Fig.5 Measured pressure histories at the four gauge positions in PBX-2 under different temperature conditions

    Fig.6 The peak pressure of gauges at different depth of PBX-2 under the three temperature conditions

    Fig.7 The time for shock wave running from 0 mm to 9 mm depth of PBX-2 under the three temperature conditions

    From Fig.6, it can be found that when shock wave (or detonation wave) running from 6 mm to 9mm depth of the PBX-2 samples, no increase in peak pressure occurs for the conditions of 40 ℃ and 75 ℃, however, for 5 ℃, the peak pressure grows to about 30 GPa, which is close to the detonation pressure of PBX-2. And from Fig. 7, it can be seen that the time for shock wave running from 0 mm to 9 mm depth of PBX-2 decreases as the initial temperature increases.

    These results also indicate that, similar to PBX-1, the near-ambient temperature changes affect shock initiation behavior of the insensitive explosive PBX-2: as temperature increasing from 5 ℃ to 75 ℃, the pressure in shock front grows more rapidly, the run distance to detonation becomes shorter, and the PBX-2 becomes more sensitive to shock.

    4.2 Comparison of Experimental and Calculated Results

    The ignition and growth simulation of the shock initiation of PBX-1 at 5, 20 ,40 ℃ and 75 ℃ are illustrated in Fig.8 , respectively. Fig.9 shows the comparison of experimental and calculated results for the shock initiation of PBX-2 at 5 , 40 ℃ and 75 ℃, respectively.

    From Fig.8 and Fig.9 it is quite evident that the ignition and growth model simulates experimental records quite well and can be reliably used to describe the shock ignition process involving high explosive PBX-1 and insensitive high explosive PBX-2 at temperature range from 5 ℃ to 75 ℃. While most of the modeling constants remain unchanged, only few of them require a change depending on the temperature. These constants are shown in Table 4.

    It can be found from Tables 4 that the unreacted JWL constantBdecreases with an increase of temperature, however the reaction rate model constantG1increases as temperature increases, indicating that both of PBX-1 and PBX-2 react more rapidly as temperature changing from 5 ℃ to 75 ℃. This is consistent with previously published shock initiation experiments and calculations on other explosives.[3]

    In contrast to the experiments, which provide limited data on shock pressure at only four positions of the samples, the numerical simulations provide more detailed information on the shock initiation processes. Fig.10 show the calculated shock pressure profiles at various depth of PBX-1 for 20 ℃ and 75 ℃ conditions respectively. From this figure the detailed growth processes of shock waves have been clearly presented, and it can be found from Fig.10 that the run distance to detonation is about 6 mm for 20 ℃ but 4.5 mm for 75 ℃.

    a. 5 ℃b. 30 ℃

    c. 40 ℃d. 75 ℃

    Fig.8 Experimental and calculated pressure profiles in the shock initiation of PBX-1 at different temperatures

    a. 5 ℃b. 40 ℃

    c. 75 ℃

    Fig.9 Experimental and calculated pressure profiles in the shock initiation of PBX-2 at different temperatures

    Table 4 Ignition and growth modeling parameter changes for PBX-1 at different temperatures

    explosivetemperature/℃unreactedJWLconstantB/GPareactionrateconstantG1/GPaγ·μs-15-5.22×1024.8×105PBX-120-5.35×1024.8×10540-5.38×1025.0×10575-5.40×1025.5×1055-4.69×1024.6×103PBX-240-4.80×1024.8×10375-4.85×1025.1×103

    a. 20 ℃

    b. 75 ℃

    Fig.10 Calculated shock pressure profiles in the shock initiation of PBX-1 at different temperatures

    Based on the ignition and growth modeling parameters calibrated by the experiments, it is possible to numerically simulate the shock initiation processes of samples which are impacted by various input pressures and obtain the “pop plot”. The relative shock sensitivity of PBX-1 and PBX-2 at different initial temperatures is illustrated on the “pop plot” shown in Fig.11. The “pop plot” represents a plot of run distance to detonation as a function of impact pressure in a log-log space. The closer the points are to the origin of the plot the more sensitive the explosive is to shock pressure. From Fig.11 a clear progression from least sensitive at 5 ℃ to most sensitive at 75 ℃ for both of PBX-1 and PBX-2 is observed. In fact, for the same input pressure, the run distances to detonation of PBX-1 and PBX-2 at 75 ℃ are about 30% and 20% shorter than that of PBX-1 and PBX-2 at 5 ℃ respectively, this indicates that the effects of near-ambient temperature changes on the safety of the explosives cannot be ignored.

    Fig.11 Pop-plot for PBX-1 and PBX-2 at different initial temperatures

    5 Conclusions

    (1) As temperature changing from 5 ℃ to 75 ℃, the shock initiation pressure in both of the two PBXs grew more rapidly, the run distance to detonation became shorter and the reaction rate model constantG1increased gradually, these indicated that the two explosives became more sensitive to shock as near-ambient temperature increasing.

    (2) The reasons for the samples at higher initial temperature being more sensitive to shock were: thermal expansion which led to lower density and the creation of more voids within the explosives and thus more hot spots to initiate reaction and faster growth of these hot spots into the surrounding particles and consequently made the explosives easier to be initiated.

    (3) The effects of near-ambient temperature changes on safety of explosives could not be ignored.

    [1] Mulford R N, Alcon R R. Shock initiation of PBX9502 at elevated temperatures[C]∥Shock Compression of Condensed Matter, AIP Conference Proc. Seattle,WA, 1995.

    [2] Urtiew P A, Tarver C M. Shock initiation of energetic materials at different initial temperatures[C]∥Combustion, Explosion, and Shock Waves: Proceedings of the Conference of the American Physical Society, 2005, 41(6): 766-776.

    [3] Chen Lang, Liu Qun, Wu junying. On shock initiation of heated explosives[J].ExplosionandShockWaves. 2013, 33(1): 21-27.

    [4] Urtiew P A, Tarver C M, Forbes J W , et al. Shock sensitivity of LX-04 at elevated temperatures[C]∥Shock Compression of Condensed Matter, AIP Conference Proc. New York 1997: 727-730.

    [5] Tarver C M, Forbes J W , Urtiew P A, et al. Shock sensitivity of LX-04 at 150 ℃[C]∥Shock Compression of Condensed Matter-1999, AIP Conference Proc. Snowbird, UT, 2000: 891-894.

    [6] Urtiew P A, Cook T M, Tarver C M, et al. Shock sensitivity of IHE at elevated temperatures[C]∥Tenth International Detonation Symposium, Boston, MA, 1993: 139-147.

    [7] Chi Jiachun, Liu Yusheng, Gong Yanqing, et al. Investigation of shock pressure evolution of initiation in IHE’s JB9014 at ambient and -54 ℃[J].ChineseJournalofHighPressurePhysics, 2001, 15(1): 39-47.

    [8] Urtiew P A, Forbes J W, Tarver C M, et al. Calibration of manganin pressure gauges at 250 ℃[C]∥ Shock Compression of Condensed Matter-1999, AIP Conference Proc. Snowbird, UT, 2000: 1019-1022.

    [9] Urtiew P A, Erickson L M, Hayes B, et al. Pressure and particle velocity measurements in solids subjected to dynamic loading[J].Combustion,ExplosionandShockWaves, 1986, 22: 597-614.

    [10] Urtiew P A, Tarver C M, Maienschein J L, et al. Effect of confinement and thermal cycling on the shock initiation of LX-17[J].CombustionandFlame, 1996, 105: 43-53.

    [11] Forbes J W, Tarver C M, Urtiew P A, et al. The effects of confinement and temperature on the shock sensitivity of solid explosives[C]∥11th International Detonation Symposium, Snowmass, CO, 1998: 147-152.

    [12] Tarver C M, Hallquist J O, Erickson L M. Modeling short pulse duration shock initiation of solid explosives[C]∥Proceedings, Symposium (International) on Detonation, 8th; Naval Surface Weapons Center NSWC MP86-194; Office of Naval Research, Washington, DC, 1985: 951-961.

    [13] Tarver C M, Forbes J W, Gaarcia F, et al. Manganin gauge and reactive flow modeling study of shock initiation of PBX9501[C]∥Shock Compression of Condensed Matter-1999, AIP Conference Proc. Atlanta, GA, 2000: 1043-1046.

    [14]Tarver C M, Breithaupt R D, Kury J W, Current experimental and theoretical understanding of detonation waves in heterogeneous solid explosives[C]∥International Symposium on Pyrotechnics and Explosives, Beijing, China, October 12-15, 1987: 692.

    猜你喜歡
    潛藏毛毯情調
    溫暖奇妙的毛毯
    我的毛毯
    熱門還是熱鬧?4月加州鱸見漲,但下半年行情潛藏危機
    當代水產(2019年5期)2019-07-25 07:50:20
    Mother's hands
    影 子
    中國詩歌(2018年5期)2018-11-14 20:52:30
    別有情趣的夏天
    時尚北京(2017年6期)2017-06-10 19:29:01
    梅香奶奶的毛毯
    學生天地(2016年33期)2016-04-16 05:16:33
    長尾狐的騙局
    絲綢情調
    Coco薇(2015年12期)2015-12-10 02:45:28
    日韩人妻精品一区2区三区| 香蕉丝袜av| 深夜精品福利| 欧美午夜高清在线| 国产午夜精品久久久久久| 日韩三级视频一区二区三区| 亚洲一卡2卡3卡4卡5卡精品中文| 色综合欧美亚洲国产小说| 91精品国产国语对白视频| 激情视频va一区二区三区| 午夜福利乱码中文字幕| 色精品久久人妻99蜜桃| 欧洲精品卡2卡3卡4卡5卡区| 757午夜福利合集在线观看| 免费黄频网站在线观看国产| 日韩熟女老妇一区二区性免费视频| 亚洲av日韩在线播放| 热99re8久久精品国产| 午夜成年电影在线免费观看| 一二三四在线观看免费中文在| 国产在线观看jvid| 大陆偷拍与自拍| 精品熟女少妇八av免费久了| 亚洲av片天天在线观看| 亚洲专区中文字幕在线| 精品久久久久久久毛片微露脸| 日本一区二区免费在线视频| xxxhd国产人妻xxx| 丁香六月欧美| 久久久久国内视频| 日日夜夜操网爽| 麻豆国产av国片精品| a在线观看视频网站| 久久精品91无色码中文字幕| 久久久久久久精品吃奶| 亚洲aⅴ乱码一区二区在线播放 | 精品福利观看| 亚洲精品一卡2卡三卡4卡5卡| 国产一区二区三区视频了| 自线自在国产av| 国产主播在线观看一区二区| 啦啦啦 在线观看视频| 深夜精品福利| 久久国产亚洲av麻豆专区| 最近最新中文字幕大全电影3 | 99在线人妻在线中文字幕 | 国精品久久久久久国模美| 国产成人精品久久二区二区免费| 黄色成人免费大全| 十八禁高潮呻吟视频| 91麻豆精品激情在线观看国产 | 国产一区二区三区在线臀色熟女 | 亚洲精品自拍成人| 国产熟女午夜一区二区三区| 两人在一起打扑克的视频| 成年女人毛片免费观看观看9 | 午夜两性在线视频| 嫩草影视91久久| 国产xxxxx性猛交| 亚洲成av片中文字幕在线观看| 亚洲性夜色夜夜综合| 精品福利永久在线观看| 亚洲一卡2卡3卡4卡5卡精品中文| 可以免费在线观看a视频的电影网站| xxx96com| 黄色毛片三级朝国网站| 欧美性长视频在线观看| 在线观看免费视频日本深夜| 国产精品久久久久久精品古装| 亚洲全国av大片| 精品人妻1区二区| 午夜福利乱码中文字幕| 亚洲av成人av| 午夜福利在线免费观看网站| 免费女性裸体啪啪无遮挡网站| 一边摸一边抽搐一进一小说 | 日韩中文字幕欧美一区二区| 999久久久国产精品视频| 亚洲精品在线美女| 女人爽到高潮嗷嗷叫在线视频| 91大片在线观看| 免费观看人在逋| 亚洲七黄色美女视频| 欧美乱妇无乱码| 亚洲精品自拍成人| 亚洲一区高清亚洲精品| 嫁个100分男人电影在线观看| 欧美日韩成人在线一区二区| 国产区一区二久久| 国产精品欧美亚洲77777| 热re99久久国产66热| 在线观看舔阴道视频| 麻豆成人av在线观看| 亚洲伊人色综图| 国产真人三级小视频在线观看| 亚洲精品美女久久久久99蜜臀| 在线免费观看的www视频| 欧美精品高潮呻吟av久久| 91成人精品电影| 久久久久久久国产电影| 亚洲精品在线观看二区| 亚洲av成人不卡在线观看播放网| 美女午夜性视频免费| 一a级毛片在线观看| 午夜福利一区二区在线看| 久久久精品免费免费高清| 国产主播在线观看一区二区| 亚洲视频免费观看视频| 一进一出好大好爽视频| 精品一品国产午夜福利视频| 91精品三级在线观看| 欧美日韩中文字幕国产精品一区二区三区 | 日韩免费av在线播放| 国产亚洲av高清不卡| 伊人久久大香线蕉亚洲五| 日韩制服丝袜自拍偷拍| 久久久精品免费免费高清| 国产欧美日韩一区二区三| 亚洲精品一二三| 极品教师在线免费播放| 国产伦人伦偷精品视频| 亚洲中文av在线| 叶爱在线成人免费视频播放| 狠狠婷婷综合久久久久久88av| e午夜精品久久久久久久| 一级片免费观看大全| 91成年电影在线观看| 成人免费观看视频高清| 亚洲av电影在线进入| 久久久久国内视频| 午夜老司机福利片| 最近最新中文字幕大全电影3 | 亚洲美女黄片视频| 久热爱精品视频在线9| 女同久久另类99精品国产91| 亚洲五月色婷婷综合| 亚洲中文字幕日韩| 12—13女人毛片做爰片一| 中文字幕制服av| 黑人巨大精品欧美一区二区蜜桃| 婷婷精品国产亚洲av在线 | 免费在线观看黄色视频的| 久久这里只有精品19| av片东京热男人的天堂| 国产精品免费大片| 国产高清国产精品国产三级| 在线观看免费高清a一片| 超碰成人久久| 啦啦啦视频在线资源免费观看| 色婷婷久久久亚洲欧美| 国产精品乱码一区二三区的特点 | 日韩熟女老妇一区二区性免费视频| 黄色视频,在线免费观看| 麻豆av在线久日| 这个男人来自地球电影免费观看| a级毛片在线看网站| 日韩有码中文字幕| 欧美乱妇无乱码| 老司机福利观看| 中出人妻视频一区二区| av国产精品久久久久影院| 美国免费a级毛片| 国产精品久久久久久精品古装| 成年动漫av网址| 美女高潮喷水抽搐中文字幕| 国产三级黄色录像| cao死你这个sao货| 18禁裸乳无遮挡免费网站照片 | 亚洲久久久国产精品| 叶爱在线成人免费视频播放| 最近最新免费中文字幕在线| 高清毛片免费观看视频网站 | 日韩 欧美 亚洲 中文字幕| 在线观看免费视频网站a站| 亚洲成人国产一区在线观看| 久久国产精品大桥未久av| 欧美在线一区亚洲| 中文欧美无线码| 一进一出抽搐动态| 91麻豆av在线| 人人澡人人妻人| 色综合婷婷激情| 欧美性长视频在线观看| 亚洲一区中文字幕在线| 建设人人有责人人尽责人人享有的| 久久婷婷成人综合色麻豆| 日韩制服丝袜自拍偷拍| 国产高清激情床上av| 老汉色av国产亚洲站长工具| 精品久久久久久久毛片微露脸| 久久久久久久久久久久大奶| 国产国语露脸激情在线看| 国产成人精品在线电影| 狠狠婷婷综合久久久久久88av| 欧美日韩亚洲综合一区二区三区_| 高清黄色对白视频在线免费看| 国产成人精品无人区| 日本a在线网址| 色精品久久人妻99蜜桃| 国产精品偷伦视频观看了| 99热网站在线观看| 国产成人av激情在线播放| 精品卡一卡二卡四卡免费| 美女福利国产在线| 久久青草综合色| 中文字幕高清在线视频| 免费在线观看视频国产中文字幕亚洲| 在线十欧美十亚洲十日本专区| 天堂俺去俺来也www色官网| 999久久久国产精品视频| 啦啦啦免费观看视频1| 日本精品一区二区三区蜜桃| 色精品久久人妻99蜜桃| 国产av又大| 性少妇av在线| 777米奇影视久久| 黄色怎么调成土黄色| 免费一级毛片在线播放高清视频 | 免费在线观看完整版高清| 一级,二级,三级黄色视频| 午夜老司机福利片| 可以免费在线观看a视频的电影网站| 国产精品一区二区免费欧美| 看黄色毛片网站| 女同久久另类99精品国产91| 亚洲国产毛片av蜜桃av| 人人妻人人爽人人添夜夜欢视频| 免费人成视频x8x8入口观看| 丝袜在线中文字幕| avwww免费| 国产亚洲欧美在线一区二区| 母亲3免费完整高清在线观看| 免费在线观看黄色视频的| 亚洲精品乱久久久久久| 久久人妻av系列| 看片在线看免费视频| 午夜两性在线视频| 一级a爱片免费观看的视频| 久久国产精品大桥未久av| 日本a在线网址| 午夜精品久久久久久毛片777| 亚洲欧美激情综合另类| 欧美成人免费av一区二区三区 | 亚洲一区中文字幕在线| 久久久久久人人人人人| av欧美777| 成在线人永久免费视频| 18在线观看网站| 性少妇av在线| 免费久久久久久久精品成人欧美视频| 少妇猛男粗大的猛烈进出视频| www日本在线高清视频| 国产视频一区二区在线看| 久久狼人影院| 色94色欧美一区二区| a级毛片在线看网站| 国产精品秋霞免费鲁丝片| 国产精品欧美亚洲77777| 国产成人免费无遮挡视频| netflix在线观看网站| 亚洲色图av天堂| 日本黄色视频三级网站网址 | 日韩人妻精品一区2区三区| 亚洲五月天丁香| 国产成人免费观看mmmm| 国产在线精品亚洲第一网站| 欧美性长视频在线观看| 午夜两性在线视频| 岛国在线观看网站| 午夜视频精品福利| 欧美老熟妇乱子伦牲交| 久久人妻福利社区极品人妻图片| 国产成人精品久久二区二区91| 人人妻人人澡人人看| 国产97色在线日韩免费| 啦啦啦视频在线资源免费观看| 一本综合久久免费| 日韩欧美国产一区二区入口| 一二三四社区在线视频社区8| 性色av乱码一区二区三区2| 久久香蕉激情| 亚洲情色 制服丝袜| 热re99久久国产66热| 国产精品一区二区精品视频观看| 一a级毛片在线观看| av有码第一页| 亚洲黑人精品在线| 免费观看a级毛片全部| 淫妇啪啪啪对白视频| 亚洲一区中文字幕在线| 美女视频免费永久观看网站| 一a级毛片在线观看| 叶爱在线成人免费视频播放| 一区二区三区精品91| 制服人妻中文乱码| 国产精品98久久久久久宅男小说| 亚洲中文字幕日韩| 99热只有精品国产| 男女之事视频高清在线观看| 18禁裸乳无遮挡动漫免费视频| 人妻丰满熟妇av一区二区三区 | 建设人人有责人人尽责人人享有的| 他把我摸到了高潮在线观看| 国产亚洲精品久久久久5区| 久久性视频一级片| 多毛熟女@视频| 亚洲三区欧美一区| 亚洲熟妇中文字幕五十中出 | 一个人免费在线观看的高清视频| 超色免费av| 欧美中文综合在线视频| 91九色精品人成在线观看| 成人特级黄色片久久久久久久| 搡老岳熟女国产| 亚洲av日韩精品久久久久久密| 如日韩欧美国产精品一区二区三区| 国产精品一区二区在线不卡| 成年版毛片免费区| 国产亚洲精品第一综合不卡| 黑丝袜美女国产一区| 欧美精品一区二区免费开放| av一本久久久久| 欧美中文综合在线视频| 国产亚洲精品一区二区www | 大型av网站在线播放| 午夜老司机福利片| 看黄色毛片网站| 黄色 视频免费看| 国产成人精品在线电影| 老司机午夜十八禁免费视频| 亚洲国产欧美网| 国产深夜福利视频在线观看| 五月开心婷婷网| 欧美成狂野欧美在线观看| 免费久久久久久久精品成人欧美视频| 一本大道久久a久久精品| 波多野结衣av一区二区av| 天天操日日干夜夜撸| 午夜成年电影在线免费观看| 亚洲专区字幕在线| 国产成人系列免费观看| 国产男女超爽视频在线观看| 热99re8久久精品国产| 久久精品国产综合久久久| 成人av一区二区三区在线看| 中文字幕人妻丝袜一区二区| 一进一出抽搐动态| 女性被躁到高潮视频| 久久久精品免费免费高清| 国产黄色免费在线视频| 免费久久久久久久精品成人欧美视频| 两性午夜刺激爽爽歪歪视频在线观看 | 久热这里只有精品99| 天天操日日干夜夜撸| 在线av久久热| 免费一级毛片在线播放高清视频 | 久9热在线精品视频| 50天的宝宝边吃奶边哭怎么回事| 精品一区二区三区视频在线观看免费 | 亚洲成国产人片在线观看| 亚洲一区中文字幕在线| 亚洲男人天堂网一区| 在线看a的网站| av天堂久久9| 老司机靠b影院| 19禁男女啪啪无遮挡网站| 欧美乱妇无乱码| 精品久久久精品久久久| 男人舔女人的私密视频| 女人久久www免费人成看片| 国产97色在线日韩免费| 亚洲国产精品合色在线| 国产精品久久久人人做人人爽| 亚洲五月天丁香| 国产精品 欧美亚洲| 一区二区三区激情视频| 精品久久久久久久毛片微露脸| 大片电影免费在线观看免费| 老熟妇乱子伦视频在线观看| 国产主播在线观看一区二区| 久久精品亚洲av国产电影网| 免费观看精品视频网站| 精品一区二区三区视频在线观看免费 | 国产精品电影一区二区三区 | 亚洲一卡2卡3卡4卡5卡精品中文| 午夜日韩欧美国产| 日韩制服丝袜自拍偷拍| 久久中文字幕一级| 欧美中文综合在线视频| 热re99久久精品国产66热6| 美女高潮喷水抽搐中文字幕| 国产精品美女特级片免费视频播放器 | 91国产中文字幕| 热re99久久国产66热| 99re在线观看精品视频| 老鸭窝网址在线观看| 久久ye,这里只有精品| 人人妻,人人澡人人爽秒播| 免费人成视频x8x8入口观看| 国产成人av激情在线播放| 欧美av亚洲av综合av国产av| 国产精品 国内视频| 日日夜夜操网爽| av视频免费观看在线观看| 久久久久久久午夜电影 | 欧美日韩成人在线一区二区| 国产成人av激情在线播放| 色在线成人网| 黄片大片在线免费观看| 美国免费a级毛片| 热99久久久久精品小说推荐| 一进一出抽搐动态| 亚洲自偷自拍图片 自拍| 精品视频人人做人人爽| 老鸭窝网址在线观看| 日韩欧美在线二视频 | 国产成人精品在线电影| 精品熟女少妇八av免费久了| 久久精品国产综合久久久| 久久精品国产清高在天天线| 人人妻人人澡人人看| 97人妻天天添夜夜摸| 欧美午夜高清在线| 久久九九热精品免费| av不卡在线播放| 日韩欧美一区二区三区在线观看 | 制服人妻中文乱码| 日本五十路高清| 麻豆av在线久日| 99国产精品99久久久久| 成年动漫av网址| 夜夜爽天天搞| 日韩一卡2卡3卡4卡2021年| 岛国在线观看网站| 在线天堂中文资源库| 欧美另类亚洲清纯唯美| 女人被躁到高潮嗷嗷叫费观| av网站免费在线观看视频| 成人18禁高潮啪啪吃奶动态图| 免费少妇av软件| 麻豆国产av国片精品| 天天躁日日躁夜夜躁夜夜| 午夜免费观看网址| 亚洲欧美激情综合另类| 在线观看免费视频日本深夜| 99精国产麻豆久久婷婷| 亚洲欧洲精品一区二区精品久久久| 一进一出抽搐gif免费好疼 | 人人妻人人澡人人爽人人夜夜| 高清av免费在线| 亚洲专区中文字幕在线| 69av精品久久久久久| 久久国产亚洲av麻豆专区| 国产欧美日韩一区二区三| 老司机午夜十八禁免费视频| 亚洲中文字幕日韩| 亚洲欧美一区二区三区黑人| 人人妻人人添人人爽欧美一区卜| 国产xxxxx性猛交| 国产麻豆69| 老熟妇乱子伦视频在线观看| 国产免费现黄频在线看| 国内久久婷婷六月综合欲色啪| 乱人伦中国视频| 午夜福利在线观看吧| 王馨瑶露胸无遮挡在线观看| 另类亚洲欧美激情| 欧美黄色淫秽网站| 999精品在线视频| 久久天躁狠狠躁夜夜2o2o| 免费在线观看视频国产中文字幕亚洲| 天堂√8在线中文| 国内久久婷婷六月综合欲色啪| 国产在线一区二区三区精| 国产精品偷伦视频观看了| 亚洲中文日韩欧美视频| 深夜精品福利| 午夜久久久在线观看| 国产精品综合久久久久久久免费 | 午夜久久久在线观看| 精品人妻1区二区| 欧美精品一区二区免费开放| 757午夜福利合集在线观看| 国产一区二区三区在线臀色熟女 | 正在播放国产对白刺激| 久久精品国产a三级三级三级| 国产黄色免费在线视频| 国产成+人综合+亚洲专区| 亚洲精品一二三| 国产区一区二久久| 国产欧美日韩一区二区三区在线| 免费人成视频x8x8入口观看| 韩国av一区二区三区四区| 久久久水蜜桃国产精品网| 久久久久国产一级毛片高清牌| 老熟妇仑乱视频hdxx| 亚洲五月天丁香| 在线十欧美十亚洲十日本专区| 久久精品人人爽人人爽视色| 免费av中文字幕在线| 国产野战对白在线观看| 一级作爱视频免费观看| 亚洲精品一卡2卡三卡4卡5卡| 国内毛片毛片毛片毛片毛片| 国产高清videossex| 在线视频色国产色| 性少妇av在线| 身体一侧抽搐| 国产成人精品无人区| 亚洲午夜理论影院| 国产欧美亚洲国产| 精品第一国产精品| avwww免费| 欧美一级毛片孕妇| 午夜激情av网站| 51午夜福利影视在线观看| 久久国产亚洲av麻豆专区| a级片在线免费高清观看视频| 国产成人欧美在线观看 | 欧美精品一区二区免费开放| 九色亚洲精品在线播放| 亚洲黑人精品在线| 精品一区二区三区av网在线观看| 日韩欧美一区二区三区在线观看 | 下体分泌物呈黄色| 久久中文字幕一级| 一级毛片高清免费大全| 在线天堂中文资源库| 一级毛片女人18水好多| 亚洲第一青青草原| av一本久久久久| 99re在线观看精品视频| 欧美丝袜亚洲另类 | 欧美日韩一级在线毛片| 久久国产精品影院| 丝袜美腿诱惑在线| 在线观看免费高清a一片| 亚洲精品美女久久久久99蜜臀| 国产日韩一区二区三区精品不卡| 久久国产精品男人的天堂亚洲| 18禁裸乳无遮挡动漫免费视频| 精品人妻1区二区| 亚洲欧美激情综合另类| 女人被躁到高潮嗷嗷叫费观| 丝袜美腿诱惑在线| 天天躁日日躁夜夜躁夜夜| 国产免费现黄频在线看| 欧美最黄视频在线播放免费 | 国产乱人伦免费视频| 亚洲av熟女| 欧美不卡视频在线免费观看 | 一区二区三区国产精品乱码| 捣出白浆h1v1| 一级毛片女人18水好多| 99国产精品免费福利视频| 久久人人爽av亚洲精品天堂| 男女床上黄色一级片免费看| 国产高清videossex| 80岁老熟妇乱子伦牲交| 欧美另类亚洲清纯唯美| avwww免费| 多毛熟女@视频| 美女午夜性视频免费| 老司机午夜福利在线观看视频| videos熟女内射| 亚洲熟女精品中文字幕| 日本黄色视频三级网站网址 | 不卡av一区二区三区| 久久人妻福利社区极品人妻图片| netflix在线观看网站| 一个人免费在线观看的高清视频| 看片在线看免费视频| 国产一区二区激情短视频| 一级毛片高清免费大全| 国产精品 欧美亚洲| 国产真人三级小视频在线观看| 色综合欧美亚洲国产小说| 99re在线观看精品视频| 一级片'在线观看视频| 搡老岳熟女国产| 大码成人一级视频| 亚洲国产看品久久| 精品午夜福利视频在线观看一区| 搡老岳熟女国产| 老司机福利观看| 精品视频人人做人人爽| 成年女人毛片免费观看观看9 | 男女之事视频高清在线观看| 欧美人与性动交α欧美软件| 51午夜福利影视在线观看| 国产精品98久久久久久宅男小说| 国产免费现黄频在线看| 亚洲专区字幕在线| 免费观看人在逋| 美女国产高潮福利片在线看| 色精品久久人妻99蜜桃| 建设人人有责人人尽责人人享有的| 国产色视频综合| 18禁观看日本| 午夜精品久久久久久毛片777| 午夜两性在线视频| 久久午夜亚洲精品久久| 999久久久精品免费观看国产| 久9热在线精品视频| 伊人久久大香线蕉亚洲五| 精品一区二区三区四区五区乱码| 波多野结衣av一区二区av| 法律面前人人平等表现在哪些方面| av视频免费观看在线观看| 国产精品欧美亚洲77777| 黄片小视频在线播放| 啦啦啦视频在线资源免费观看| 女性生殖器流出的白浆| 国产精品久久久久成人av| 老鸭窝网址在线观看|