• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    A Density Functional Theory Study on the Structures and Thermochemical Properties of Azo-bridged Azoles

    2016-05-08 13:27:25LAIWeipengLIANPengLIUYingzheYUTaoLUJianWANGBozhouGEZhongxue
    含能材料 2016年9期

    LAI Wei-peng, LIAN Peng, LIU Ying-zhe, YU Tao, LU Jian, WANG Bo-zhou, GE Zhong-xue

    (Xi′an Modern Chemistry Research Institute, Xi′an 710065, China)

    1 Introduction

    Due to the high nitrogen contents and large positive enthalpies of formation, azoles and their derivatives are an important and interesting topic in the field of study of high energetic materials, and are considered as potential propellants and explosives. Huynh[1]synthesized one ditetrazole derivative from 3,6-diazido-1,2,4,5-tetrazine. Abe[2]successfully synthesized 5-azido-(1-dialkylimino)-tetrazole. 1,5-Diamino-4-methyl-tetrazolium dinitramide was synthesized by a metathetical reaction of the corresponding iodide and silver dinitramide[3]. Some derivatives of 4, 4′-bis(5-nitro-1,2,3-2H-triazole) were designed, synthesized, and characterized by He[4]. Comparing to the most of current-used propellants, they produced less CO and CO2, when combustion, which meant more environmental-friendly and might decrease the gun barrel and the rocket nozzle erosion. Among the derivates of azoles, the azo-bridged azoles had been extensively studied recent years, because the azo group could increase the enthalpy of formation remarkably, as an important factor of detonation properties[5-9]. When the azo group attached to the nitrogen atoms of azoles, a long chain of nitrogen would be formed. For example 1,1′-azobis(1,2,3-triazole)[10]and 1,1′-azobis(1,2,3,4-tetrazole)[11], which have been reported and present excellent property, contained nitrogen chains consisted of 8 and 10 nitrogen atoms respectively.

    The experimental experiences indicated that the nitrogen content, position of nitrogen atoms and decomposition mode of azo-bridged azoles could affect their thermochemical properties remarkably. However, to our knowledge, the thermochemical properties of azo-bridged azoles had never been well-studied by theoretical calculation. To uncover the relationships between their structures and thermochemical properties, we examined the structures and thermochemistries of 15 azo-bridged azoles using DFT method at B3LYP/6-311+G(d,p) level in this work.

    2 Computational Methods

    The structural formulas of azo-bridged azoles are illustrated in Scheme 1.

    All calculations were performed with the Gaussian 09 suite[12]. B3LYP density functional theoretical method with 6-311+G(d,p) basis set was selected for the geometry optimization and frequency calculation because it provides greater account of electron correlation.

    For the isodesmic reaction, the enthalpy of formation at 298 K was obtained from the following equation

    ΔrH=∑ΔHf,p-∑ΔHf,R

    (1)

    Where ΔHf,pand ΔHf,Rare the enthalpies of formation for products and reactants at 298 K.

    (2)

    Here ΔE0stands for the change in total energy between products and reactants; ΔZPEis the difference between the zero-point energies of products and reactants at 0 K; ΔHTis the thermal corrections from 0 to 298 K. For the isodesmic reaction, Δnis 0 and Δ(pV) equals zero.

    The accurately-determinated enthalpy of formation data from 1,3,5-trinitrobenzene, 1,1′-azobis(2,4,6-trinitrobenzene), pyrrole, pyrazole, imidazole, 1,2,3-triazole, 1,2,4-triazole, and 1H-tetrazole were used to construct isodesmic reaction for 15 compounds (see Scheme 2).

    Scheme 1 Structural formulas of the azo-bridged azoles

    Scheme 2 Isodesmic reaction for calculation of the standard enthalpy of formation

    3 Results and Discussion

    3.1 Molecular Structures

    As the compounds have similar structures excluding the azole rings, our study was focused on them.

    The bond lengths, bond angles, and dihedral angles of azoles obtained from the calculation were listed in Table 1. It could be seen from Table 1 that most bonds (C—C, C—N, and N—N) in the azoles had close bond lengths (1.30-1.40 ?), which was between the length of typical single bond (1.46 ?) and typical double bond (1.22 ?). At the same time, the dihedral angles data indicated that all of the azoles were planar. It could be concluded that both the nitrogen and carbon atoms in the azoles weresp2hybrid and the azole rings acquired planar aromatic structure as expected.

    It could be seen that the azo group also had effect on the structure of azoles, especially the atom connected to it. All the bonds consisted of and opposite this atom were elongated. And if the atom is nitrogen, the effect would be enlarged on bonds consisted of same kind atoms (i.e. C—C or N—N bond).

    3.2 Enthalpies of Formation

    The enthalpies of formation of the 15 compounds were investigated using the isodesmic reaction, which shown in Scheme 2, and the results were listed in Table 2. Enthalpies of formation of reference species acquired from same reactions were shown in Table 3.

    It could be observed that the enthalpies of formation of the azo-bridged azoles steadily increased with the increase of nitrogen contents, although some with higher nitrogen contents only had slight higher enthalpy of formation than the lower nitrogen content one.

    Table 1 Bond lengths ( ?), bond angles (°), and dihedral angles (°) of azoles in the 15 azo-bridged azoles calculated at B3LYP/6-311+G (d,p) level

    N(1)—C(2) 1.39N(1)—C(5) 1.39C(2)—C(3) 1.37C(3)—C(4) 1.43C(4)—C(5) 1.37N(1)—C(2)—C(3) 107.47C(2)—C(3)—C(4) 107.48C(3)—C(4)—C(5) 108.24C(4)—C(5)—N(1) 106.80C(5)—N(1)—C(2) 110.02N(1)—C(2)—C(3)—C(4) 0.00N(1)—C(2) 1.38N(1)—C(5) 1.37C(2)—C(3) 1.39C(3)—C(4) 1.41C(4)—C(5) 1.39N(1)—C(2)—C(3) 107.60C(2)—C(3)—C(4) 107.30C(3)—C(4)—C(5) 107.40C(4)—C(5)—N(1) 108.24C(5)—N(1)—C(2) 109.46N(1)—C(2)—C(3)—C(4) 0.00N(1)—C(2) 1.37N(1)—C(5) 1.38C(2)—C(3) 1.39C(3)—C(4) 1.43C(4)—C(5) 1.37N(1)—C(2)—C(3) 107.09C(2)—C(3)—C(4) 107.46C(3)—C(4)—C(5) 107.37C(4)—C(5)—N(1) 107.60C(5)—N(1)—C(2) 110.49N(1)—C(2)—C(3)—C(4) 0.00N(1)—N(2) 1.35N(1)—C(5) 1.37N(2)—C(3) 1.32C(3)—C(4) 1.42C(4)—C(5) 1.37N(1)—N(2)—C(3) 103.72N(2)—C(3)—C(4) 112.48C(3)—C(4)—C(5) 104.60C(4)—C(5)—N(1) 105.99C(5)—N(1)—N(2) 113.22N(1)—N(2)—C(3)—C(4) 0.00N(1)—N(2) 1.34N(1)—C(5) 1.34N(2)—C(3) 1.36C(3)—C(4) 1.38C(4)—C(5) 1.42N(1)—N(2)—C(3) 113.82N(2)—C(3)—C(4) 105.89C(3)—C(4)—C(5) 104.66C(4)—C(5)—N(1) 111.69C(5)—N(1)—N(2) 103.94N(1)—N(2)—C(3)—C(4) 0.00N(1)—N(2) 1.36N(1)—C(5) 1.35N(2)—C(3) 1.33C(3)—C(4) 1.42C(4)—C(5) 1.39N(1)—N(2)—C(3) 104.29N(2)—C(3)—C(4) 111.66C(3)—C(4)—C(5) 104.73C(4)—C(5)—N(1) 105.52C(5)—N(1)—N(2) 113.81N(1)—N(2)—C(3)—C(4) 0.00N(1)—C(2) 1.39N(1)—C(5) 1.39C(2)—N(3) 1.30N(3)—C(4) 1.39C(4)—C(5) 1.36N(1)—C(2)—N(3) 110.55C(2)—N(3)—C(4) 106.39N(3)—C(4)—C(5) 110.72C(4)—C(5)—N(1) 105.00C(5)—N(1)—C(2) 107.34N(1)—C(2)—N(3)—C(4) 0.00N(1)—C(2) 1.38N(1)—C(5) 1.37C(2)—N(3) 1.31N(3)—C(4) 1.38C(4)—C(5) 1.38N(1)—C(2)—N(3) 111.98C(2)—N(3)—C(4) 105.29N(3)—C(4)—C(5) 110.46C(4)—C(5)—N(1) 105.17C(5)—N(1)—C(2) 107.11N(1)—C(2)—N(3)—C(4) 0.00N(1)—C(2) 1.37N(1)—C(5) 1.37C(2)—N(3) 1.32N(3)—C(4) 1.36C(4)—C(5) 1.38N(1)—C(2)—N(3) 111.44C(2)—N(3)—C(4) 105.39N(3)—C(4)—C(5) 110.68C(4)—C(5)—N(1) 105.45C(5)—N(1)—C(2) 107.04N(1)—C(2)—N(3)—C(4) 0.00N(1)—N(2) 1.37N(1)—C(5) 1.37N(2)—N(3) 1.29N(3)—C(4) 1.38C(4)—C(5) 1.37N(1)—N(2)—N(3) 106.73N(2)—N(3)—C(4) 109.65N(3)—C(4)—C(5) 109.20C(4)—C(5)—N(1) 103.06C(5)—N(1)—N(2) 111.35N(1)—N(2)—N(3)—C(4) 0.00N(1)—N(2) 1.29N(1)—C(5) 1.37N(2)—N(3) 1.36N(3)—C(4) 1.35C(4)—C(5) 1.39N(1)—N(2)—N(3) 107.01N(2)—N(3)—C(4) 111.81N(3)—C(4)—C(5) 103.20C(4)—C(5)—N(1) 108.71C(5)—N(1)—N(2) 109.27N(1)—N(2)—N(3)—C(4) 0.00N(1)—N(2) 1.36N(1)—C(5) 1.37N(2)—C(3) 1.31C(3)—N(4) 1.37N(4)—C(5) 1.31N(1)—N(2)—C(3) 101.98N(2)—C(3)—N(4) 115.26C(3)—N(4)—C(5) 103.52N(4)—C(5)—N(1) 108.99C(5)—N(1)—N(2) 110.25N(1)—N(2)—C(3)—N(4) 0.00N(1)—N(2) 1.36N(1)—C(5) 1.32N(2)—C(3) 1.32C(3)—N(4) 1.37N(4)—C(5) 1.36N(1)—N(2)—C(3) 101.53N(2)—C(3)—N(4) 115.01C(3)—N(4)—C(5) 102.83N(4)—C(5)—N(1) 109.72C(5)—N(1)—N(2) 110.92N(1)—N(2)—C(3)—N(4) 0.00N(1)—N(2) 1.37N(1)—C(5) 1.36N(2)—N(3) 1.28N(3)—N(4) 1.38N(4)—C(5) 1.30N(1)—N(2)—N(3) 105.42N(2)—N(3)—N(4) 112.04N(3)—N(4)—C(5) 105.76N(4)—C(5)—N(1) 108.38C(5)—N(1)—N(2) 108.40N(1)—N(2)—N(3)—N(4) 0.00N(1)—N(2) 1.33N(1)—C(5) 1.35N(2)—N(3) 1.30N(3)—N(4) 1.35N(4)—C(5) 1.32N(1)—N(2)—N(3) 106.05N(2)—N(3)—N(4) 111.40N(3)—N(4)—C(5) 105.80N(4)—C(5)—N(1) 108.04C(5)—N(1)—N(2) 108.72N(1)—N(2)—N(3)—N(4) 0.00

    Table 2 Enthalpies of reaction calculated by the B3LYP/6-311+G(d,p) theoretical method, and enthalpies of formation calculated using the isodesmic reaction

    kJ·mol-1

    Table 3 Enthalpies of formation for the reference species in the isodesmic reactions

    compoundΔfHΘ298/kJ·mol-1pyrrole108.4[13]pyrazole179.6[14]imidazole133.1[15]1,2,3-triazole1)266.7[16]1,2,4-triazole193.0[14]1H-tetrazole327.0[17]1,3,5-trinitrobezene-37.7[18]1,2-bis(2,4,6-trinitrophenyl)diazene289.5[19]

    Note: 1) represents the value of enthalpy of formation for 1,2,3-triazole is calculated by quantum chemistry method.

    As to the azoles with same number of nitrogen atoms, the enthalpies of formation decreased as the distance from azo group to the nitrogen atoms in azole rings increased. The increase of the distance between nitrogen atoms in azole rings had similar effect. Moreover, the effect from the latter was more prominent than the former. However, TM3 was an exception. Its enthalpy of formation was higher than TM2, and the degree of the conjugation might act as an important role (see Fig.1 and Table 1). TM2 had greater conjugation, and then better stability, so its enthalpy of formation was lower than TM3.

    a. TM2 b. TM3

    Fig.1 Optimized structures of TM2 and TM3 by B3LYP/6-311+G(d,p) theoretical method

    If the 15 azo-bridged azoles were arranged in an order of the nitrogen atoms they contented and then the position connected to the azo group (from 1 to 5), a scatter diagram of enthalpies of formation against the series could be obtained (see Fig.2). It could be observed from the diagram that enthalpies of formation of TM1, TM4, TM10, and TM14 were higher than those of the compounds with same nitrogen content, and there was a good linear relationship. Of the four compounds, all of their nitrogen atoms connected each other to form a continuous nitrogen chain consisted of 4, 6, 8 and 10 nitrogen atoms respectively. So according to above principles, we could guess that 1,1′-azobis (pentazole) might have the largest enthalpy of formation among the azo-bridged azoles.

    Fig.2 Enthalpies of formation of the azo-brideged azoles

    3.3 Entropies and Specific Heat Capacities

    Entropies (SΘ) and constant pressure specific heat capacity (cp) forT=300-1500 K of 15 compounds were also calculated using B3LYP/6-311+G(d,p) theoretical method, and the results were shown in Table 4. It could be concluded that there was no correlation between the entropies with the nitrogen content, and all of the compounds had close values of 395.36-411.39 J·mol-1·K-1.

    Under the calculated temperature, the constant pressure specific heat capacity of the azo-bridged azoles with same nitrogen content were nearly a constant. So four azo-bridged azoles (TM1, TM4, TM10, and TM14) were chosen to represent the ones contented 4, 6, 8 and 10 nitrogen atoms respectively for studying the relationship between the constant pressure specific heat capacity, nitrogen content and temperature. From the obtained scatter diagram (Fig.3), it could be seen that the specific heat capacity decreased while the nitrogen content increased, and the tendency was obvious as temperature rose. According to this principle, it could be drawn that 1,1′-azobis (pentazole) might have the lowest value of specific heat capacity among the azo-bridged azoles.

    Table 4 Symmetry point group, entropy and specific heat capacity for the 15 compounds from B3LYP/6-311+G(d,p) calculations J·mol-1·K-1

    Fig.3 Thecpof four typical compounds with 1 to 4 nitrogen atoms in the heterocycle as a function of temperature

    4 Conclusions

    (1) The optimized structures and thermochemical properties of 15 azo-bridged azoles were theoretically obtained via a density functional theory method.

    (2) All the nitrogen and carbon atoms of azoles weresp2hybrid, and all of the heterocycles were planar aromatic rings.

    (3) The enthalpies of formation increased uniformly with the numbers of nitrogen atoms.

    (4) For the compounds with same number of nitrogen atoms, the enthalpies of formation decreased uniformly with increasing the distance from azo group to the nitrogen atoms in rings and the distance between the nitrogen atoms in rings.

    (5) The constant pressure specific heat capacity at different temperatures are inversely proportional to the nitrogen content (the number of nitrogen atom on the heterocyclic ring).

    [1] Huynh M H V, Hiskey M A, Chavez D E, et al. Synthesis characterization and energetic properties of diazido heteroaromatic high-nitrogen C—N compound[J].JAmChemSoc, 2005, 127(36): 12537-12543.

    [2] Abe T, Tao G H, Joo Y H, et al. Activation of the CF bond: transformation of CF3NN- into 5-azidotetrazoles[J].AngewChem. 2008, 120(37): 7195-7198.

    [3] Klap?tke T M, Mayer P, Schulz A, et al. 1,5-Diamino-4-methyltetrazolium dinitramide[J].JAmChemSoc, 2005, 127(7): 2032-2033.

    [4] He C L, Shreeve J M. Energetic materials with promising properties: synthesis and characterization of 4,4′-bis(5-nitro-1,2,3-2H-triazole) derivatives[J].AngewChemIntEd, 2015, 54(21): 6260-6264.

    [5] Chavez D E, Hiskey M A, Gilardi R D. 3,3′-Azobis(6-amino-1,2,4,5-tetrazine): a novel high-nitrogen energetic material[J].AngewChem, 2000, 112(10): 1861-1863.

    [6] Huynh M H V, Hiskey M A, Hartline E L, et al. Polyazido high-nitrogen compounds: hydrazo- and azo-1,3,5-triazine[J].AngewChem, 2004, 116(37): 5032-5036.

    [7] Hammerl A, Klap?tke T M, N?th H, et al. [N(2)H5]2+[N(4)C—NN—CN(4)]2-: A new high-nitrogen high-energetic material[J].InorgChem, 2001, 40(14): 3570-3575.

    [8] Martin B K, Norbert E, Helmut S, et al. Gas generating mixture containing copper diammine dinitrate: US5663524[P], 1997.

    [9] Hammerl A, Hiskey M A, Holl G, et al. Azidoformamidinium and guanidinium 5,5′-azotetrazolate salts[J].ChemMater, 2005, 17(14): 3784-3793.

    [10] Li Y C, Qi C, Li S H, et al. 1,1′-Azobis-1,2,3-triazole: a high-nitrogen compound with stable N8 structure and photochromism[J].JAmChemSoc, 2010, 132(35): 12172-12173.

    [11] Klap?tke T M, Piercey D G. 1,1′-Azobis(tetrazole): a highly energetic nitrogen-rich compound with a N10 Chain[J].InorgChem, 2011, 50(7): 2732-2734.

    [12] Frisch M J, Trucks G W, Schlegel H B, et al. Gaussian 09[CP], Gaussian Inc, Wallingford CT, 2009.

    [13] Scott D W, Berg W T, Hossenlopp I A, et al. Pyrrole: chemical thermodynamic properties[J].JPhysChem, 1967, 71(7): 2263-2270.

    [14] Jimenez P, Roux M V, Turrion C. Thermochemical properties of N-heterocyclic compounds I enthalpies of combustion vapour pressures and enthalpies of sublimation and enthalpies of formation of pyrazole imidazole indazole and benzimidazole[J].JChemThermodyn, 1987, 19(9): 985-992.

    [15] Bedford A F, Edmondson P B, Mortimer C T. Heats of formation and bond energies part VI n-butylisobutyraldimine n-butylisobutylamine pyrazole and imidazole[J].JChemSoc, 1962, 87: 2927-2931.

    [16] Gabriel S, Eric E M, Joseph W B. Quantum chemical study of the structure and thermochemistry of the five-membered nitrogen-containing heterocycles and their anions and radicals[J].JPhysChemA, 2006, 110(51): 13979-13988.

    [17] Kabo G J, Kozyro A A, Krasulin A P, et al. Thermodynamic properties and tautomerism of tetrazole[J].JChemThermodyn, 1993, 25(4): 485-493.

    [18] Stull D R, Westrum E F, Sinke G C. The chemical thermodynamics of organic compounds[M]. New York: John Wiley & Sons Inc. 1969: 807-810.

    [19] Bathelt H, Volk F, Weindel M. The ICT-database of thermochemical values 4th ed[M]. 1997.

    人妻系列 视频| 国产日韩欧美在线精品| 久久久久国产网址| 黄片无遮挡物在线观看| 搡老乐熟女国产| 97在线视频观看| 日日摸夜夜添夜夜爱| 最后的刺客免费高清国语| 国产精品一区www在线观看| 国产高清三级在线| av在线蜜桃| 日韩不卡一区二区三区视频在线| 大片免费播放器 马上看| 美女视频免费永久观看网站| www.av在线官网国产| 国产黄频视频在线观看| 日本av手机在线免费观看| 一级黄片播放器| 亚洲人成网站高清观看| 国产高潮美女av| 黑人高潮一二区| 性插视频无遮挡在线免费观看| 晚上一个人看的免费电影| 尾随美女入室| 3wmmmm亚洲av在线观看| 在线观看免费高清a一片| 欧美成人精品欧美一级黄| 国产成人一区二区在线| 亚洲精品,欧美精品| 国产亚洲最大av| 国产 精品1| 国产色婷婷99| 我的老师免费观看完整版| 国产欧美另类精品又又久久亚洲欧美| 黄色视频在线播放观看不卡| kizo精华| 欧美日韩视频精品一区| 嫩草影院新地址| 国产69精品久久久久777片| 另类亚洲欧美激情| 精品人妻视频免费看| 青春草亚洲视频在线观看| 亚洲精品第二区| 少妇的逼水好多| 在线观看av片永久免费下载| 亚洲国产欧美人成| 久久99热6这里只有精品| 久久久欧美国产精品| 久久热精品热| 美女xxoo啪啪120秒动态图| 韩国高清视频一区二区三区| 黄色一级大片看看| 少妇人妻 视频| 国产精品久久久久久av不卡| tube8黄色片| 肉色欧美久久久久久久蜜桃 | 青春草国产在线视频| 小蜜桃在线观看免费完整版高清| 国产 一区精品| 午夜免费鲁丝| 亚洲精品456在线播放app| 久久久久久久久久成人| av免费观看日本| 一区二区三区四区激情视频| 97在线人人人人妻| 麻豆久久精品国产亚洲av| 自拍欧美九色日韩亚洲蝌蚪91 | 性插视频无遮挡在线免费观看| 欧美高清性xxxxhd video| 少妇高潮的动态图| 免费不卡的大黄色大毛片视频在线观看| 久久久久九九精品影院| 日韩一区二区视频免费看| 在线观看av片永久免费下载| 日本av手机在线免费观看| 中文字幕制服av| 亚洲色图av天堂| 成人国产麻豆网| 美女内射精品一级片tv| 黄色欧美视频在线观看| 午夜日本视频在线| 色播亚洲综合网| 久久久久久久久久久丰满| 99视频精品全部免费 在线| 各种免费的搞黄视频| 禁无遮挡网站| 看黄色毛片网站| 蜜臀久久99精品久久宅男| 亚洲av电影在线观看一区二区三区 | 国产色爽女视频免费观看| 免费观看av网站的网址| 欧美另类一区| 国产精品蜜桃在线观看| 少妇高潮的动态图| 中文精品一卡2卡3卡4更新| 性色av一级| 中国美白少妇内射xxxbb| 国产精品成人在线| 欧美xxxx黑人xx丫x性爽| 精品人妻一区二区三区麻豆| 亚洲国产高清在线一区二区三| 国产真实伦视频高清在线观看| 久久久久久久午夜电影| 九草在线视频观看| 成人毛片a级毛片在线播放| 97超视频在线观看视频| 色播亚洲综合网| 精品人妻熟女av久视频| 精品人妻一区二区三区麻豆| 一个人看视频在线观看www免费| 大陆偷拍与自拍| 男的添女的下面高潮视频| 久久久午夜欧美精品| 亚洲av免费在线观看| 蜜臀久久99精品久久宅男| 亚洲激情五月婷婷啪啪| 只有这里有精品99| 久久精品国产自在天天线| 国产成人免费观看mmmm| 亚洲国产欧美人成| 亚洲内射少妇av| av在线天堂中文字幕| 美女内射精品一级片tv| 大香蕉97超碰在线| 亚洲精品第二区| 丝瓜视频免费看黄片| 亚洲天堂国产精品一区在线| 亚洲av在线观看美女高潮| 国产成人a区在线观看| 免费看日本二区| 国产精品国产三级国产专区5o| 久久韩国三级中文字幕| 国产在视频线精品| 一级黄片播放器| 欧美成人精品欧美一级黄| 国产精品不卡视频一区二区| 欧美日韩一区二区视频在线观看视频在线 | 男人添女人高潮全过程视频| 国产精品一区二区在线观看99| 亚洲av欧美aⅴ国产| 最新中文字幕久久久久| 欧美精品国产亚洲| 国产精品女同一区二区软件| 春色校园在线视频观看| 欧美3d第一页| 国产色爽女视频免费观看| 99re6热这里在线精品视频| 亚洲av日韩在线播放| 精品人妻视频免费看| 亚洲自偷自拍三级| 成人无遮挡网站| 热re99久久精品国产66热6| 成人欧美大片| 亚洲精品,欧美精品| 少妇人妻 视频| 看十八女毛片水多多多| 尾随美女入室| 日韩,欧美,国产一区二区三区| 亚洲自拍偷在线| 久久久精品欧美日韩精品| 午夜激情福利司机影院| av专区在线播放| 久久鲁丝午夜福利片| 午夜福利网站1000一区二区三区| 久久久午夜欧美精品| 在线观看三级黄色| 69人妻影院| 狂野欧美白嫩少妇大欣赏| 精品亚洲乱码少妇综合久久| 在线播放无遮挡| 人妻夜夜爽99麻豆av| 日韩不卡一区二区三区视频在线| 精品久久国产蜜桃| 男插女下体视频免费在线播放| 极品教师在线视频| 久久亚洲国产成人精品v| 日韩av不卡免费在线播放| 亚洲自偷自拍三级| 久久精品国产亚洲网站| 国产av码专区亚洲av| a级毛片免费高清观看在线播放| 男人狂女人下面高潮的视频| 成人毛片60女人毛片免费| 午夜免费鲁丝| 久久久精品免费免费高清| 欧美bdsm另类| 少妇熟女欧美另类| 你懂的网址亚洲精品在线观看| 九色成人免费人妻av| 亚洲精品456在线播放app| 日本-黄色视频高清免费观看| 国产高清国产精品国产三级 | 久久精品熟女亚洲av麻豆精品| 国产一区二区三区av在线| 亚洲综合精品二区| 联通29元200g的流量卡| 午夜福利网站1000一区二区三区| 久久久久久久久大av| 国产成人免费无遮挡视频| 精品亚洲乱码少妇综合久久| 女人久久www免费人成看片| 日韩欧美精品v在线| av国产精品久久久久影院| 久久精品久久久久久久性| 中文资源天堂在线| 欧美精品一区二区大全| 精品午夜福利在线看| 日本爱情动作片www.在线观看| 久久久久性生活片| 80岁老熟妇乱子伦牲交| 纵有疾风起免费观看全集完整版| 国产成年人精品一区二区| 久久韩国三级中文字幕| av黄色大香蕉| 国产毛片a区久久久久| av免费观看日本| 一区二区三区四区激情视频| 女人被狂操c到高潮| 亚洲国产高清在线一区二区三| 一级毛片久久久久久久久女| 欧美一级a爱片免费观看看| av播播在线观看一区| 美女cb高潮喷水在线观看| 亚洲,欧美,日韩| 自拍欧美九色日韩亚洲蝌蚪91 | 欧美国产精品一级二级三级 | 人人妻人人澡人人爽人人夜夜| 黄片wwwwww| 免费观看性生交大片5| 又爽又黄无遮挡网站| 亚洲在久久综合| 男女啪啪激烈高潮av片| 男女国产视频网站| 韩国av在线不卡| 免费av观看视频| 免费看a级黄色片| 欧美性猛交╳xxx乱大交人| 久久99热6这里只有精品| 日韩成人伦理影院| 日日啪夜夜撸| 久久影院123| 欧美3d第一页| 三级经典国产精品| 自拍欧美九色日韩亚洲蝌蚪91 | 天堂俺去俺来也www色官网| 老司机影院毛片| 啦啦啦在线观看免费高清www| av女优亚洲男人天堂| 亚洲av不卡在线观看| 免费黄频网站在线观看国产| 亚洲欧美日韩东京热| 汤姆久久久久久久影院中文字幕| av国产精品久久久久影院| 亚洲av中文字字幕乱码综合| 久久人人爽人人爽人人片va| 国产日韩欧美亚洲二区| 草草在线视频免费看| 国产视频内射| 亚洲精品日韩在线中文字幕| 男人爽女人下面视频在线观看| 成人免费观看视频高清| 精品一区在线观看国产| 精品视频人人做人人爽| 爱豆传媒免费全集在线观看| 尤物成人国产欧美一区二区三区| 3wmmmm亚洲av在线观看| 美女视频免费永久观看网站| 国产精品成人在线| 99热这里只有是精品在线观看| 我的老师免费观看完整版| 性插视频无遮挡在线免费观看| 国产成人一区二区在线| 舔av片在线| 国产色婷婷99| 国产精品人妻久久久影院| 久久久久久久国产电影| 亚洲天堂av无毛| 午夜激情福利司机影院| 日韩一本色道免费dvd| 大香蕉97超碰在线| av.在线天堂| 少妇猛男粗大的猛烈进出视频 | 97热精品久久久久久| 日本熟妇午夜| 观看美女的网站| 亚洲av中文字字幕乱码综合| 九色成人免费人妻av| 国产大屁股一区二区在线视频| 欧美bdsm另类| 狠狠精品人妻久久久久久综合| 日产精品乱码卡一卡2卡三| 五月天丁香电影| 一个人看的www免费观看视频| 午夜亚洲福利在线播放| 特级一级黄色大片| 超碰av人人做人人爽久久| 成人欧美大片| 亚洲欧洲日产国产| 成人欧美大片| 男女边吃奶边做爰视频| 在线观看一区二区三区激情| 亚州av有码| 欧美成人午夜免费资源| 日韩不卡一区二区三区视频在线| 熟妇人妻不卡中文字幕| 26uuu在线亚洲综合色| 99热这里只有是精品在线观看| 欧美精品人与动牲交sv欧美| 国产精品久久久久久精品电影小说 | 久久久久久久久久人人人人人人| 毛片一级片免费看久久久久| 成人欧美大片| 日韩伦理黄色片| 69av精品久久久久久| 一二三四中文在线观看免费高清| 中文字幕制服av| 91久久精品电影网| 国国产精品蜜臀av免费| 国产精品蜜桃在线观看| 欧美xxⅹ黑人| 成人漫画全彩无遮挡| 亚洲国产成人一精品久久久| 夫妻性生交免费视频一级片| 精品一区在线观看国产| 97在线人人人人妻| 国产爱豆传媒在线观看| 午夜免费鲁丝| 日韩视频在线欧美| 成人国产麻豆网| 简卡轻食公司| 亚洲欧美日韩东京热| 蜜臀久久99精品久久宅男| 国产成人a∨麻豆精品| 午夜免费观看性视频| 自拍偷自拍亚洲精品老妇| 日本一二三区视频观看| 不卡视频在线观看欧美| 777米奇影视久久| 久久久色成人| 波多野结衣巨乳人妻| 99热国产这里只有精品6| 精品久久久久久久末码| 免费看不卡的av| 七月丁香在线播放| 老司机影院成人| 搞女人的毛片| 五月玫瑰六月丁香| 亚洲国产成人一精品久久久| 国产成人freesex在线| 有码 亚洲区| av在线app专区| 国产精品偷伦视频观看了| 亚洲精品国产av成人精品| 亚洲在久久综合| 啦啦啦在线观看免费高清www| 久久精品夜色国产| .国产精品久久| 男女边吃奶边做爰视频| 国产欧美日韩一区二区三区在线 | 国产午夜精品久久久久久一区二区三区| 久久韩国三级中文字幕| 一级毛片aaaaaa免费看小| 日本色播在线视频| 亚洲欧美清纯卡通| 欧美高清成人免费视频www| 搡女人真爽免费视频火全软件| 在线 av 中文字幕| 国产一区二区三区综合在线观看 | 欧美激情国产日韩精品一区| 岛国毛片在线播放| 国产精品久久久久久精品电影| 亚洲成人久久爱视频| 国产精品.久久久| 一级a做视频免费观看| 亚洲精品456在线播放app| 寂寞人妻少妇视频99o| 舔av片在线| 亚洲不卡免费看| 日韩av不卡免费在线播放| 欧美成人a在线观看| 欧美高清成人免费视频www| 精品一区二区免费观看| 免费在线观看成人毛片| av天堂中文字幕网| 深爱激情五月婷婷| 亚洲人成网站在线播| 午夜福利高清视频| 成人无遮挡网站| 91狼人影院| 亚洲国产欧美在线一区| 亚洲精品456在线播放app| 永久免费av网站大全| 毛片一级片免费看久久久久| 亚洲在久久综合| 国产黄片视频在线免费观看| 国产精品一区二区在线观看99| 欧美日韩国产mv在线观看视频 | 国产欧美亚洲国产| 日本免费在线观看一区| eeuss影院久久| 成人鲁丝片一二三区免费| 午夜福利高清视频| 99久久精品国产国产毛片| 国产黄片美女视频| 观看美女的网站| 80岁老熟妇乱子伦牲交| 国产精品秋霞免费鲁丝片| 美女视频免费永久观看网站| 2021天堂中文幕一二区在线观| 久久久久国产精品人妻一区二区| 色网站视频免费| 深爱激情五月婷婷| 黄色欧美视频在线观看| 精品久久久久久电影网| 欧美成人精品欧美一级黄| 亚洲欧美精品专区久久| 免费黄色在线免费观看| 国产永久视频网站| 99久久精品国产国产毛片| 国产av码专区亚洲av| 免费观看无遮挡的男女| 欧美变态另类bdsm刘玥| 又粗又硬又长又爽又黄的视频| 真实男女啪啪啪动态图| 免费av毛片视频| 如何舔出高潮| 国产真实伦视频高清在线观看| 美女高潮的动态| 久久精品人妻少妇| 久久久色成人| 国产成人精品久久久久久| 一区二区三区免费毛片| 亚洲欧美日韩东京热| 青春草亚洲视频在线观看| 99久久精品一区二区三区| 一本色道久久久久久精品综合| 久久久久久久国产电影| 国产精品无大码| 一级黄片播放器| 纵有疾风起免费观看全集完整版| 国模一区二区三区四区视频| 女人久久www免费人成看片| 欧美性猛交╳xxx乱大交人| 成年女人在线观看亚洲视频 | 少妇人妻精品综合一区二区| 国产有黄有色有爽视频| 一二三四中文在线观看免费高清| 伦精品一区二区三区| av在线天堂中文字幕| 色5月婷婷丁香| 国产精品女同一区二区软件| 国产成人一区二区在线| 国产高清国产精品国产三级 | 九草在线视频观看| 午夜亚洲福利在线播放| 国产毛片在线视频| 97在线视频观看| 小蜜桃在线观看免费完整版高清| 久久久久久国产a免费观看| 日韩电影二区| 国产亚洲91精品色在线| 欧美成人午夜免费资源| 国产精品秋霞免费鲁丝片| 久热久热在线精品观看| 亚洲真实伦在线观看| 国产视频内射| 免费看a级黄色片| 啦啦啦啦在线视频资源| 免费高清在线观看视频在线观看| 国产美女午夜福利| 日韩人妻高清精品专区| 成年人午夜在线观看视频| 亚洲国产高清在线一区二区三| 久久精品综合一区二区三区| 91午夜精品亚洲一区二区三区| 嫩草影院入口| 日本熟妇午夜| 视频中文字幕在线观看| 久久亚洲国产成人精品v| 搡老乐熟女国产| 国产精品国产av在线观看| 夫妻午夜视频| 国产淫语在线视频| 国产精品人妻久久久影院| 观看免费一级毛片| 国产精品一及| 99久久人妻综合| 2018国产大陆天天弄谢| 日本熟妇午夜| 色婷婷久久久亚洲欧美| 深夜a级毛片| 高清在线视频一区二区三区| 激情五月婷婷亚洲| 国产精品.久久久| 国产片特级美女逼逼视频| 欧美日韩在线观看h| 中文字幕人妻熟人妻熟丝袜美| 久久久久久久午夜电影| 三级经典国产精品| 国产黄色视频一区二区在线观看| 黄片wwwwww| 黄色欧美视频在线观看| 亚洲精品久久午夜乱码| 身体一侧抽搐| 国产精品久久久久久精品古装| www.色视频.com| 少妇的逼水好多| 国产精品久久久久久av不卡| 中文字幕av成人在线电影| 极品教师在线视频| 大片电影免费在线观看免费| 五月天丁香电影| 国产 一区精品| 日本一本二区三区精品| 免费大片18禁| 一级毛片黄色毛片免费观看视频| 建设人人有责人人尽责人人享有的 | 日韩国内少妇激情av| 久久国内精品自在自线图片| 亚洲欧美精品专区久久| 又黄又爽又刺激的免费视频.| 舔av片在线| 亚洲成人av在线免费| 免费黄色在线免费观看| 少妇人妻久久综合中文| 91精品一卡2卡3卡4卡| 美女内射精品一级片tv| 婷婷色麻豆天堂久久| 亚洲av在线观看美女高潮| 一级毛片电影观看| 夫妻性生交免费视频一级片| 免费在线观看成人毛片| 免费电影在线观看免费观看| 亚洲,欧美,日韩| 2021少妇久久久久久久久久久| 国产精品无大码| 亚洲在线观看片| 精品少妇久久久久久888优播| 日本黄大片高清| 国产精品久久久久久精品古装| 亚洲自偷自拍三级| 久久鲁丝午夜福利片| 亚洲欧美中文字幕日韩二区| 日韩不卡一区二区三区视频在线| 亚洲人成网站在线观看播放| 大片免费播放器 马上看| 亚洲激情五月婷婷啪啪| 日日啪夜夜爽| 久久综合国产亚洲精品| 欧美xxⅹ黑人| 成人亚洲精品av一区二区| 九色成人免费人妻av| 国产白丝娇喘喷水9色精品| 国产美女午夜福利| 免费av毛片视频| 国产伦理片在线播放av一区| 日本一二三区视频观看| 精华霜和精华液先用哪个| 成年女人在线观看亚洲视频 | 成人毛片a级毛片在线播放| 亚洲人成网站在线播| 国产精品三级大全| 久久女婷五月综合色啪小说 | 交换朋友夫妻互换小说| 高清毛片免费看| 男女国产视频网站| 在线天堂最新版资源| 亚洲精品456在线播放app| 日韩av免费高清视频| 成人亚洲精品一区在线观看 | 九九爱精品视频在线观看| 国产亚洲最大av| 国产精品久久久久久久电影| 国产精品久久久久久久久免| 男女边吃奶边做爰视频| 大陆偷拍与自拍| 婷婷色av中文字幕| 又粗又硬又长又爽又黄的视频| 白带黄色成豆腐渣| 国产精品国产三级国产专区5o| 国产欧美另类精品又又久久亚洲欧美| 国产成人freesex在线| 熟女人妻精品中文字幕| 日韩制服骚丝袜av| 亚洲,欧美,日韩| 亚洲欧美中文字幕日韩二区| 菩萨蛮人人尽说江南好唐韦庄| 久久亚洲国产成人精品v| 国产精品嫩草影院av在线观看| 99热国产这里只有精品6| 亚洲精华国产精华液的使用体验| 久久6这里有精品| 日本-黄色视频高清免费观看| 亚洲精品第二区| 日韩不卡一区二区三区视频在线| 99九九线精品视频在线观看视频| 80岁老熟妇乱子伦牲交| a级毛片免费高清观看在线播放| 免费大片黄手机在线观看| 国产在视频线精品| 久久久午夜欧美精品| 欧美极品一区二区三区四区| 大码成人一级视频| 中文资源天堂在线| 欧美成人a在线观看| 国产免费一级a男人的天堂| 国产乱来视频区| 欧美bdsm另类| 一级爰片在线观看| 噜噜噜噜噜久久久久久91| 不卡视频在线观看欧美| 亚洲国产最新在线播放| 日韩av在线免费看完整版不卡| 欧美丝袜亚洲另类| 免费看a级黄色片|