• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    The Initiation Parameter of Detonation Wave Aiming Warhead

    2016-05-08 13:19:11LIYuanLIYanhuaLIUChenWENYuquan
    含能材料 2016年9期

    LI Yuan, LI Yan-hua, LIU Chen, WEN Yu-quan

    (State Key Laboratory of Explosion Science and Technology, Beijing Institute of Technology, Beijing 100081, China)

    1 Introduction

    Asymmetrical initiation is an important way to enhance the warhead lethality, and it makes sense to study the layout parameters of the initiation. Resnyansky A. et al[1]conducted simulation and experiment study about the influences of the detonation travel length and initiator number on the fragments velocity. Influence of different initiation ways on the enhancements of fragment density, velocity and kinetic energy were numerically modeled by QU Ming et al[2], and the involved initiation types include asymmetrical one initiation point, asymmetrical one initiation line, asymmetrical two initiation lines with central angle of 45° and 90°, and asymmetrical three initiation lines with each central angle of 45°. ZHANG Xin-wei et al[3]tested the rod velocity and density enhancement in the aiming direction under asymmetrical two lines initiation, and the different central angles between the two initiation points were studied. ZHU Xu-qiang et al[4]introduced a practical formula for calculation of the fragment velocity under asymmetrical initiation. Before a widely acceptable formula for calculating fragment velocity is appeared, the above mentioned studies are necessary. But these studies are not thorough enough and the rules behand the fragment velocity enhancements are not toughed. Limited by the experiment condition, there are rare reports on the systematical research of initiation layouts and initiation parameters of the detonation wave aiming warhead. Therefore in this paper, a systematical study regarding the different asymmetrical initiation types, different initiator number and different central angles between initiation lines were carried out using the numerical modeling method.

    The numerical model was first verified by the experiment data and then used to study the different initiation types and parameters affecting the fragment′s damage capability. The fragments velocities under different initiation types were obtained, the velocity enhancements in the aiming direction were compared and the optimal initiation types were selected. The rules underlying the enhancement results were also investigated. The study results could be a good reference to the initiation style selection of the detonation aiming warhead.

    2 Warhead Experiment

    The warhead structure and test data are referred to Ref.[5]. The warhead structure is cylindrical, as shown in Fig.1. It is composed of HMX main charge, 1020 steel cubic fragment, 6061-T4 aluminum shell, and 2024-T3 end plate. The charge diameter is 126 mm, ratio of length to diameter of the charge is 2, and the cubic fragment size is 8 mm.

    As shown in the Fig.1, the warhead is one point initiated at the end face centre in the experiment. During the experiment, shown in Fig.2, the warhead is placed behind the shield panel which has an aperture, which allows only one column fragments passing throught. Two X flash cameras are arranged on the other side of the shield panel to record the fragments position at distinct time. Then the fragments velocity and ejecting angle could be determined by the processing of X films.

    Fig.1 Warhead structure

    Fig.2 Experiment layout

    3 Numerical Modeling

    The numerical modeling of fragmentation warhead has been researched a lot, involving different warhead styles like focusing fragmentation warhead, multi-layer fragmentation warhead, rod warhead etc. Because the physical detonation process includes the detonation product′s extreme expansion and its complicated interacting with the fragments, ALE multi-material Lagrange Euler coupling algorithm is usually selected in the numerical modeling[6-8].

    3.1 Model Setup

    TrueGrid software[9]is chosen to set up the element model of the warhead, as shown in Fig.3. For the convenience of the later research of different asymmetrical initiations, the whole element model is used. The explosive and the air domain are meshed as Euler grid, and the shell, fragment, and endplates are meshed as Lagrange grid. In order to guarantee the right interaction of Lagrange and Euler mesh and seek a balance between the computer time and simulating accuracy, different element sizes are tested and the eventually Euler and Lagrange element size is selected to be 0.25 mm. The whole model contains 1842216 elements.

    The keyword CONSTRAIND_LAGRANGE_IN_SOLID is used to define the interaction between the Euler and Lagrange mesh. The non-reflection boundary condition is attached to the air boundary, and the bulk viscosity control and hourglass control are used. The explosive is modeled by MAT_HIGH_EXPLOSIVE_BURN and JWL equation of state. The air is described by MAT_NULL and LINEAR equation of state. The shell and end plates are modeled by MAT_PLASTIC_KINEMATIC[10]. Study shows that the fragment shape changes not relatively during the detonation propellant, especially in the case of existing inner shell[11], therefore, for the sake of saving computing time and convenience of post-processing, the fragments are modeled by rigid material model.

    Fig.3 Element model

    3.2 Modeling Results and Verification

    Fig.4 is fragments dispersion pattern at 200 μs after initiated at the end face center. It can be seen that, under the initiation of end face center, the fragments fly uniformly around the warhead axis, and the pattern shaped like a barrel. Therefore, to study the dispersion and damage parameters of the warhead fragments, only one column fragments are actually needed to consider.

    a. top view b.right view

    Fig.4 Fragments dispersion

    The results ASCII files MATSUM and RBDOUTA are outputted. From the output files, a code is developed by C program language to extract the message of every fragment, including fragments velocity and dispersion angle. The fragment message at 100 μs is obtained by the code, and drawn in Fig.5 and Fig.6. There are also the corresponding test data from the experiment[4].

    It can be seen from Fig.5 and Fig.6 that there is a good agreement between the numerical model and the experiment result. For the fragments velocity, near the initiation point, the modeling result is slightly lower than the test result, but slightly larger than the test result opposite the initiation point. The average value of the relative error of the fragments velocity is about 3.89%. The coincidence of the simulation result of the fragments dispersion angle with the test data is better than the fragments velocity.

    The error of 3.89% may come from material model parameters errors, computing model error or the experimental test errors and so on. These errors can be reduced by refining the element size or using better material model, but taking all these errors into account, the error of 3.89% is very acceptable for engineering application. As a result, the numerical modeling algorithm, material models and parameters used in this simulation are regarded to be rational, and can be used as a basis for the following study.

    Fig.5 Fragments velocity

    Fig.6 Fragments dispersion angle

    4 Asymmetrical One Line Initiations

    With other parameters of the warhead kept the same, the initiation way is changed. As shown in Fig.7, asymmetrical one line initiation is used. In order to study the effect of initiator number on the warhead, the 2 initiation points, 4 initiation points and 8 initiation points are adopted.

    The typical fragments dispersion of asymmetrical one line initiation at 200 μs is shown in Fig.8. The fragments distribute no longer circumferentially uniform, but look like an ellipsoid. The fragments velocity in the aiming direction (the direction opposite the initiation points) is obviously enhanced.

    Fig.7 Initiator layout of asymmetrical one line initiation

    a. top view b.right view

    Fig.8 Typical fragments dispersion of asymmetrical one line initiation

    As pictured in Fig.9, the fragments round at the midpoint of the warhead length are considered. They are portion that affected least by the end rarefaction wave. Because they are plane symmetrical, only half of the fragments′ velocities are extracted and plotted in Fig.10.

    Fig.9 Fragments round

    Fig.10 Fragments velocity

    In the Fig.10, the fragment velocities versus azimuth angles under different initiation points are drawn. When the warhead is center initiated, the fragments velocity is almost equal and its average value is 1963.42 m·s-1. When asymmetrical one line initiated, the fragments velocity is biggest in the aiming direction (azimuth angle is 0 degree). As the azimuth angle getting bigger, the fragments velocity decreases and equals to the velocity of the center initiation at 90° angle, then continues decreasing until the azimuth angle reaches about 120°. Finally the fragments velocity bounced back a little in the azimuth angle of 120° to 180°. The asymmetrical one line initiation increases the fragments velocity of the aiming direction, and lowers the fragments velocity of the initiation site.

    The velocity enhancements in the aiming direction under the asymmetrical one line initiation of 2 points, 4 points and 8 points, relative to the warhead centre initiation, are 27.71%, 29.98% and 30.51% respectively. Compared to the asymmetrical one line 2 points initiation, the 4 points initiation increases the fragments velocity, obviously in the aiming direction. The influences of the asymmetrical one line 4 points and 8 points on the fragments velocity are almost equal. Taking together the velocity enhancement and the initiator cost, the asymmetrical 4 points initiation may be a better choice.

    According to Resnyansky′s research[1], why the asymmetrical one line initiation could increase the fragment velocity in the aiming direction is mainly because that the asymmetrical initiation elongates the distance between the initiation points and the fragments, and thus imposes more momentum on the fragments in the aiming direction.

    5 Asymmetrical Two Lines Initiation

    As a step further study of influence of the detonation wave collision on the fragments velocity, the warhead detonation initiated by asymmetrical two lines is numerical simulated. The initiation layout is shown in Fig.11, and each initiation line contains 4 initiation points.

    The central angle between the two initiation lines isβ, which is assigned different value, as 30°, 45°, 60° and 90°. These angles correspond to aiming warheads with different aim sections, namely with different aiming resolutions.

    The fragments dispersions of asymmetrical two lines initiations at 200 μs are shown in Fig.12. Relative to the asymmetrical one line initiation, the fragment velocity in the aiming direction of the asymmetrical two lines initiation is much higher, leading to the fragment cloud becoming more flat.

    The velocities of the mid-plane fragments are similarly extracted and plotted in Fig.13. For the sake of comparison, the fragment velocity distribution of asymmetrical one line 4 points initiation is also drawn in Fig.13.

    From Fig.13, the fragment velocity in the aiming direction under asymmetrical two lines initiation is higher than the asymmetrical one line initiation, which is caused by the detonation wave collision. And there are two key points need to pay attention to: in the azimuth angles of about 30° to 70°, fragment velocity decreases as the central angle of the two initiation lines getting bigger; in the azimuth angles of about 90° to 160°, fragment velocity increases as the central angle increases. The fragment velocity enhancement in the aiming direction relative to the warhead center initiation is calculated and listed in Table 1.

    Fig.11 Layout of two lines initiation

    a. 30° b.45°

    c. 60° d.90°

    Fig.12 Fragments dispersion of asymmetrical two lines initiation with different central angles (β)

    Fig.13 Fragment velocity distribution along the azimuth angle

    Table 1 Aiming fragment velocity enhancement of different initiation ways

    asymmetricalinitiationwaysonelinetwolinesβ=30°β=45°β=60°β=90°velocityenhancement/%29.9836.0137.8538.3737.22

    It can be seen from Table 1, in the central angle range of 30° to 60°, as the central angle increases the aiming fragment velocity enhancement increases. However, as the central angle reaches 90°, the fragment velocity enhancement falls down. Thus, the central angle of 60° will be a better choice if the asymmetrical two lines initiation is adopted.

    Asymmetrical two lines initiation can produce much higher fragment velocity in aiming direction. In addition to the effects of the longer detonation transfer length, it is more important that the collision of the detonation waves from the two initiation lines generates higher detonation pressure, making the fragment velocity higher. As shown in Fig.14a, the problem of two detonation wave colliding can be considered as one detonation wave strikes the rigid surface. Along with the detonation wave propagating, the incident angleψo(hù)f detonation wave against the rigid surface gets bigger and bigger. Whenψis below certain critical value, the reflection is regular reflection, otherwise Mach reflection is occurred. The starting point of Mach reflection is shown as the point O in Fig.14a. The pressure ratio against the C—J detonation pressure of the reflecting point under regular reflection and Mach reflection is shown in Fig.14b. When the adiabatic exponent of the charge is 3, the critical incident angle is about 44.8°.

    As we can see from Fig.14b, when the incident angle is under 44.8° (regular reflection), the shock pressure is about 2.37 times thepCJ; while the incident angle is just above the 44.8 ° (Mach reflection), the pressure is about 3.45 times thepCJ, and then decreases as the incident angleψincreases. Therefore, the Mach stem pressure reduces with the distance from the starting point of the Mach waves. Increasing of the central angle between the two asymmetrical initiation lines will decrease the distance from the starting point of Mach reflection to the fragment, so the pressure on the fragment will be increased, and the fragment velocity will get bigger. However, as the increasing of the central angle, the distance from the initiation points to the fragments is reduced, that is the detonation propagating time is reduced, then the fragment velocity is going to decrease. Therefore, this is a problem of interaction of two aspects: pressure and time, also a problem of who dominates during the changing of the central angle. From the research, it can be seen that during the changing from 30° to 60°, the Mach wave pressure dominates, so the fragment velocity increases with the central angle; but at the central angle of about 90°, the detonation transfer length (time) dominates the contribution to the fragment velocity, hence the velocity enhancement decreases.

    a. mach reflection of detonation wave

    b. pressure ratio under Mach reflection

    Fig.14 Detonation wave reflection

    6 Asymmetrical Three Lines Initiation

    The configuration of asymmetrical three lines initiation is sketched in Fig.15, with the central angle of adjacent initiation lines to beα. Theαis taken different values of 30°, 45°, 60° and 90°. Typical fragment cloud under asymmetrical three lines initiation is like Fig.16. It can be seen that except the section of aiming, the fragments distribute almost uniform along the circumferential direction.

    Fig.17 depicts the velocity of the mid-plane fragments. It shows that when the azimuth angle is small than 48°, the fragment velocity decreases as the central angleαgets bigger; when the azimuth angle is beyond 48°, the fragment velocity increases as the central angle increases. As the central angle getting bigger, the fragment velocity distribution tends to be uniform. There is almost no enhancement in the fragment velocity when the central angle becomes 90°.

    Fig.15 Configuration of three initiation lines

    a. 30° b.45°

    c. 60° d.90°

    Fig.16 Fragments dispersion of asymmetrical three lines initiation with different central angle (α)

    Fig.17 Fragment velocity distribution

    The fragment velocity enhancements in the aiming direction relative to the warhead centre initiation under different asymmetrical three lines initiations are counted and listed in Table 2.

    For the asymmetrical three lines initiation, the aiming fragment velocity decreases, from 39.73% to 17.54%, as the central angleαincreasing. Compared to the asymmetrical two lines initiation of the same central angle, the 30° and 45° three lines initiations increase the aiming fragment velocity enhancements, while the 60° and 90° three lines initiations reduce the velocity enhancements. The aiming fragment velocity enhancement 17.54% of 90° three lines initiation is even lower than the velocity enhancement 29.98% of the asymmetrical one line initiation.

    The detonation wave collision of the asymmetrical three lines initiation is more complicated, and the detonation pressure is much higher, thus the fragment velocities of three initiation lines are higher than the two initiation lines at central angle of 30° and 45°. But because of the same reason of the detonation transfer length, the continuing growth of the central angle will reduce the function time of the detonation wave, thus lower the momentum and velocity of the fragments. Anyway, the velocity enhancement in the aiming direction is the interacting result of the detonation pressure and the detonation transfer length (time).

    Table 2 Aiming fragment velocity enhancement versus central angle

    asymmetricalinitiationwaysthreelinesα=30°α=45°α=60°α=90°velocityenhancement/%39.7339.3634.7417.54

    7 Conclusions

    (1) Asymmetrical one line initiation can obviously enhance the fragment velocity in the aiming direction, and the velocity enhancement increases with the initiation point number. When the initiation point number is more than 4, the fragment velocity enhancement increases slowly. Taking account of the cost, the proper initiation point number of an initiation line can be set to 4, and then the fragment velocity enhancement is 29.98%.

    (2) When initiated by asymmetrical two lines, the fragment velocity enhancement increases from 36.01% to 38.37% as the central angle ranges from 30° to 60°. When the central angle is 90°, the velocity enhancement falls down to 37.22%.

    (3) While initiated by asymmetrical three lines,the fragment velocity in the aiming direction falls from 39.73% to 17.54% with increasing the central angle. Compared to the same central angle but asymmetrical two initiation lines, the velocity enhancement is increased at angle of 30° and 45°, but reduces as the central angle continues to increase, even lower than the enhancement of the asymmetrical one initiation line.

    (4) The velocity enhancement of the fragments in the aiming direction caused by asymmetrical initiation is the interacting results of function time increase caused by detonation transfer length and the pressure increase caused by detonation wave collision. Only when the two factors are both constructive, the velocity enhancement of the fragments can reach the most.

    [1] Resnyansky A, Wildegger-Gaissmaier A, Katselis G. Directional fragmentation warheads: a theoretical and experimental investigation[C]∥18th International Symposium on Ballistics, San Antonio, Tex, 1999: 543-550.

    [2] QU Ming, QIAN Li-xin, YANG Yun-bin. Numerical simulation of effect of initiation position on directed performance of warhead fragment[J].ChineseJournalofEnergeticMaterials(HannengCailiao), 2005, 13(3): 137-140.

    [3] ZHANG Xin-wei, CHEN Fang, WANG Peng, et al. X-ray experimental research on off-axis multi-spots initiation warhead[J].JournalofProjectiles,Rockets,MissilesandGuidance, 2005, 25(4): 537-539.

    [4] ZHU Xu-qiang, HUANG Chuan, LI Yan-chun, et al. Lethality investigation of azimuthal warhead[J].ChineseJournalofEnergeticMaterials(HannengCailiao), 2014, 22(1): 89-93.

    [5] Predebon W W, Smothers W G, Anderson C E. Missile warhead modeling: computations and experiments[R]. DTIC Document, 1977.

    [6] YAN Han-xin, JIANG Chun-lan, LI Ming, et al. Numerical simulation of effect of different initiation positions on a certain focusing fragment warhead[J].ChineseJournalofEnergeticMaterials(HannengCailiao), 2009, 17(2): 143-146.

    [7] SHI Dang-yong, ZHANG Qing-ming, XIA Chang-fu. Numerical simulation method and different initiation modes for prefabricated multilayer fragment warhead[J].JournalofPLAUniversityofScienceandTechnology, 2009, 10(6): 553-558.

    [8] ZHANG Xin-wei, MA Xiao-qing. 3D numerical simulation of the rod warhead detonation under asymmetrical initiation[J].AeroWeaponry, 2001 (6): 1-3.

    [9] Rainsberger R. TrueGrid User′s Manual[M]. XYZ Scientific Apllication, 2006.

    [10] Hallquist J O. LS-DYNA Keyword User′s Manual[M]. Livermore Software Technology Corporation, 2007: 970.

    [11] Lloyd R. Conventional Warhead Systems Physics And Engineering Design[M]. Tewksbury: Astronautics and Aeronautics Press, 1998: 45.

    老司机深夜福利视频在线观看| 夜夜爽天天搞| 国产高潮美女av| 天堂网av新在线| 好男人在线观看高清免费视频| 国产精品自产拍在线观看55亚洲| 午夜福利欧美成人| 亚洲色图av天堂| 麻豆一二三区av精品| 很黄的视频免费| 亚洲av一区综合| 欧美日韩精品成人综合77777| 免费av不卡在线播放| 成熟少妇高潮喷水视频| 亚洲18禁久久av| 午夜爱爱视频在线播放| 欧美区成人在线视频| 超碰av人人做人人爽久久| 美女免费视频网站| 成年女人永久免费观看视频| 搡女人真爽免费视频火全软件 | 一区福利在线观看| 色哟哟哟哟哟哟| 国产精品乱码一区二三区的特点| 久久久精品大字幕| 国产亚洲欧美98| 国产精华一区二区三区| 一区二区三区四区激情视频 | 少妇人妻精品综合一区二区 | av在线天堂中文字幕| 一a级毛片在线观看| 成人国产一区最新在线观看| 国产高潮美女av| 不卡一级毛片| 99久久九九国产精品国产免费| 99热这里只有是精品50| 国产精品久久久久久久久免| 久久午夜亚洲精品久久| 日本 欧美在线| 俄罗斯特黄特色一大片| a级毛片免费高清观看在线播放| 国内揄拍国产精品人妻在线| 国产男靠女视频免费网站| 国产三级中文精品| 日本免费一区二区三区高清不卡| 国产一区二区三区视频了| 99视频精品全部免费 在线| 亚洲色图av天堂| 婷婷亚洲欧美| 91狼人影院| 一个人看视频在线观看www免费| 中文字幕高清在线视频| 看黄色毛片网站| 欧美日本视频| 国产激情偷乱视频一区二区| 成人综合一区亚洲| 99热这里只有是精品50| 国产av一区在线观看免费| 亚洲不卡免费看| 亚洲男人的天堂狠狠| 亚洲成a人片在线一区二区| 国产欧美日韩一区二区精品| 欧美xxxx黑人xx丫x性爽| 久久午夜福利片| 国产伦人伦偷精品视频| 亚洲精品国产成人久久av| 亚洲精品粉嫩美女一区| 国产黄a三级三级三级人| 精品国产三级普通话版| 热99在线观看视频| 丰满的人妻完整版| 国产精品av视频在线免费观看| av国产免费在线观看| 亚洲自拍偷在线| 精品人妻偷拍中文字幕| 日韩精品青青久久久久久| 亚洲精品在线观看二区| 亚洲欧美日韩无卡精品| 日韩中字成人| 精品乱码久久久久久99久播| 一a级毛片在线观看| 久久婷婷人人爽人人干人人爱| 最好的美女福利视频网| 亚洲成人精品中文字幕电影| 国产av在哪里看| 国产三级在线视频| 午夜福利欧美成人| 亚洲欧美日韩无卡精品| 少妇人妻一区二区三区视频| 3wmmmm亚洲av在线观看| 男女做爰动态图高潮gif福利片| 国产私拍福利视频在线观看| 99久久中文字幕三级久久日本| 日本精品一区二区三区蜜桃| 成人特级av手机在线观看| 久久久久久久午夜电影| 亚洲性夜色夜夜综合| 91久久精品国产一区二区三区| 国国产精品蜜臀av免费| 床上黄色一级片| 偷拍熟女少妇极品色| 偷拍熟女少妇极品色| 91在线精品国自产拍蜜月| 美女xxoo啪啪120秒动态图| 嫩草影院精品99| 九九热线精品视视频播放| 欧美性猛交╳xxx乱大交人| 国产精品自产拍在线观看55亚洲| 琪琪午夜伦伦电影理论片6080| 88av欧美| 悠悠久久av| 国产高清不卡午夜福利| 久久香蕉精品热| 亚洲欧美日韩东京热| 国产免费男女视频| 少妇高潮的动态图| 国产亚洲精品久久久久久毛片| 精品一区二区三区人妻视频| 国产午夜福利久久久久久| 22中文网久久字幕| 亚洲av中文av极速乱 | 亚洲av日韩精品久久久久久密| 亚洲国产欧洲综合997久久,| 亚洲最大成人av| 一个人观看的视频www高清免费观看| 久久天躁狠狠躁夜夜2o2o| 午夜免费激情av| 免费大片18禁| 欧美zozozo另类| 欧美一区二区国产精品久久精品| 欧美性感艳星| 久久久久久久精品吃奶| 嫁个100分男人电影在线观看| 美女cb高潮喷水在线观看| 亚洲精品久久国产高清桃花| 精品欧美国产一区二区三| 桃红色精品国产亚洲av| 亚洲成人久久爱视频| 热99re8久久精品国产| 欧美中文日本在线观看视频| 又爽又黄a免费视频| 日日摸夜夜添夜夜添小说| 国产精品乱码一区二三区的特点| 熟女电影av网| 日韩精品青青久久久久久| 在线观看一区二区三区| 亚洲精品粉嫩美女一区| 日本a在线网址| 1024手机看黄色片| 麻豆精品久久久久久蜜桃| 国产精品久久电影中文字幕| 久久人妻av系列| 日日夜夜操网爽| 亚洲性久久影院| 麻豆成人av在线观看| 国产三级中文精品| 在线观看一区二区三区| 精品午夜福利在线看| 丰满乱子伦码专区| 日日干狠狠操夜夜爽| 午夜精品在线福利| 免费在线观看成人毛片| 国产精品久久电影中文字幕| 美女被艹到高潮喷水动态| 熟妇人妻久久中文字幕3abv| 波野结衣二区三区在线| 国内少妇人妻偷人精品xxx网站| 日日啪夜夜撸| 久久精品夜夜夜夜夜久久蜜豆| 国产精品国产三级国产av玫瑰| 精品久久国产蜜桃| 欧美在线一区亚洲| 日韩欧美精品免费久久| bbb黄色大片| 人妻久久中文字幕网| 久久久精品大字幕| 两性午夜刺激爽爽歪歪视频在线观看| 亚洲成人免费电影在线观看| 大型黄色视频在线免费观看| 久久精品夜夜夜夜夜久久蜜豆| 露出奶头的视频| 色精品久久人妻99蜜桃| 一级黄片播放器| 亚洲av电影不卡..在线观看| 黄色欧美视频在线观看| 欧美日韩国产亚洲二区| 欧美最新免费一区二区三区| 此物有八面人人有两片| 在线观看一区二区三区| 久久久久久久午夜电影| 69av精品久久久久久| 男人的好看免费观看在线视频| 少妇人妻精品综合一区二区 | 中文在线观看免费www的网站| 十八禁国产超污无遮挡网站| 成人一区二区视频在线观看| 欧美一级a爱片免费观看看| 啦啦啦观看免费观看视频高清| 国产欧美日韩精品一区二区| 亚洲无线观看免费| 黄色日韩在线| 日韩人妻高清精品专区| www日本黄色视频网| 九九久久精品国产亚洲av麻豆| 久久久久久久久大av| 露出奶头的视频| 啪啪无遮挡十八禁网站| 亚洲aⅴ乱码一区二区在线播放| 免费人成视频x8x8入口观看| 一进一出抽搐动态| 午夜激情福利司机影院| 日本三级黄在线观看| 国产精品电影一区二区三区| 精品不卡国产一区二区三区| 国产精品久久久久久亚洲av鲁大| 精品一区二区三区人妻视频| 久久香蕉精品热| 久久欧美精品欧美久久欧美| 99热网站在线观看| 麻豆国产97在线/欧美| 69av精品久久久久久| 国产人妻一区二区三区在| 别揉我奶头 嗯啊视频| 欧美高清成人免费视频www| 国产精品一区二区三区四区免费观看 | 久久久久久伊人网av| 国产成人福利小说| 嫩草影院新地址| 日韩亚洲欧美综合| 特大巨黑吊av在线直播| 国产在线男女| 九九在线视频观看精品| 国产高清激情床上av| 长腿黑丝高跟| 免费看美女性在线毛片视频| 在线免费十八禁| 国产精品永久免费网站| av在线亚洲专区| 日本黄色视频三级网站网址| 欧美bdsm另类| 丰满乱子伦码专区| 桃红色精品国产亚洲av| 成人二区视频| 在线国产一区二区在线| 国产精品久久久久久久电影| 少妇丰满av| a级毛片a级免费在线| 俺也久久电影网| 特大巨黑吊av在线直播| 人人妻人人看人人澡| 小说图片视频综合网站| 成人三级黄色视频| 亚洲熟妇熟女久久| 在线观看午夜福利视频| 99久国产av精品| 天堂av国产一区二区熟女人妻| 99视频精品全部免费 在线| 久久人人精品亚洲av| 亚洲熟妇熟女久久| 99久久精品国产国产毛片| 内地一区二区视频在线| 亚洲中文日韩欧美视频| 中文亚洲av片在线观看爽| 搡老岳熟女国产| 在线免费观看的www视频| 十八禁网站免费在线| 变态另类丝袜制服| 久久人人爽人人爽人人片va| 日韩欧美精品免费久久| 中文字幕免费在线视频6| 伦精品一区二区三区| 最好的美女福利视频网| 国产精品三级大全| 午夜老司机福利剧场| 亚洲av不卡在线观看| 国产亚洲精品综合一区在线观看| 在线a可以看的网站| 美女免费视频网站| 一级毛片久久久久久久久女| 熟女人妻精品中文字幕| 久久久久久久久久久丰满 | 日本免费一区二区三区高清不卡| 一进一出好大好爽视频| 国产精品久久视频播放| 99热这里只有精品一区| 人妻制服诱惑在线中文字幕| 精品人妻1区二区| 欧美性猛交黑人性爽| 国产精品嫩草影院av在线观看 | 国产精品一区二区三区四区免费观看 | 极品教师在线视频| 成人欧美大片| 国产女主播在线喷水免费视频网站 | 欧美一区二区国产精品久久精品| 亚洲最大成人手机在线| av黄色大香蕉| av天堂中文字幕网| 久久精品国产自在天天线| 听说在线观看完整版免费高清| 在线免费十八禁| 最近最新中文字幕大全电影3| h日本视频在线播放| 亚洲成人中文字幕在线播放| 亚洲av一区综合| 国内精品久久久久久久电影| 午夜日韩欧美国产| 午夜福利高清视频| 国产黄a三级三级三级人| 亚洲av免费高清在线观看| 乱码一卡2卡4卡精品| 精品不卡国产一区二区三区| 国产主播在线观看一区二区| 亚洲黑人精品在线| 亚洲avbb在线观看| 黄色一级大片看看| 男人舔女人下体高潮全视频| 国模一区二区三区四区视频| 蜜桃久久精品国产亚洲av| 欧美不卡视频在线免费观看| 国产伦精品一区二区三区视频9| 日韩高清综合在线| 亚洲天堂国产精品一区在线| 国产视频一区二区在线看| 99热网站在线观看| 一边摸一边抽搐一进一小说| 老师上课跳d突然被开到最大视频| 一级黄色大片毛片| 99久久精品热视频| 精品一区二区三区人妻视频| 人人妻,人人澡人人爽秒播| 国产精品免费一区二区三区在线| 亚洲av免费高清在线观看| 赤兔流量卡办理| 亚洲精品在线观看二区| 免费大片18禁| 老司机午夜福利在线观看视频| 亚洲国产精品合色在线| 日韩中字成人| 一区二区三区免费毛片| 亚洲美女搞黄在线观看 | 少妇的逼水好多| 日韩精品青青久久久久久| 亚洲av日韩精品久久久久久密| 免费在线观看成人毛片| 免费av观看视频| 97碰自拍视频| 欧美性感艳星| 男人狂女人下面高潮的视频| 天天一区二区日本电影三级| avwww免费| 欧美成人性av电影在线观看| 欧美中文日本在线观看视频| 成人一区二区视频在线观看| 日韩一本色道免费dvd| 中文字幕熟女人妻在线| 亚洲一区高清亚洲精品| 亚洲国产精品合色在线| 搡女人真爽免费视频火全软件 | 高清日韩中文字幕在线| 毛片一级片免费看久久久久 | 中文资源天堂在线| 色在线成人网| 少妇猛男粗大的猛烈进出视频 | 乱码一卡2卡4卡精品| 亚洲av五月六月丁香网| 天堂动漫精品| 亚洲成人久久爱视频| av在线亚洲专区| 深夜a级毛片| 中国美女看黄片| 成人亚洲精品av一区二区| 成人欧美大片| 一卡2卡三卡四卡精品乱码亚洲| 床上黄色一级片| 少妇被粗大猛烈的视频| av.在线天堂| 乱码一卡2卡4卡精品| 精品久久久久久久人妻蜜臀av| 国产女主播在线喷水免费视频网站 | 男女视频在线观看网站免费| 直男gayav资源| 国产一区二区三区视频了| 欧美一区二区国产精品久久精品| 久久精品国产99精品国产亚洲性色| 白带黄色成豆腐渣| 国产精品免费一区二区三区在线| 久99久视频精品免费| 国产精品99久久久久久久久| 97人妻精品一区二区三区麻豆| 女人十人毛片免费观看3o分钟| 老女人水多毛片| 国产精品综合久久久久久久免费| 淫秽高清视频在线观看| 在线看三级毛片| 亚洲精品一卡2卡三卡4卡5卡| 亚洲熟妇熟女久久| 国产视频内射| 少妇高潮的动态图| 88av欧美| xxxwww97欧美| 国产精品久久久久久久电影| 淫秽高清视频在线观看| 国产单亲对白刺激| 免费在线观看影片大全网站| 中文字幕熟女人妻在线| 干丝袜人妻中文字幕| 白带黄色成豆腐渣| 久久精品国产清高在天天线| 久久久色成人| 国产精品99久久久久久久久| 成人国产麻豆网| 可以在线观看的亚洲视频| 少妇的逼水好多| 一区福利在线观看| 午夜爱爱视频在线播放| 欧美日韩瑟瑟在线播放| 久久精品国产清高在天天线| 日本欧美国产在线视频| 成人综合一区亚洲| 亚洲精品在线观看二区| 天天躁日日操中文字幕| 日日摸夜夜添夜夜添小说| 最好的美女福利视频网| 国产成人影院久久av| 波多野结衣巨乳人妻| avwww免费| 麻豆成人午夜福利视频| 不卡视频在线观看欧美| 99久久中文字幕三级久久日本| 国产日本99.免费观看| 国语自产精品视频在线第100页| 精品久久国产蜜桃| 啦啦啦啦在线视频资源| 亚洲专区国产一区二区| 久久精品国产清高在天天线| 一级黄片播放器| av天堂中文字幕网| 欧美一区二区国产精品久久精品| 极品教师在线视频| 欧美日韩黄片免| 69人妻影院| 日韩一区二区视频免费看| eeuss影院久久| 久久九九热精品免费| 特级一级黄色大片| 精品乱码久久久久久99久播| 亚洲精品456在线播放app | 哪里可以看免费的av片| 国产单亲对白刺激| 成人毛片a级毛片在线播放| 久久6这里有精品| 国产精品野战在线观看| 男女做爰动态图高潮gif福利片| av女优亚洲男人天堂| 婷婷亚洲欧美| 长腿黑丝高跟| 久久草成人影院| 亚洲电影在线观看av| 亚洲av免费在线观看| 很黄的视频免费| 动漫黄色视频在线观看| 精品免费久久久久久久清纯| av在线老鸭窝| 亚洲国产精品sss在线观看| 午夜精品在线福利| 成人永久免费在线观看视频| 亚洲无线观看免费| 99久久中文字幕三级久久日本| 欧美丝袜亚洲另类 | 免费大片18禁| 真实男女啪啪啪动态图| 亚洲国产精品sss在线观看| 99精品久久久久人妻精品| 成年版毛片免费区| 听说在线观看完整版免费高清| 免费在线观看日本一区| 黄色女人牲交| 国产69精品久久久久777片| 欧美日韩黄片免| 亚洲aⅴ乱码一区二区在线播放| 亚洲精华国产精华液的使用体验 | 久久人妻av系列| 婷婷色综合大香蕉| 非洲黑人性xxxx精品又粗又长| 中文亚洲av片在线观看爽| 欧美成人性av电影在线观看| 在线国产一区二区在线| 天堂动漫精品| 日本在线视频免费播放| 村上凉子中文字幕在线| 久99久视频精品免费| 亚洲人成网站在线播放欧美日韩| 亚洲七黄色美女视频| 国产亚洲精品综合一区在线观看| 日本精品一区二区三区蜜桃| 欧美另类亚洲清纯唯美| 此物有八面人人有两片| 性色avwww在线观看| 搡老熟女国产l中国老女人| 有码 亚洲区| 99热这里只有是精品50| 久久精品夜夜夜夜夜久久蜜豆| 欧美丝袜亚洲另类 | 久久久久九九精品影院| 色综合色国产| 国产伦人伦偷精品视频| 中文字幕av在线有码专区| 波多野结衣高清作品| 最近最新中文字幕大全电影3| 国产午夜精品久久久久久一区二区三区 | 国产精品98久久久久久宅男小说| 国产精品精品国产色婷婷| 国产探花在线观看一区二区| 日日撸夜夜添| 亚洲久久久久久中文字幕| 18禁黄网站禁片免费观看直播| 99热6这里只有精品| 欧美日韩综合久久久久久 | 一级av片app| 人人妻,人人澡人人爽秒播| 国产人妻一区二区三区在| 久久精品91蜜桃| 午夜老司机福利剧场| 一级黄色大片毛片| 亚洲黑人精品在线| 久久久久久久久久成人| 久久久久久国产a免费观看| 欧美潮喷喷水| 少妇的逼好多水| 九色国产91popny在线| 国产主播在线观看一区二区| 国产精品伦人一区二区| 婷婷精品国产亚洲av在线| 日韩亚洲欧美综合| 亚洲电影在线观看av| 高清毛片免费观看视频网站| 亚洲av二区三区四区| 久久亚洲真实| 成人高潮视频无遮挡免费网站| 狂野欧美激情性xxxx在线观看| 窝窝影院91人妻| 波多野结衣高清作品| 亚洲av成人精品一区久久| 免费电影在线观看免费观看| 亚洲av电影不卡..在线观看| 亚洲成人精品中文字幕电影| 一级黄片播放器| 国产精品久久久久久亚洲av鲁大| 99久久精品国产国产毛片| 麻豆成人av在线观看| 91久久精品国产一区二区成人| 国产伦在线观看视频一区| 丰满乱子伦码专区| 午夜视频国产福利| 欧美性猛交黑人性爽| 欧美潮喷喷水| 精品久久久久久久久av| 日日摸夜夜添夜夜添小说| 免费高清视频大片| 中文字幕久久专区| 国产国拍精品亚洲av在线观看| 国内精品久久久久精免费| 免费电影在线观看免费观看| 中文字幕人妻熟人妻熟丝袜美| 日日撸夜夜添| 亚洲avbb在线观看| 色噜噜av男人的天堂激情| 国产v大片淫在线免费观看| 深夜a级毛片| 午夜福利成人在线免费观看| 最好的美女福利视频网| 美女高潮的动态| 国产 一区精品| 欧美极品一区二区三区四区| 欧美bdsm另类| 亚洲不卡免费看| 热99在线观看视频| 亚洲图色成人| 婷婷六月久久综合丁香| 久久精品国产鲁丝片午夜精品 | 美女高潮的动态| 97人妻精品一区二区三区麻豆| 国产精品伦人一区二区| 欧美日韩精品成人综合77777| 精品午夜福利视频在线观看一区| 国产不卡一卡二| 亚洲国产精品久久男人天堂| 黄色女人牲交| 国产aⅴ精品一区二区三区波| 丰满人妻一区二区三区视频av| 国内精品久久久久精免费| 亚洲av.av天堂| 精品久久久久久久久久久久久| 国产精品,欧美在线| 午夜久久久久精精品| 久久久久久久久久黄片| 亚洲三级黄色毛片| 久久久久久国产a免费观看| 看黄色毛片网站| 成年女人永久免费观看视频| 18+在线观看网站| 免费观看人在逋| 国产探花极品一区二区| 欧美激情在线99| 婷婷亚洲欧美| 高清毛片免费观看视频网站| 亚洲第一区二区三区不卡| 99久久精品国产国产毛片| 人妻夜夜爽99麻豆av| 午夜激情欧美在线| 精品久久久久久,| 中文字幕免费在线视频6| 国产精品一及| 美女被艹到高潮喷水动态| 乱人视频在线观看|