• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Numerical Study on Deformation and Ignition Process of Impacting Granular HMX Explosive in Drop Hammer Test

    2016-05-08 13:19:04YINLuLIUZhiyueWANGLiqiong
    含能材料 2016年9期

    YIN Lu, LIU Zhi-yue, WANG Li-qiong

    (State Key Laboratory of Explosion Science and Technology & School of Mechatronical Engineering Beijing Institute of Technology, Beijing 100081, China)

    1 Introduction

    Drop hammer apparatus is widely used to test the impact sensitivities of energetic materials. Until present, there is just a little research work toward the quantitative analysis for the ignition process in the tests. Experimentally, Bowden and Yoffe[1]conducted drop hammer test and first proposed the concept of hot spots inside explosive under impact. They thought that the internal gas adiabatic compression, crystal surface frictions and viscous heat caused by turbulence are the main reasons for hot spot formation. Field[2]modified drop hammer test equipment to get the detailed knowledge of hot spot formation. Through observations, he concluded that the adiabatic bubble temperature, adiabatic shear band and surface or the internal friction are the main reasons for the ignition of explosives. Considering the factor of the grain effectiveness, Gonthier[3]studied the compaction ignition process using impact speed from 10 m·s-1to 100 m·s-1. He studied the effect of viscous elastic-plastic contribution to the ignition in grain explosives. Yushi Wen et al[4]conducted a drop weight tests on three samples including crystal powders of RDX, tetryl, and PBX powder to probe the correlation between the explosion probabilities and the sample dose. And they found that the explosion probability will firstly increase and then decrease when the mass of sample reduces from 50 mg to 1.1 mg, under drop height of 25 cm and a 10 kg hammer. They explained the increasing part by proposing that the less mass the more energy the explosive sample absorbs and the easier the explosions occur, leading to higher explosion probability. The other part is a little complicated, they used a dual-factor-competition model to explain in their paper. To a block of PBX-9501 explosive (plastic bonded explosives with HMX mass fraction of 95%) under the impact with a medium speed, Bennett[5]simulated the dynamic response of impact test by using the DYNA3D software. He revealed that the main ignition mechanism is due to the friction on the shear fracture surfaces. However, it is difficult to present the hot spot formation and the meso-size process development owing to the small size of the hot spot (0.1-100 μm magnitude) and the short time to ignition (0.1 μs-1ms magnitude). In this paper, we utilize the numerical simulation method to study the deformation processes of explosive particles under the low-speed (<10 m·s-1) impact of drop hammer in the practical drop hammer device. The plastic energy in the particles was investigated to examine its role in the formation of hot spots in HMX explosive. The temperature rises in HMX particles were calculated and compared with the critical ignition temperature from other experimental measurement.

    2 Numerical Simulation

    2.1 Brief Description of Drop Hammer Apparatus

    Drop hammer apparatus is a device to be utilized to measure the impact sensitivity of explosives as shown in Fig.1. The hammer drops along a guide rail. From a certain height, the hammer falls freely and hits on the striker. The explosive material is placed between the striker and the anvil. The drop hammer, striker, anvil, guide sleeve and the base are generally made of steel cylinders. Fig.2 illustrates the tester part of the device in detail. Our simulation model will be established from it.

    Fig.1 Schematic diagram of drop hammer apparatus

    Fig.2 Schematic diagram of impact tester

    1—guide sleeve, 2—strikers, 3—explosive samples, 4—base

    2.2 Computational Model

    Based on the actual drop hammer apparatus, it is assumed that the hammer directly impacts onto the striker with an initial speed. The stresses and strains in the striker, particles, the hammer and the anvil are investigated. The computational model system consists of drop hammer, striker, anvil, guide sleeve and explosives particles. The ANSYS Design Modeler software is employed to draw the computational shapes of the components given in Fig.2. The gained configuration is shown in Fig.3. The configuration in simulation contains five parts of drop hammer, striker, HMX particles, anvil, and guide sleeve. In the calculations, the anvil and the guide sleeve are assumed to be stationary. Area-1 in Fig.3 is the location of the HMX particles and the detailed particle distribution is amplified in Fig.4. The dimension of HMX particle is chosen from the practical characteristic scale size. For the computational convenience, the shape of the particle is simplified as a circle. The particles are evenly stacked in layer by layer. There are 25 particles at the bottom layer in half of the configuration (Fig.4). Considering the fact of the symmetry of the model, half of the configuration is selected to calculate during simulation.

    In the model, both the diameters of striker and anvil are 10 mm and their heights are 10 mm. The outer diameter of guide sleeve is 40 mm, the inner diameter is 10 mm and the height is 16 mm. The drop hammer is 5 kg, the diameter is 40 mm and the height is 127 mm. The HMX particles have single diameter of 200 μm. The materials steel and HMX follow an elastic-plastic deforming behavior. Their materials parameters are listed in Table 1 and Table 2, respectively.

    Fig.3 Simulation diagram of impact structure(1-sample area)

    Fig.4 The amplification of impact structure schematic diagram

    Table 1 Parameters of steel material[6]

    materialdensity/kg·m-3elasticmodulus/GPaspecificheatcapacity/J·kg-1·K-1yieldstrength/GPaPoissonratiosteel78302104600.310.30

    Table 2 Material parameters of HMX[3]

    materialdensity/kg·m-3elasticmodulus/GPaspecificheatcapacity/J·kg-1·K-1yieldstrength/GPaPoissonratioHMX190324.015000.26[6]/0.13[7] 0.20

    In the experimental tests for HMX particle samples, it is found that using 5 kg hammer the impact drop heightH50is 33 cm, from which letting the hammer fall, the probability of the ignition occurs is about 50%. According to this data, in the simulation,H50is used to get initial velocity for drop hammer. The velocity is calculated to be 2.543 m·s-1, at which the hammer will hit the striker. Accounting for the influence of the gravity, the system is subjected to the gravitational acceleration of 9.806 m·s-2. In the calculation, the time step is automatically controlled by the program, roughly being 3.1×10-10s.

    Assuming that the HMX particles are suitable for the elastic-plastic constitutive model and the simulation uses the dynamic software AUTODYN in the ANSYS products. Before the calculations, the model needs to be meshed. The quadrilateral mesh is used for all parts of the model system. The HMX particles are meshed by general quadrilateral with the characteristic length of 1.5 μm. The other parts are of a square grid, with a typical size of 40 μm. Fig.5 shows the overall grid partition of the impact system. For the sake of better viewing, Fig.6 gives a magnification of the mesh of HMX particles.

    Fig.5 Mesh partition diagram of impact structure

    Fig.6 Magnification of mesh of HMX particles

    3 Results and Discussions

    3.1 Calculation Method of Temperature Rise

    Since the simulation software does not provide a package for calculating the temperature rise accompanying the deformation, we have to establish a method to calculate it using the stresses and strains obtained from simulation. We already known that the deformation of HMX particles under stress including elastic and plastic deformations. However, the elastic behavior does not produce work to cause temperature rise, so we only discuss the calculation method of plastic work. The calculation formula for plastic work is according to Eq.(1).

    (1)

    Whereσis the stress, MPa,εis the strain. In calculating plastic work, an approximate method is taken. Since the stress and the strain are known at any time from the simulation results, the equivalent stress and the equivalent strain at each time can be calculated. The product of these two terms can be thought as equivalent plastic work. Summing the equivalent plastic work at all time phases, the total plastic work is obtained. At each time phase, the averaging stress is calculated according to Eq.(2).

    (2)

    Δεi=εi-εi-1

    (3)

    Whereεiis the difference of two plastic strains between two adjacent time-steps of Δti-1and Δti;εiis the plastic strain at time-step of Δti. In the beginning of the calculation, let Δε0=0. The total plastic work is gained by Eq.(4).

    (4)

    WhereW(J), is the work done during the plastic deformation of some specific element in all time-steps Δt1to Δtn.nis the number of the computational cycles from the beginning to the desired termination.

    Setting the area of the specific element as unit value, the heat is transformed by the partial plastic workWs(J). We assume that the total plastic work is converted into heat energy, denoted byQs(J). AndCV(J/(kg·K)) is the volumetric specific heat of HMX material . The temperature rise ΔT(℃), due to the accumulation of heat can be determined by the following Eq.(5).

    (5)

    3.2 Effect of HMX Particle Inhomogeneity on Temperature Rise

    In order to investigate the effect of particle inhomogeneity on the local heat formation, the arrangement of HMX particles are constructed into two cases: regular arrangement in which all particles are of the same circular shape and irregular arrangement in which at some locations there are replacements by smaller particles. Furthermore, owing to the fact that there is ambiguity on the yield strength value for HMX particle, two yield strength values are considered. Dick and Menikoff[7]gives a 0.26 GPa value by tests, however, Palmer and Field[8]present the value of 0.13 GPa. At first, a 0.26 GPa value for yield strength of HMX is used in the calculations to analyze the effect on temperature rise for both regular and irregular particle arrangements.

    Firstly, we carry out simulations on the case of the regular arrangement. In the calculation of the plastic work, the plastic stress and plastic strain are two important physical variables. Those values should be correctly obtained and kept. Fig.7 shows stress distribution in HMX particles att=25 μs,t=50 μs,t= 75 μs andt=100 μs, for the knowledge of the changing process of the particles stress. In Fig.7, the different colors represent different ranges of the stress magnitude (unit-MPa). Fig.8 shows plastic strain diagram of HMX particles correspondingly att=25 μs,t=50 μs,t=75 μs andt=100 μs. Here, the colors represent different ranges of the plastic strain magnitude. After impacted by the drop hammer, the particles still keep the original regular arrangement, but, the forces in particles are uneven. As time reaches 100 μs, there appears a location with the maximum of plastic work in the particle system. With yield strength of 0.26 GPa, the location designated asM1presents the maximum plastic work just as shown in Fig.7 and Fig.8. Fig.9 shows the varying curves of the local stress and plastic strain with time correspondingly.

    Fig.7 Equivalent stress of HMX particles at different times in case of regular arrangement

    Fig.8 Equivalent plastic strain of HMX particles at different times in case of regular arrangement

    Fig.9 Stress and plastic strain atM1point versus time curve in case of regular arrangement

    Next, the account is taken into the case of irregular arrangement of particles. In the irregular arrangement, the HMX particles randomly packed. The arrangement includes 206 circular particles with diameters ranging from 40 mm to 300 mm. Fig.10 and Fig.11 show the calculated stress and plastic strain distributions in HMX particles with irregular arrangement att=25 μs,t=50 μs,t=75 μs andt=100 μs, respectively. Based on the simulation results, it is found that at point M2there is the maximum plastic work. Correspondingly, the curves of the stress and the plastic strain versus time at that point are shown in Fig.12.

    After the stress and plastic strain values of pointsM1andM2are obtained at different times, the temperature rise can be calculated by Eqs. (1) to (5). Table 3 presents the results of the temperature rises obtained in this way. As it can be seen from the table, in the irregular arrangement of particles there gives great influence on HMX particle temperature rise, corresponding to the temperature rise of 142.9 ℃. Rather, the temperature rise in the regular arrangement reaches 37.2 ℃ only. It indicates that the plastic work in the irregular arrangement of HMX particles has great contribution to the temperature rise. On the knowledge acquired from thermal test, the ignition temperature for HMX particles is 210 ℃, so it is more reasonable in the simulation by considering the factor of irregular arrangement of the particles.

    Fig.10 Equivalent stress of HMX particles at different times in case of irregular arrangement

    Fig.11 Equivalent plastic strains in HMX particles at different times in case of irregular arrangement

    Fig.12 Stress and plastic strain at pointM2versus time in case of irregular arrangement

    Table 3 Temperature rises at specific locations in two cases of HMX particle arrangement

    pointM1M2ΔT/℃37.2142.9

    From the numerical simulations as well as calculations for temperature rise, it is found that the irregular arrangement of HMX particles can provide higher temperature rise in the particles than the regular arrangement. The difference comes from the sizes of the gaps between the particles. In the irregular arrangement, the particles with random distributions can form larger voids. The distribution of stress is uneven. In the larger gap area there is greater local plastic work.

    3.3 Effect of Dropping Height on Temperature Rise in Irregular Arrangement

    The difference of dropping height gives the different initial speed of the hammer. Higher dropping height passes a greater speed to the hammer. Owing that the irregular arrangement of particles produces much higher temperature rise in particles, we mainly focus our study on the case of irregular arrangement of particles. Let the hammer fall from different heights more thanH50, we calculate the temperature rises. To three kinds of the dropping heights of 40, 50 cm and 60 cm, the changes of temperature rises at the location with maximum plastic work are calculated in the similar ways as given before. The obtained temperatures are presented in Table 4 for these situations.

    As seeing from Fig.13, the temperature rise in the particles increases with the rising of the height of the drop hammer. When the drop height reaches 60 cm, the temperature at point with maximum strain is 178.3 ℃. This value is more closer to the ignition temperature of the HMX particles.

    Table 4 Temperature rise values of HMX particles at different drop heights

    H/cm33405060ΔT/℃142.9149.5165.3178.3

    Fig.13 Histogram of temperature rises with changes in drop heights

    3.4 Effect of Reducing Yield Strength on Temperature Rise

    In the above sections, we have calculated the temperature rises in the particles as the yield strength is selected to be 0.26 GPa. Now reducing the yield strength to 0.13 GPa, the calculation is operated and the temperature rise is calculated. The drop height is stillH50and the particles are packed in the form of the irregular arrangement. The purpose is to examine how the value of the yield strength affects the temperature rise in particles.

    After simulations, the equivalent stress distribution and equivalent plastic strain distribution are shown in Fig.14 and Fig.15. As before, a point with maximum plastic work is designated with labelling byM3in the figures. In accordance to the temperature rise calculation by Eq.(1) to Eq.(5), the temperature rise at pointM3is obtained to be 83.2 ℃.

    In the calculations, the changes of the yield strength value of the HMX particle material affect the temperature rise in particles greatly. When the yield strength is of smaller value, the temperature rise in particles is low. The explanation for this result is that under the same loading, as the yield strength is reduced, the stress values in particles are also reduced. Hence, the lower stresses lead to smaller plastic work while plastic strains vary in the same range. The temperature is naturally low from the smaller heat energy.

    Fig.14 Equivalent stresses of HMX particles at different times with 0.13 GPa yield strength

    Fig.15 Equivalent plastic strains of HMX particles at different times with 0.13 GPa yield strength

    4 Conclusions

    Through numerical simulation of drop hammer test for granular HMX, the local temperature rises of the particles can be calculated from the plastic deformation work of the particles. To experimentalH50critical drop height for HMX, and particles being under irregular arrangement, the maximum temperature rise in particles is calculated to be 142.9 ℃. As the drop height is increased to 60 cm, the temperature rise reaches 178.3 ℃. These predicted temperatures tend to initiate chemical reaction. However, also, the simulation does not provide the proof on the existence of the obvious inter-particle friction. On the influence of yield strength for explosive particles, smaller yield strength value leads to a lower temperature rise. The result indicates that the yield strength for explosive particles is one of the important factors in the prediction of temperature rise in drop hammer test.

    At present,the chemical reaction and the self-heating process of particles are not included in the analysis. Even so, the obtained results on the temperature rises are tend to reach the ignition temperature of HMX explosive measured via ther-mal analysis test. Regarding other factors that might cause the particle ignition will be studied in the future work.

    [1] Bowden F P, Yoffe A D. Fast reactions in solids[M]. London: Butterworth Scientific Publications, 1958.

    [2] Field J E. Hot spot ignition mechanisms for explosives[J].AccChemRes, 1992, 25: 489-496.

    [3] Gonthier K A. Predictions for weak mechanical ignition of strain hardened granular explosives[J].JApplPhys, 2004, 95(7): 3482-3494.

    [4] Wen Y, Long X P, Xiang Y, et al. Mass dependent of explosion probability of RDX, Tetryl, and a PBX powder in drop hammer test[J].Propellants,Explosives,Pyrotechnics, 2015, 440(3): 33-438.

    [5] Bennett J G, Habeman K S, Johnson J N. A constitutive model for the non-shock ignition and mechanical response of high explosives[J].JMechPhysSolids, 1998, 46(12): 2303-2322.

    [6] ASME BPVC Ⅷ 2-1998, ASME boiler and pressure vessel code[S]. American Society of Mechanical Engineers, 1998.

    [7] Dick J J, Menikoff R. Analysis of wave profiles for single crystal HMX[R]. Los Alamos National Laboratory Report, LA-OR-01-574, 2001, Los Alamos.

    [8] Palmer S J P, Field J E. The deformation and fracture of β-HMX[J].ProcRSoc, 1982, 383: 399-407.

    韩国av在线不卡| 最黄视频免费看| 99精国产麻豆久久婷婷| 亚洲经典国产精华液单| 中文字幕人妻丝袜制服| 人成视频在线观看免费观看| 亚洲av中文av极速乱| 黄片无遮挡物在线观看| 久久久久久久久大av| 精品久久蜜臀av无| 激情五月婷婷亚洲| 日日摸夜夜添夜夜爱| av卡一久久| 三级国产精品片| 一区二区日韩欧美中文字幕 | 国产精品久久久久久久电影| 久久久久久久久大av| 少妇猛男粗大的猛烈进出视频| 婷婷色av中文字幕| 一本一本久久a久久精品综合妖精 国产伦在线观看视频一区 | av在线app专区| 久久av网站| 国产免费现黄频在线看| 久久精品国产自在天天线| 欧美性感艳星| 亚洲av不卡在线观看| 国产精品99久久久久久久久| freevideosex欧美| 色视频在线一区二区三区| 久久精品国产亚洲网站| 少妇的逼水好多| 男的添女的下面高潮视频| 亚洲国产欧美在线一区| 日韩免费高清中文字幕av| 乱人伦中国视频| 女性生殖器流出的白浆| 美女国产视频在线观看| 亚洲欧美清纯卡通| 国产日韩欧美亚洲二区| 在线看a的网站| 爱豆传媒免费全集在线观看| 色婷婷久久久亚洲欧美| 国产精品国产av在线观看| 久久免费观看电影| 精品一区在线观看国产| 热re99久久精品国产66热6| 18+在线观看网站| 日产精品乱码卡一卡2卡三| 男女边吃奶边做爰视频| 99热6这里只有精品| 国产av一区二区精品久久| 欧美精品一区二区大全| 国产精品三级大全| 99热全是精品| 人人妻人人爽人人添夜夜欢视频| 亚洲精品自拍成人| 9色porny在线观看| 久久久久久人妻| 精品酒店卫生间| 日韩不卡一区二区三区视频在线| 国产成人免费无遮挡视频| 18禁观看日本| 黑丝袜美女国产一区| 色婷婷av一区二区三区视频| videossex国产| 久久久久久久久久久丰满| 亚洲av二区三区四区| 视频区图区小说| 91久久精品国产一区二区成人| 18禁观看日本| 天堂中文最新版在线下载| 亚州av有码| 2021少妇久久久久久久久久久| 午夜福利视频在线观看免费| 午夜福利在线观看免费完整高清在| 十分钟在线观看高清视频www| 插阴视频在线观看视频| 午夜免费观看性视频| 人成视频在线观看免费观看| 观看美女的网站| 热re99久久精品国产66热6| 国产成人freesex在线| 亚洲熟女精品中文字幕| 日日摸夜夜添夜夜爱| 亚洲精品乱码久久久v下载方式| 欧美日本中文国产一区发布| 最近最新中文字幕免费大全7| 久久午夜福利片| 乱人伦中国视频| 九九在线视频观看精品| 国产精品免费大片| 久久99热6这里只有精品| 麻豆成人av视频| 亚洲精品自拍成人| 国产高清有码在线观看视频| 国产精品麻豆人妻色哟哟久久| 永久网站在线| 日韩大片免费观看网站| 久久久久久久精品精品| 成人国产麻豆网| av.在线天堂| 亚洲成色77777| 人人妻人人爽人人添夜夜欢视频| 午夜91福利影院| 黄色视频在线播放观看不卡| 亚洲不卡免费看| 久久久久国产网址| 一区二区三区精品91| 国产男女内射视频| 亚洲综合精品二区| 热re99久久精品国产66热6| 欧美亚洲日本最大视频资源| 久久久a久久爽久久v久久| 99国产精品免费福利视频| 肉色欧美久久久久久久蜜桃| 永久免费av网站大全| 日本av免费视频播放| 国产成人免费观看mmmm| 五月玫瑰六月丁香| 日韩成人av中文字幕在线观看| 国内精品宾馆在线| 国产一级毛片在线| 亚洲国产毛片av蜜桃av| 另类亚洲欧美激情| 成人亚洲精品一区在线观看| 国产精品国产三级专区第一集| 亚州av有码| 国产精品一区二区在线不卡| 色视频在线一区二区三区| 亚洲av免费高清在线观看| 下体分泌物呈黄色| 国产精品麻豆人妻色哟哟久久| 岛国毛片在线播放| 只有这里有精品99| 欧美另类一区| 日韩亚洲欧美综合| 国产精品麻豆人妻色哟哟久久| 精品酒店卫生间| 男的添女的下面高潮视频| 日韩精品有码人妻一区| 精品一区在线观看国产| 黄色毛片三级朝国网站| 欧美 亚洲 国产 日韩一| 国产亚洲一区二区精品| 亚洲精品久久成人aⅴ小说 | 高清午夜精品一区二区三区| 久久久久视频综合| 一级a做视频免费观看| 99九九在线精品视频| a级毛片黄视频| 中文字幕制服av| 日日摸夜夜添夜夜添av毛片| 精品熟女少妇av免费看| 日本wwww免费看| 在线观看美女被高潮喷水网站| 五月天丁香电影| 久久久a久久爽久久v久久| 女人久久www免费人成看片| 亚洲精品日韩在线中文字幕| 黑人高潮一二区| 精品少妇内射三级| 久久精品久久久久久久性| 午夜免费观看性视频| 夜夜看夜夜爽夜夜摸| 日韩精品有码人妻一区| av不卡在线播放| 少妇的逼水好多| 国产一区二区在线观看日韩| 日韩亚洲欧美综合| 亚洲精品美女久久av网站| 日日撸夜夜添| 秋霞在线观看毛片| 欧美日韩综合久久久久久| 在线观看三级黄色| 建设人人有责人人尽责人人享有的| 午夜福利,免费看| 久久99蜜桃精品久久| 视频中文字幕在线观看| 亚洲精品国产av蜜桃| 成人亚洲欧美一区二区av| 五月玫瑰六月丁香| 美女视频免费永久观看网站| 国产一区二区三区综合在线观看 | 一本—道久久a久久精品蜜桃钙片| 18禁在线无遮挡免费观看视频| 91成人精品电影| 永久免费av网站大全| 国产男女内射视频| 欧美3d第一页| 黄色配什么色好看| 亚洲精品乱久久久久久| 亚洲欧美日韩另类电影网站| 日韩,欧美,国产一区二区三区| 欧美bdsm另类| 热99国产精品久久久久久7| 国产色婷婷99| 久久久午夜欧美精品| 9色porny在线观看| 97在线人人人人妻| 高清黄色对白视频在线免费看| 一级a做视频免费观看| 亚洲人与动物交配视频| 99国产精品免费福利视频| 哪个播放器可以免费观看大片| 国产成人av激情在线播放 | 亚洲国产精品999| 日本午夜av视频| 欧美日韩国产mv在线观看视频| 久久精品熟女亚洲av麻豆精品| 蜜臀久久99精品久久宅男| 国产高清有码在线观看视频| av专区在线播放| 街头女战士在线观看网站| 丝袜美足系列| av视频免费观看在线观看| 男人操女人黄网站| 国模一区二区三区四区视频| 免费看av在线观看网站| 久热久热在线精品观看| 卡戴珊不雅视频在线播放| 免费黄色在线免费观看| av线在线观看网站| 考比视频在线观看| 黑丝袜美女国产一区| 视频区图区小说| 天美传媒精品一区二区| 人妻系列 视频| 久久久欧美国产精品| 亚洲欧美精品自产自拍| 国产欧美日韩综合在线一区二区| 综合色丁香网| 久久久精品区二区三区| 91精品一卡2卡3卡4卡| 婷婷色麻豆天堂久久| 国产国拍精品亚洲av在线观看| 国产精品熟女久久久久浪| 久久久久久久亚洲中文字幕| 午夜福利在线观看免费完整高清在| 男女国产视频网站| av在线老鸭窝| 国产 一区精品| 高清欧美精品videossex| 热99久久久久精品小说推荐| 久久久久久久久久久久大奶| 啦啦啦在线观看免费高清www| 丰满少妇做爰视频| 亚洲精品456在线播放app| 亚洲欧美日韩另类电影网站| 丝袜美足系列| 亚洲精品456在线播放app| 欧美日本中文国产一区发布| 久久久久精品久久久久真实原创| 一二三四中文在线观看免费高清| 另类精品久久| 亚洲久久久国产精品| 国产精品一国产av| 国产综合精华液| 妹子高潮喷水视频| 久久精品国产亚洲av涩爱| 日产精品乱码卡一卡2卡三| 男女边吃奶边做爰视频| 18禁在线无遮挡免费观看视频| 自线自在国产av| 久久女婷五月综合色啪小说| 国产极品粉嫩免费观看在线 | 精品久久蜜臀av无| 好男人视频免费观看在线| 妹子高潮喷水视频| 97超碰精品成人国产| 成人毛片a级毛片在线播放| 搡女人真爽免费视频火全软件| 一级毛片电影观看| 简卡轻食公司| 在线观看免费视频网站a站| 久久精品久久久久久噜噜老黄| 久久影院123| 丝袜在线中文字幕| 亚洲av二区三区四区| 成人国语在线视频| 2021少妇久久久久久久久久久| 精品亚洲成a人片在线观看| 色5月婷婷丁香| 美女大奶头黄色视频| 极品人妻少妇av视频| av在线播放精品| 国产精品国产三级国产专区5o| 一区二区日韩欧美中文字幕 | 国产免费又黄又爽又色| 欧美人与善性xxx| 男的添女的下面高潮视频| 久久精品久久久久久噜噜老黄| 亚洲国产精品一区三区| 午夜老司机福利剧场| av女优亚洲男人天堂| 特大巨黑吊av在线直播| 一个人看视频在线观看www免费| 黄片无遮挡物在线观看| 久久综合国产亚洲精品| 晚上一个人看的免费电影| 亚洲国产精品999| 日本av免费视频播放| 国产精品一区二区在线不卡| 婷婷成人精品国产| av有码第一页| 在线观看国产h片| 成人无遮挡网站| 妹子高潮喷水视频| 日本黄色日本黄色录像| 国产欧美日韩综合在线一区二区| 卡戴珊不雅视频在线播放| 91成人精品电影| 交换朋友夫妻互换小说| 国产高清国产精品国产三级| 热re99久久精品国产66热6| 人妻 亚洲 视频| 欧美亚洲 丝袜 人妻 在线| 观看美女的网站| 99热这里只有是精品在线观看| 国产成人午夜福利电影在线观看| 久久99一区二区三区| 视频区图区小说| 91精品伊人久久大香线蕉| 久久久a久久爽久久v久久| 国产av码专区亚洲av| 亚洲国产欧美在线一区| 亚洲国产色片| 欧美老熟妇乱子伦牲交| 成人黄色视频免费在线看| 毛片一级片免费看久久久久| 欧美精品高潮呻吟av久久| a级毛片在线看网站| 免费观看性生交大片5| 午夜精品国产一区二区电影| 你懂的网址亚洲精品在线观看| 多毛熟女@视频| 婷婷色av中文字幕| 精品酒店卫生间| 午夜激情久久久久久久| 999精品在线视频| 男女啪啪激烈高潮av片| 久久久久精品性色| 日本-黄色视频高清免费观看| 亚洲欧美日韩卡通动漫| 免费看光身美女| 亚洲精品国产色婷婷电影| 精品久久久噜噜| 少妇被粗大猛烈的视频| 久久99热6这里只有精品| 久久久久久久久久久久大奶| 曰老女人黄片| 亚洲欧美一区二区三区黑人 | 99热网站在线观看| 99热这里只有精品一区| 如日韩欧美国产精品一区二区三区 | 日韩强制内射视频| av视频免费观看在线观看| 日韩三级伦理在线观看| 伊人久久国产一区二区| 日韩制服骚丝袜av| 高清毛片免费看| 国产熟女午夜一区二区三区 | 少妇被粗大猛烈的视频| 如何舔出高潮| 欧美日韩视频精品一区| 韩国高清视频一区二区三区| 欧美日韩成人在线一区二区| 午夜激情福利司机影院| 国产精品国产三级专区第一集| 人妻少妇偷人精品九色| 满18在线观看网站| 2021少妇久久久久久久久久久| 国产av一区二区精品久久| 日本午夜av视频| 国产成人91sexporn| 精品人妻偷拍中文字幕| 亚洲,一卡二卡三卡| 伊人久久国产一区二区| 永久免费av网站大全| 9色porny在线观看| 97在线人人人人妻| 久久99精品国语久久久| 少妇的逼好多水| 三级国产精品片| 黑丝袜美女国产一区| 精品一区在线观看国产| 久久久久久人妻| 天天操日日干夜夜撸| 国产av国产精品国产| 国产高清三级在线| 蜜臀久久99精品久久宅男| 精品卡一卡二卡四卡免费| 日韩视频在线欧美| 成人手机av| 国产亚洲精品久久久com| 麻豆成人av视频| 大码成人一级视频| 性色av一级| 国产免费福利视频在线观看| 天美传媒精品一区二区| 国产日韩欧美亚洲二区| 国产精品 国内视频| 精品人妻在线不人妻| av网站免费在线观看视频| 亚洲怡红院男人天堂| 免费观看性生交大片5| 啦啦啦啦在线视频资源| 精品少妇黑人巨大在线播放| 亚洲精品色激情综合| 免费看av在线观看网站| 精品国产一区二区三区久久久樱花| 国产视频首页在线观看| 你懂的网址亚洲精品在线观看| 国产日韩一区二区三区精品不卡 | 亚洲三级黄色毛片| 国产一区二区在线观看日韩| 女性被躁到高潮视频| 91精品三级在线观看| 777米奇影视久久| 国产欧美日韩一区二区三区在线 | 我要看黄色一级片免费的| 99re6热这里在线精品视频| 亚洲综合色网址| 女的被弄到高潮叫床怎么办| 男的添女的下面高潮视频| 黄色毛片三级朝国网站| 久久狼人影院| 一本—道久久a久久精品蜜桃钙片| 老熟女久久久| 色吧在线观看| 乱人伦中国视频| 国产成人91sexporn| 国产日韩欧美亚洲二区| 国产亚洲欧美精品永久| 国产成人午夜福利电影在线观看| av在线播放精品| 亚洲经典国产精华液单| 插阴视频在线观看视频| 交换朋友夫妻互换小说| 国产精品一二三区在线看| 成人黄色视频免费在线看| 国产精品蜜桃在线观看| 国产伦精品一区二区三区视频9| 久久精品国产亚洲av天美| 一区二区av电影网| 在线观看人妻少妇| 国产亚洲午夜精品一区二区久久| 97超碰精品成人国产| 18禁在线播放成人免费| 国产成人freesex在线| 国产av国产精品国产| 看十八女毛片水多多多| 欧美 亚洲 国产 日韩一| 一级,二级,三级黄色视频| 久久久精品区二区三区| 日韩不卡一区二区三区视频在线| 丁香六月天网| 2018国产大陆天天弄谢| 欧美老熟妇乱子伦牲交| 国产高清有码在线观看视频| 99国产综合亚洲精品| 久久久久网色| 两个人的视频大全免费| a 毛片基地| 91午夜精品亚洲一区二区三区| 最近的中文字幕免费完整| 视频在线观看一区二区三区| 国产视频内射| 欧美日韩精品成人综合77777| 三上悠亚av全集在线观看| 亚州av有码| 欧美成人午夜免费资源| 女人精品久久久久毛片| 久久狼人影院| 国产成人av激情在线播放 | 黄片播放在线免费| 伦理电影大哥的女人| 亚洲国产最新在线播放| 成人毛片a级毛片在线播放| 在线免费观看不下载黄p国产| 中文欧美无线码| 18禁动态无遮挡网站| 极品人妻少妇av视频| 免费少妇av软件| 欧美另类一区| 麻豆成人av视频| 一二三四中文在线观看免费高清| 国产熟女欧美一区二区| 午夜激情av网站| 国产黄色免费在线视频| 亚洲av不卡在线观看| 久久久久久伊人网av| 国产色婷婷99| 亚洲国产精品一区三区| 国产精品.久久久| 婷婷色综合www| 两个人的视频大全免费| 建设人人有责人人尽责人人享有的| 日本午夜av视频| 日日啪夜夜爽| 午夜久久久在线观看| 亚洲久久久国产精品| 欧美日韩国产mv在线观看视频| 91久久精品电影网| 三上悠亚av全集在线观看| 免费不卡的大黄色大毛片视频在线观看| 成人综合一区亚洲| 久久久久人妻精品一区果冻| 五月开心婷婷网| 我要看黄色一级片免费的| 国产精品 国内视频| 亚洲国产欧美日韩在线播放| 免费不卡的大黄色大毛片视频在线观看| 蜜桃在线观看..| 亚洲精品av麻豆狂野| 全区人妻精品视频| 97精品久久久久久久久久精品| 亚洲欧洲国产日韩| 夜夜爽夜夜爽视频| 视频中文字幕在线观看| 国产精品久久久久久久电影| 一边摸一边做爽爽视频免费| 3wmmmm亚洲av在线观看| 成人综合一区亚洲| 日本av手机在线免费观看| 国产有黄有色有爽视频| 午夜激情福利司机影院| 草草在线视频免费看| 中文字幕久久专区| 综合色丁香网| 日本-黄色视频高清免费观看| 亚洲五月色婷婷综合| 看非洲黑人一级黄片| 丁香六月天网| 成人18禁高潮啪啪吃奶动态图 | 午夜免费鲁丝| 免费高清在线观看日韩| 水蜜桃什么品种好| 国产一区二区在线观看日韩| 青春草视频在线免费观看| 国产综合精华液| 亚洲av二区三区四区| 亚洲国产色片| 日本色播在线视频| 91成人精品电影| 久久影院123| .国产精品久久| 精品一区二区三区视频在线| 男人操女人黄网站| 国产亚洲精品第一综合不卡 | 建设人人有责人人尽责人人享有的| 免费播放大片免费观看视频在线观看| 国产精品麻豆人妻色哟哟久久| 国产精品一区二区在线不卡| 黄色一级大片看看| 色婷婷久久久亚洲欧美| 69精品国产乱码久久久| 国产日韩欧美亚洲二区| 五月玫瑰六月丁香| 亚洲欧美色中文字幕在线| 中文字幕最新亚洲高清| 国产白丝娇喘喷水9色精品| 国产成人免费无遮挡视频| 欧美激情极品国产一区二区三区 | 国产亚洲av片在线观看秒播厂| 激情五月婷婷亚洲| 亚洲经典国产精华液单| 午夜激情av网站| 欧美bdsm另类| 精品久久久噜噜| 日韩成人av中文字幕在线观看| 国产有黄有色有爽视频| 另类精品久久| 亚洲精品色激情综合| 精品人妻熟女毛片av久久网站| 色婷婷久久久亚洲欧美| 精品国产乱码久久久久久小说| 国产色婷婷99| 久久 成人 亚洲| 91午夜精品亚洲一区二区三区| 国产在线一区二区三区精| 欧美少妇被猛烈插入视频| 老司机影院毛片| 午夜激情福利司机影院| av免费在线看不卡| 欧美激情 高清一区二区三区| 亚洲欧美清纯卡通| 欧美日韩视频精品一区| 久久精品熟女亚洲av麻豆精品| 91精品国产国语对白视频| 日韩av在线免费看完整版不卡| 国产乱人偷精品视频| 91久久精品国产一区二区三区| 国产精品一区二区在线观看99| 国产 精品1| 日韩伦理黄色片| 看非洲黑人一级黄片| 另类亚洲欧美激情| 欧美 亚洲 国产 日韩一| 亚洲色图 男人天堂 中文字幕 | 亚洲久久久国产精品| a级毛片黄视频| 亚洲av成人精品一二三区| 亚洲欧美成人精品一区二区| 国产精品熟女久久久久浪| 亚洲天堂av无毛| 久久久久久久亚洲中文字幕| 亚洲,一卡二卡三卡| 18在线观看网站| 国产色婷婷99| 成人无遮挡网站| 欧美日韩精品成人综合77777| 免费看不卡的av| 国产亚洲精品久久久com| 亚洲av成人精品一二三区| 欧美+日韩+精品|