• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Investigation of the Phase Transitions of FOX-7 by Temperature-dependent FTIR Spectroscopy

    2016-05-08 13:19:00ZHANGHongliLIUYuZHANGHaobinLIShichunZHUChunhuaXUJinjiangYANGShiyuanLIJinshan
    含能材料 2016年9期

    ZHANG Hong-li, LIU Yu, ZHANG Hao-bin, LI Shi-chun, ZHU Chun-hua, XU Jin-jiang, YANG Shi-yuan,LI Jin-shan

    (1. Institute of Chemical Materials, China Academy of Engineering Physics (CAEP), Mianyang 621999, China; 2. Southwest University of Science and Technology, Mianyang 621010, China)

    1 Introduction

    In the field of high explosives, many efforts have been focused on exploring more powerful, safer and environmentally friendly explosives. 1,1-diamino-2,2-dinitroethylene (C2H4N4O4), commonly referred to FOX-7, is a novel high explosive[1]. Compared with the most widely used and powerful explosive 1,3,5-trinitro-1,2,4-triazacyclohexane(RDX), FOX-7 combines two important aspects, i.e., high performance and low sensitivity[2]. However, FOX-7 possesses several polymorphs[3], which suppresses its application. It is well known that phase transitions of energetic materials commonly observed under high temperature directly affect the stability and performance[4]. Indeed, the most stable polymorph at ambient conditions is always sought owning to its highest detonation velocity[5]. Moreover, phase transitions induced by high temperature frequently result in crystal defects which can sensitize the explosive by forming hot spots and super-rate burning[5]. Therefore, developing a deeper understanding of phase behaviors can lead to valuable insight into the complex interplay of intra- and inter-molecular interactions which are responsible for shock-initiated chemical reactions.

    Crystalline FOX-7 has three polymorphs, i.e.α,βandγ. The most stable phase at room temperature isα-FOX-7, and it can be converted to other polymorphs at higher temperatures, and upon cooling the explosive directly but incompletely restores to theαphase[6]. The phase transition behaviors of FOX-7 have been explored by X-ray diffraction methods, Raman, and thermal techniques[6-10]. However, the phase transition mechanism is still confusion. The effects of H-bonding and molecular structure might be the key for understanding the polymorphism. But the information on the behavior of the related H-bonding vibrations is not observed in FOX-7[11]. Indeed, the stability of FOX-7 mainly depends on the strong H-bonds between nitro oxygen atoms and amino hydrogen atoms. Furthermore, detailed analysis of the changes of H-bonding properties of the FOX-7 crystals under extreme conditions could provide important insight for understanding the detonation behavior of FOX-7 at molecular level[12]. Evers[7]and Crawford[8]have investigated the molecular structure and the effects of H-bonding of FOX-7 by X-ray single crystal methods. But few tools and techniques including X-ray single crystal diffraction could visually present the changes of H-bonding and molecular structure with increasing temperature in a single figure.

    Recently, temperature-dependent Fourier transform infrared (FTIR) spectroscopy is recognized as a powerful technique forin-situcharacterization of phase transitions of energetic material. Temperature-dependent FTIR spectroscopy could give information about intermolecular vibrational modes mediated by the H-bonding and access knowledge about the structure and vibrational dynamics of solids[13-15]. Pressure-induced changes of FOX-7 were observed by using FTIR spectroscopy[9], and the effects of H-bonding and molecular structure with pressures were discussed. Temperature-induced changes were investigated by Bishop[16]using IR. The H-bonding effects of FOX-7 with temperatures were investigated but the changes of molecular structure were ignored. Thus, we sought to conduct a FTIR study of FOX-7 to observe and compare the effects of H-bonding and molecular structure on molecular vibrations with temperatures and to investigate the phase transitions of FOX-7. This study would also offer the valuable insight into the interesting secondary explosive behaviors under high temperature conditions.

    2 Experimental

    The FOX-7 samples were provided by Institute of Chemical Materials, Chinese Academy of Engineering Physics. FTIR spectra were taken with KBr pellets in Model Nicolet 6700 spectrograph. The resolution was 1 cm-1, and the scan range was 400-4000 cm-1. Spectra were recorded during heating from 55 ℃ to 190 ℃ at a constant heating rate of 5 ℃·min-1. Then, the spectra were obtained during the cooling process.

    Powder X-ray diffraction(XRD) patterns were recorded on a Bruker D8 Advance with a CuKαradiation (λ=1.5406 ?), the voltage and current applied are 40 kV and 40 mA, respectively. Samples of FOX-7 were heated from 55 ℃ to 190 ℃, and data were collected from 5° to 60° (2θ) with an increment of 0.02° and a continuing time of 0.1 s for each increment.

    3 Results and Discussion

    3.1 α→β Phase Transition3.1.1 Bands Assignments for Vibrational Modes

    The temperature-dependent FTIR spectra of FOX-7 heating from 55 ℃ to 122 ℃ in the region of 3500-3150, 1670-970 cm-1and 900-400 cm-1are displayed in Fig.1. As shown in Fig.1a,ν1,ν2andν3have the tendency to shift toward higher wavenumber when the temperature increases. As shown in Fig. 1b,ν5(1632 cm-1) shifts toward lower wavenumber with increasing temperature. Subsequently,ν6overlaps or incorporates withν5. The frequencies of bands appearing at 1526 (ν7), 1470 (ν8) and 1394 (ν9), 1350 (ν10) cm-1remain nearly constant during heating (see in Fig.1b). Generally speaking, the frequencies of FOX-7 in most vibrational bands show little changes during heating in the range of 55 ℃ to 105 ℃. The FOX-7 molecules show strong intermolecular H-bonds within the wave-shaped layers. When the H-bonding is reduced or grows weaker, the stretching vibrational band usually shifts to higher frequency, whereas the deformation vibrational band usually moves to lower frequency[17]. According to the frequency shifts of H-bonding interaction, vibrational modes are clearly assigned[18-24], listed in Table 1. Besides,ν4can be assigned to Fermi resonance between the NH2(νas) and the overtone mode of the NH2scissor (2ν5), and the vibrational mode at ~1620 cm-1can be identified as a newly formed peak, which is assigned to Fermi resonance between NH2and NO2scissoring vibrations[25]. In contrast to other H-bonded energetic materials, such as 1,3,5-triamine-2,4,6-trinitrobenzene (TATB)[17], the weakening of H-bonding effect in most vibrational bands is inconspicuous with increasing temperature below 105 ℃.

    a. 3500-3150 cm-1b. 1670-970 cm-1c. 900-400 cm-1

    Fig.1 FTIR spectra of FOX-7 while the temperature increases from 55 ℃ to 122 ℃

    Table 1 Assignments of vibrational bands in spectra of FOX-7

    band/cm-1vibrationmodeswavenumber/cm-1band/cm-1vibrationmodeswavenumber/cm-1ν1'NH2(νas)3406ν11ν12ν13C—NH2(ν)1226,1170,1137ν2ν3NH2(νs)3329,3298ν14NH2(ρ)1023ν4Fermiresonance3223ν15NO2(γ)855ν5NH2(γ)1632ν16ν17ν18C—NO2(ν)788,750,737ν6CC(ν)1610ν19NH2(ω)621ν7ν8NO2(νas)1526,1470ν20NO2(ω)518ν9ν10NO2(νs)1394,1350ν21NO2(ρ)458

    Note:ν=stretching,νas=asymmetric stretching,νs=symmetric stretching,γ=scissoring,ρ=rocking,ω=wagging.

    3.1.2 Effects of Intermolecular Hydrogen Bonding Interaction and Molecular Structure

    Above 105 ℃, the NH2(νas) peak near 3443 cm-1abruptly shifts to higher wavenumber, as shown in Fig.1a. The intensity of NO2(νs) ν10sharply decreases and shifts toward lower wavenumber (Fig.1b). As shown in Fig.1c,ν18disappears above 105 ℃. Spectral bands in the lower spectral range (650-467 cm-1) undergo significant changes in the range of 100 ℃ to 120 ℃. The smoothingν20is replaced by a broad medium strong peak above 105 ℃. The band at 458 cm-1vanishes, and a peak at 447 cm-1grows at about 111 ℃ and reaches the same intensity of the band near 458 cm-1. FTIR spectra of FOX-7 experience some abrupt changes on heating at 105 ℃, indicating that theα→βtransition occurs.

    The molecular conformations and packing arrangements ofαandβpolymorphs can provide some insight. Theαandβ-FOX-7 have similar structures of two-dimensional wave-shaped layers (CCDC, SEDTUQ03 and SEDTUQ06), as shown in Fig.2. However, heating of the FOX-7 molecules to 120 ℃ flattens the wave-shaped layers. Within the layers, there are strong H-bonds. Indeed, the spectral changes of NH2(νas) at 3443 cm-1are attributed to the restructing of the H-bonding network in theα→βphase transition[4]. The CC and amino nitrogen atoms form a molecular plane, and the nitro oxygen atoms deviate strongly from the molecular plane. The results have been previously reported[8]that the NO2twist angle does not vary significantly on heating up to 100 ℃, but it increases abruptly above 100 ℃. The unique spectra signature ofν10is likely associated with changes of the NO2twist angle when the temperature increases. The analytical results of the IR spectra indicate that intermolecular hydrogen bonding interactions change in the phase transitions of the FOX-7, which cause the changes of the molecular structure. The results confirm that theα→βis a displacive transition with minor structural distortions[8].

    a.α-FOX-7(25 ℃)

    b. β-FOX-7(120 ℃)

    Fig.2 View along a axis ofα-FOX-7 at 25 ℃ andβ-FOX-7 at 120 ℃

    3.1.3 Transition State

    Most materials experience relatively modest expansions with increasing temperature, resulting from the increasing anharmonic vibration amplitudes of the ingredient atoms or molecules[26]. The degree of linear thermal expansion has been quantified using a coefficient defined asα=(lT-l0)/(l0(T-T0))[27], wherelTis the axis length at the final temperature, andl0is the axis length at the initial temperature. The average linear thermal expansion coefficients ofα-FOX-7 areαa=2.18×10-5℃-1,αb=12.71×10-5℃-1andαc=4.29×10-5℃-1. The average linear thermal expansion coefficients ofβ-FOX-7 areαa=0.84×10-5℃-1,αb=16.89×10-5℃-1andαc=3.85×10-5℃-1 [28]. Similarly, the H-bonding length is formulated aslT=l0+αΔT[27], wherelTis the H-bonding length at final temperature,l0is the H-bonding length at initial temperature,αis the coefficient of thermal expansion, and ΔTis the change of temperature. Here, the value ofαforα- andβ-FOX is almost equal to 1×10-5℃-1. The intermolecular H-bonds of FOX-7 at 25 ℃ and 120 ℃ are presented in Fig.3, and their length are displayed in Table 2. The average H-bonds length between FOX-7 molecules is 2.58 ? at 25 ℃ and 2.76 ? at 120 ℃. We find thatl0+αΔT=(2.58+1×10-5×95) ?≈2.58?=l0≠lT=2.76 ?. As described in Section 3.1.1, the length of H-bonding remains constant during heating from 55 to 100 ℃. We conclude that a intermediateltransoccurs in theα→βtransition, as is followed:lT=l0+αΔT+ltrans, wherelTis the H-bonding length at final temperature,l0is the H-bonding length at initial temperature,αis the coefficient of thermal expansion, ΔTis the change of temperature,ltransis the H-bonding length increamental resulting from the phase transition and increase gradually when the temperature increases from 100 ℃ to 110 ℃. Besides, the evolution of selected peaks frequencies with increasing temperature is presented. As shown in Fig.4, the frequencies of FOX-7 in all vibrational bands show abrupt changes during heating in the range of 100 ℃ to 110 ℃. Three or more points are observed in the range of 100 ℃ to 110 ℃, and each one of them is neitherα-FOX-7 norβ-FOX-7, which giving more evidence of the occurrence of a transition state in the phase transition. It is the transition state that makes the change of H-bonding length with temperatures, not consistent with the formula (lT=l0+αΔT). The intermediate should be a necessary step in the transition fromα-FOX-7 toβ-FOX-7. Traditionally, phase transition is considered to be one-step reaction.

    a. α-FOX (25 ℃)

    b. β-FOX (120 ℃)

    Fig.3 H-bonding interactions of FOX-7

    Table 2 H-bonds length between FOX-7 molecules at 25 ℃ and 120 ℃

    D—H…Aα-FOX(25℃)D—H/?H…A/?D…A/?β-FOX(120℃)D—H/?H…A/?D…A/?N(4)—H(4)…O(2)0.8492.3413.0270.8622.4832.945N(4)—H(3)…O(4)0.9042.1432.9210.7952.2092.979N(4)—H(3)…O(2)0.9043.1053.0270.7952.7822.945N(4)—H(3)…O(1)0.9042.3903.1930.7954.1573.925N(3)—H(1)…O(1)0.9452.1453.0160.7932.5322.988N(3)—H(1)…O(3)0.9452.4463.0080.7932.3963.156N(3)—H(2)…O(4)0.9432.2913.0130.8052.7033.414N(3)—H(2)…O(1)0.9563.7713.0160.8052.7952.988

    3.2 β→γ Phase Transition

    With further application of temperature to 190 ℃, spectra were acquired and displayed in Fig.5. Inβ-phase, the two NH2(νas) peaks are well separated and dramatically shifted to higher frequencies. As temperature increases, the two peaks are broad and strongly overlapped with each other in the range of 3500-3350 cm-1as well as being accompanied by the loss of NH2(νs) modes at ~3329 cm-1. NO2-related vibrations such asν12andν20exhibit significant changes, indicating that theγtransition was obtained. Compared to the changes observed in theα→βtransition, the frequencies of most vibrational bands remain nearly constant in theβ→γtransition, implying no further weakening of the H-bonding network. The changes in NO2-related vibrations are smaller during theβ→γtransition than theα→βtransition. The previous results[9]showed that the displacement of the nitro groups with respect to the molecular plane remains invariant inβ- andγ-FOX-7. FTIR spectra of FOX-7 exhibit minor changes in theβ→γtransition. A combination of stable H-bonding network and structural similarities is responsible for subtle differences in the FTIR spectra for two polymorphs over the whole temperature range from 122 ℃ to 190 ℃.

    Standard FTIR spectra ofα,βandγpolymorphs of FOX-7 are identified and confirmed by X-ray diffraction patterns (see in Fig.6). The FTIR spectra ofα-,β- andγ-FOX-7 exhibit significant changes including NH2and NO2-related vibrations such asν12,ν18,ν20andν21. The former is due to the restructing of the H-bonding network, and the latter is due to the changes in the displacement of nitro groups with respect to the molecular plane. The characteristic FTIR absorption bands of each phase of FOX-7 are presented in Table 3.

    a. ν1′

    b. ν4

    c. ν7

    d. ν10

    Fig.4 Peak positions of different vibrational modes as a function of temperature

    Table 3 The characteristic FTIR absorption bands of each phase of FOX-7

    3440cm-1NH2(νas)3329cm-1NH2(νs)1170cm-1C—NH2(ν)737cm-1C—NO2(ν)650-467cm-1(ν19,ν20)NH2(ω),NO2(ω)α ×√√√sharppeaksβ √√√×broadpeaksγ √×××anotherbroadpeaks

    Note: √ represents the emergence of peak, × represents the disappearance of peak.

    Fig.5 FTIR spectra of FOX-7 at five different temperatures (α-FOX-7 at 55 ℃;β-FOX-7 at 122 ℃;γ-FOX-7 at 190 ℃)

    Fig.6 XRD patterns of FOX-7 at five different temperatures (α-FOX-7 at 55 ℃;β-FOX-7 at 122 ℃,γ-FOX-7 at 190 ℃)

    4 Conclusions

    Temperature-dependent FTIR spectroscopy has been employed to study the phase transitions of FOX-7 in real time. The main conclusions are as follows:

    (1) In the process of phase transitions of the FOX-7, intermolecular hydrogen bonding interactions change, which caused the changes of the molecular structure.

    (2)The transition state was confirmed by the special thermal expansion properties of H-bonding length and the special frequencies ofν1′,ν4[Fermi resonance between the NH2(νas) and the overtone mode of the NH2scissor(2ν5)],ν7andν10[NO2(νas)] in theα→βtransition with increasing temperature.α-FOX-7 does not directly transforms toβ-FOX-7, the transition state should be a necessary step.

    (3)Standard FTIR spectra ofα,βandγ-FOX-7 were identified and confirmedin-situby powder X-ray diffraction (XRD). Several characteristic peaks ofν12[C—NH2(ν)],ν18[C—NO2(ν)] andν20[NO2(ω)] can be used to identify each phase of FOX-7.

    [1] Latypov N V, Bergman J, Langlet A, et al. Synthesis and reactions of 1,1-diamino-2,2-dinitroethylene[J].Tetrahedron, 1998, 54: 11525-11536.

    [2] ?stmark H, Langlet A, Bergman H, et al. Report No. ONR 3330-5, Office of Naval Research, Arlington, V A, 2000: 807-808.

    [3] Bemm U, Eriksson L. Phase Transitions in FOX-7[C]∥Proc Insens Muni Energ Mater Tech Symp, 2001: 775-790.

    [4] Bishop M M, Chellappa R S, Pravica M, et al. 1,1-diamino-2,2-dinitroethylene under high pressure-temperature[J].JChemPhys, 2012, 137(17): 10870-10870.

    [5] Li J , Thomas B Brill. Kinetics of solid polymorphic phase transitions of CL-20[J].Propel,Explo,Pyrotech, 2007, 32: 326-330.

    [6] Kempa P B, Herrmann M. Temperature resolved X-ray diffraction for the investigation of the phase transitions of FOX-7[J].PartPartSystCharact, 2005, 22(6): 418-422.

    [7] Evers J, Klap?tke T M , Mayer P.α- andβ- FOX-7 polymorphs of a high energy density material studied by X-ray single crystal and powder investigations in the temperature range from 200 K to 423 K[J].InorgChem, 2006, 45(13): 4996-5007.

    [8] Crawford M J, Evers J, G?bel M, et al.γ-FOX-7: structure of a high energy density material immediately prior to decomposition[J].PropelExploPyrotech, 2007, 32(6): 478-495.

    [9] Dreger Z A, Tao Y, Gupta Y M. Polymorphs of 1, 1-diamino-2, 2-dinitroethene (FOX-7): Isothermal compression versus isobaric heating[J].ChemPhysLett, 2013, 584: 83-87.

    [10] Pravica M, Liu Y, Robinson J, et al. A high-pressure far-and mid-infrared study of 1, 1-diamino-2, 2-dinitroethylene[J].JApplPhys, 2012, 111(10): 103534-103537.

    [11] Peiris S, Wong C, Kuklja M , et al. Equation of State and Structural Changes in Diaminodinitroethylene from Experimental Studies and Ab-Initio Quantum Calculations[C]∥In 12th Int Deton Symp Proc, 2002, 120617-120624.

    [12] Zhao J, Liu H. High-pressure behavior of crystalline FOX-7 by density functional theory calculations[J].CompMaterSci, 2008, 42: 698-703.

    [13] LI Jing-you, ZHANG Hao-bin, XU Jin-jiang, et al. IR absorption peaksassignments of LLM-105 by temperature-dependent FT-IR spectroscopy[J].ChineseJournalofEnergeticMaterials(HannengCailiao), 2015, 23(5): 507-510.

    [14] Pan Q, Deng L. Some key techniques of measuring propellants and explosives by temperature-dependent FTIR[J].ChineseJournalofEnergeticMaterials(HannengCailiao),2007, 15(6): 676-680.

    [15] ZHANG Zai-juan, LUO Yun-jun, LI Guo-ping. Reaction kinetics of GAP and three kinds of isocyanates with variable temperature FTIR spectrum method[J].ChineseJournalofEnergeticMaterials(HannengCailiao), 2014, 22(3): 382-385.

    [16] Bishop M M , Chellappa R S, Liu Z, et al. High pressure-temperature polymorphism of 1,1-diamino-2,2-dinitroethylene[C]∥Journal of Physics: Conference Series IOP Publishing, 2014, 500(5): 052005-052007.

    [17] Sui H L, Zhong F C, Cheng K M, et al. IR vibrational assignments for 1, 3, 5-triamine-2, 4, 6-trinitrobenzene (TATB) based on the temperature-dependent frequency shifts[J].SpectrochimActaA, 2013, 114: 137-143.

    [18] Socrates G. Infrared and Raman characteristic group frequencies: tables and charts[M]. John Wiley & Sons, 2004.

    [19] Dheivamalar S, Silambarasan V. DFT simulations and vibrational analysis of FTIR and FT-Raman spectra of 2-amino-4-methyl benzonitrile[J].SpectrochimActaA, 2012, 96: 480-484.

    [20] Sathyanarayana D N. Vibrational Spectroscopy-Theory and Applications[M]. Second ed., New Age International (P) Limited Publishers, New Delhi, 2004.

    [21] Sundaraganesan N, Meganathan C, Kurt M. Molecular structure and vibrational spectra of 2-amino-5-methyl pyridine and 2-amino-6-methyl pyridine by density functional methods[J].JMolStruc, 2008, 891(1): 284-291.

    [22] Silverstein M, Clayton G, Basseler, Moril C. Spectro Metric Identification of Organic Compounds[M]. Wiley, New York, 1981.

    [23] Thilagavathi G, Arivazhagan M. Density functional theory calculation and vibrational spectroscopy study of 2-amino-4, 6-dimethyl pyrimidine (ADMP)[J].SpectrochimActaA, 2011, 79(3): 389-395.

    [24] Clarkson J, Ewen Smith WA. DFT analysis of the vibrational spectra of nitrobenzene[J].JMolStruc, 2003, 655(3): 413-422.

    [25] G. Hess. Tunable fermi resonance in a C2F6C2F6monolayer on graphite[J].JChemPhys, 2002, 116(15): 6777-6781.

    [26] Miller W, Smith C, Mackenzie D, et al. Negative thermal expansion: a review[J].JMaterSci, 2009, 44(20): 5441-5451.

    [27] Engel E R, Smith V J, Bezuidenhout C X. Uniaxial negative thermal expansion facilitated by weak host-guest interactions[J].ChemComm, 2014, 50(32): 4238-4241.

    [28] Qian W, Zhang C Y, Zong H H, et al. Simulation study on the anisotropy of thermal expansion for crystalline 1,1-diamino-2,2-dinitroethylene[J].ChinJAtomicandMolPhys, 2014, 31(3): 454-462.

    一夜夜www| 欧美高清成人免费视频www| 成人国产综合亚洲| 男人舔奶头视频| 国产欧美日韩一区二区三| 午夜福利免费观看在线| 又大又爽又粗| 精品久久久久久久久久久久久| 亚洲自偷自拍图片 自拍| 日本黄大片高清| 一a级毛片在线观看| 露出奶头的视频| 久久精品成人免费网站| 一卡2卡三卡四卡精品乱码亚洲| 最近最新中文字幕大全电影3| 亚洲午夜理论影院| 久久久久亚洲av毛片大全| 国产成年人精品一区二区| 啪啪无遮挡十八禁网站| 可以免费在线观看a视频的电影网站| 日日爽夜夜爽网站| 国内少妇人妻偷人精品xxx网站 | 日韩欧美国产一区二区入口| 亚洲精品国产精品久久久不卡| 十八禁人妻一区二区| 午夜福利成人在线免费观看| 国产精品国产高清国产av| 国产野战对白在线观看| 中文字幕熟女人妻在线| 三级毛片av免费| 精品一区二区三区av网在线观看| 国产一区二区三区视频了| 国产精品久久久人人做人人爽| 18禁美女被吸乳视频| 无人区码免费观看不卡| 中文资源天堂在线| 18禁黄网站禁片免费观看直播| 我要搜黄色片| 色av中文字幕| 日本成人三级电影网站| 欧美黄色片欧美黄色片| 一本一本综合久久| 中文字幕久久专区| 亚洲精品在线观看二区| 国产伦人伦偷精品视频| 日韩欧美在线二视频| 国产精品一区二区三区四区免费观看 | 国产久久久一区二区三区| 757午夜福利合集在线观看| 精品久久久久久,| 叶爱在线成人免费视频播放| 色综合欧美亚洲国产小说| 亚洲专区字幕在线| www日本黄色视频网| 亚洲七黄色美女视频| 特大巨黑吊av在线直播| 亚洲专区国产一区二区| 五月玫瑰六月丁香| 午夜精品在线福利| 中文字幕av在线有码专区| 91字幕亚洲| 久久久久久国产a免费观看| 在线观看免费午夜福利视频| 女人爽到高潮嗷嗷叫在线视频| 日韩欧美三级三区| 午夜福利视频1000在线观看| 怎么达到女性高潮| 亚洲精品一区av在线观看| 久久中文字幕人妻熟女| 狂野欧美激情性xxxx| 99国产精品一区二区三区| www日本黄色视频网| 久久久久久久精品吃奶| 久久人妻av系列| 一区二区三区激情视频| 男女床上黄色一级片免费看| 免费在线观看亚洲国产| 两性午夜刺激爽爽歪歪视频在线观看 | 最近最新免费中文字幕在线| 制服人妻中文乱码| 午夜视频精品福利| 久久中文字幕一级| 可以免费在线观看a视频的电影网站| 国产精品乱码一区二三区的特点| 久久天堂一区二区三区四区| 国产熟女午夜一区二区三区| 欧美日韩国产亚洲二区| 国产真人三级小视频在线观看| а√天堂www在线а√下载| av片东京热男人的天堂| 亚洲欧美日韩东京热| 在线观看一区二区三区| 啪啪无遮挡十八禁网站| 99精品在免费线老司机午夜| 午夜福利在线在线| 欧美在线一区亚洲| 午夜精品一区二区三区免费看| 黄色 视频免费看| 麻豆国产97在线/欧美 | 亚洲一区二区三区色噜噜| 一二三四社区在线视频社区8| 日韩有码中文字幕| 757午夜福利合集在线观看| 一区福利在线观看| 久久香蕉激情| 欧美乱码精品一区二区三区| 日韩 欧美 亚洲 中文字幕| 夜夜爽天天搞| 可以在线观看毛片的网站| 亚洲 国产 在线| 丝袜美腿诱惑在线| 黄色丝袜av网址大全| 亚洲电影在线观看av| 久久精品影院6| 非洲黑人性xxxx精品又粗又长| 91在线观看av| 黄色女人牲交| 国产成人av教育| 亚洲一区二区三区不卡视频| 国产精品久久久久久精品电影| 久久久久九九精品影院| 可以在线观看毛片的网站| 欧美又色又爽又黄视频| 51午夜福利影视在线观看| 好看av亚洲va欧美ⅴa在| 国产视频一区二区在线看| 中文字幕人妻丝袜一区二区| 热99re8久久精品国产| 91在线观看av| 国产私拍福利视频在线观看| 免费在线观看黄色视频的| netflix在线观看网站| 国产在线观看jvid| 禁无遮挡网站| 国产精品亚洲美女久久久| 国产又色又爽无遮挡免费看| 久久久久九九精品影院| 成人永久免费在线观看视频| 久久这里只有精品中国| 国产成人aa在线观看| 久久精品亚洲精品国产色婷小说| 美女大奶头视频| 亚洲黑人精品在线| 欧美久久黑人一区二区| 伊人久久大香线蕉亚洲五| 少妇裸体淫交视频免费看高清 | 国产男靠女视频免费网站| 最近最新中文字幕大全免费视频| 高潮久久久久久久久久久不卡| 男人舔女人的私密视频| 69av精品久久久久久| 久久人妻av系列| 嫩草影视91久久| 18禁美女被吸乳视频| 久久久久精品国产欧美久久久| 亚洲一区二区三区色噜噜| 舔av片在线| 欧美另类亚洲清纯唯美| 亚洲精品在线美女| 男女之事视频高清在线观看| 脱女人内裤的视频| 久久亚洲精品不卡| 国产欧美日韩一区二区精品| 天天一区二区日本电影三级| 变态另类丝袜制服| 人妻久久中文字幕网| 国产精品久久久久久久电影 | 日本精品一区二区三区蜜桃| 亚洲第一欧美日韩一区二区三区| 免费在线观看影片大全网站| 亚洲七黄色美女视频| 日本一本二区三区精品| 又粗又爽又猛毛片免费看| а√天堂www在线а√下载| 最新美女视频免费是黄的| 国产高清视频在线播放一区| a级毛片在线看网站| 中文字幕久久专区| 久久这里只有精品中国| xxxwww97欧美| 动漫黄色视频在线观看| 最近最新中文字幕大全免费视频| 日日夜夜操网爽| 国产在线观看jvid| 女警被强在线播放| 精品不卡国产一区二区三区| 免费观看人在逋| 最新美女视频免费是黄的| 久久久久亚洲av毛片大全| av超薄肉色丝袜交足视频| 欧美一级a爱片免费观看看 | 怎么达到女性高潮| 男女做爰动态图高潮gif福利片| 欧美日韩一级在线毛片| 亚洲av五月六月丁香网| 日韩三级视频一区二区三区| 法律面前人人平等表现在哪些方面| 两个人的视频大全免费| 夜夜爽天天搞| 韩国av一区二区三区四区| 黄色女人牲交| 亚洲国产精品久久男人天堂| 波多野结衣高清无吗| 99久久无色码亚洲精品果冻| 亚洲午夜理论影院| 国产欧美日韩精品亚洲av| 成年女人毛片免费观看观看9| 亚洲熟女毛片儿| 淫秽高清视频在线观看| 精品第一国产精品| 久久久国产欧美日韩av| 真人一进一出gif抽搐免费| 久久精品亚洲精品国产色婷小说| 在线免费观看的www视频| 精品无人区乱码1区二区| 手机成人av网站| АⅤ资源中文在线天堂| 成人亚洲精品av一区二区| 一进一出抽搐gif免费好疼| 国产黄色小视频在线观看| 99热这里只有是精品50| 97人妻精品一区二区三区麻豆| 禁无遮挡网站| 亚洲精品一卡2卡三卡4卡5卡| 琪琪午夜伦伦电影理论片6080| 成年女人毛片免费观看观看9| 国产一级毛片七仙女欲春2| 国产伦人伦偷精品视频| 中文字幕高清在线视频| 一进一出好大好爽视频| 亚洲av电影不卡..在线观看| av中文乱码字幕在线| a在线观看视频网站| 女人爽到高潮嗷嗷叫在线视频| 久久久久久久久久黄片| 国产精品 欧美亚洲| 波多野结衣高清无吗| 又大又爽又粗| 手机成人av网站| 九九热线精品视视频播放| 精品久久久久久成人av| 精品人妻1区二区| 男人的好看免费观看在线视频 | 男人的好看免费观看在线视频 | 亚洲成av人片免费观看| 曰老女人黄片| 欧美日韩乱码在线| 国产激情欧美一区二区| 少妇人妻一区二区三区视频| 在线观看午夜福利视频| 激情在线观看视频在线高清| 久久中文字幕人妻熟女| 亚洲欧美日韩高清在线视频| 他把我摸到了高潮在线观看| 欧美一级毛片孕妇| 国产三级在线视频| 精品无人区乱码1区二区| 日本黄色视频三级网站网址| a级毛片在线看网站| 欧美日韩国产亚洲二区| a级毛片a级免费在线| xxx96com| 国产91精品成人一区二区三区| 国产69精品久久久久777片 | 亚洲人成77777在线视频| 91大片在线观看| 久久国产乱子伦精品免费另类| 1024手机看黄色片| 久久香蕉精品热| 两个人视频免费观看高清| 麻豆一二三区av精品| 宅男免费午夜| 国产片内射在线| 成人三级黄色视频| 日本一区二区免费在线视频| 老司机靠b影院| 精品久久久久久久末码| 老熟妇乱子伦视频在线观看| 亚洲精品中文字幕一二三四区| 天堂av国产一区二区熟女人妻 | 午夜福利成人在线免费观看| 成人三级黄色视频| 首页视频小说图片口味搜索| 精品人妻1区二区| 欧美色视频一区免费| 在线十欧美十亚洲十日本专区| 亚洲中文av在线| 亚洲av成人精品一区久久| 久久精品aⅴ一区二区三区四区| 国产区一区二久久| 午夜福利在线在线| 99热6这里只有精品| 精品一区二区三区视频在线观看免费| 午夜福利在线观看吧| 99国产精品一区二区三区| a级毛片a级免费在线| 怎么达到女性高潮| 亚洲熟妇中文字幕五十中出| 精品一区二区三区av网在线观看| 国产蜜桃级精品一区二区三区| 又爽又黄无遮挡网站| 日韩欧美国产一区二区入口| 美女 人体艺术 gogo| 精品国产超薄肉色丝袜足j| 日本 欧美在线| 成人永久免费在线观看视频| 日韩欧美免费精品| 韩国av一区二区三区四区| av有码第一页| 真人做人爱边吃奶动态| 国产三级黄色录像| 日日摸夜夜添夜夜添小说| 亚洲av美国av| 国产在线精品亚洲第一网站| 日本 av在线| 狂野欧美激情性xxxx| 国产精品影院久久| 免费在线观看成人毛片| 97碰自拍视频| 中文字幕精品亚洲无线码一区| 999久久久精品免费观看国产| 麻豆av在线久日| 亚洲av五月六月丁香网| 一级片免费观看大全| 免费在线观看视频国产中文字幕亚洲| 国内毛片毛片毛片毛片毛片| 熟妇人妻久久中文字幕3abv| 免费看美女性在线毛片视频| 特级一级黄色大片| 亚洲七黄色美女视频| 久久精品亚洲精品国产色婷小说| 听说在线观看完整版免费高清| 成人欧美大片| 国产精品一区二区三区四区久久| 日韩欧美国产在线观看| 18禁国产床啪视频网站| 亚洲第一电影网av| 香蕉av资源在线| 校园春色视频在线观看| 国产精品香港三级国产av潘金莲| 欧洲精品卡2卡3卡4卡5卡区| 日韩欧美一区二区三区在线观看| 色尼玛亚洲综合影院| 日韩精品免费视频一区二区三区| 蜜桃久久精品国产亚洲av| 国产一区二区在线观看日韩 | 欧美在线一区亚洲| 国产精品98久久久久久宅男小说| 午夜福利在线观看吧| 国产精品99久久99久久久不卡| 亚洲国产精品成人综合色| www日本在线高清视频| 丝袜美腿诱惑在线| 国产精品乱码一区二三区的特点| cao死你这个sao货| av免费在线观看网站| 免费搜索国产男女视频| 久热爱精品视频在线9| 精品久久久久久久末码| 中文亚洲av片在线观看爽| 久久精品成人免费网站| 精品国产超薄肉色丝袜足j| 午夜福利视频1000在线观看| 三级国产精品欧美在线观看 | 看免费av毛片| 亚洲中文av在线| 波多野结衣巨乳人妻| 亚洲国产欧美人成| 亚洲av成人一区二区三| 免费看美女性在线毛片视频| 757午夜福利合集在线观看| 中文字幕最新亚洲高清| 他把我摸到了高潮在线观看| 日本一本二区三区精品| 床上黄色一级片| 一级毛片精品| 国产精品精品国产色婷婷| 久久精品国产综合久久久| 精品久久久久久久毛片微露脸| 色综合婷婷激情| 国产精品自产拍在线观看55亚洲| 好看av亚洲va欧美ⅴa在| 丝袜美腿诱惑在线| 国产免费男女视频| 免费搜索国产男女视频| 中文亚洲av片在线观看爽| 亚洲五月婷婷丁香| 99久久久亚洲精品蜜臀av| 亚洲一卡2卡3卡4卡5卡精品中文| 久久精品人妻少妇| 国产69精品久久久久777片 | 精品久久久久久久末码| 亚洲国产高清在线一区二区三| 在线观看免费日韩欧美大片| 12—13女人毛片做爰片一| av福利片在线| 97碰自拍视频| 免费看日本二区| av国产免费在线观看| 欧美日韩亚洲国产一区二区在线观看| 少妇被粗大的猛进出69影院| 国产成人av激情在线播放| 99在线人妻在线中文字幕| 看片在线看免费视频| 亚洲精品美女久久久久99蜜臀| 久久久精品大字幕| 久久久国产精品麻豆| 久久精品国产综合久久久| 在线观看美女被高潮喷水网站 | 俄罗斯特黄特色一大片| 757午夜福利合集在线观看| 啪啪无遮挡十八禁网站| 亚洲电影在线观看av| 欧美色视频一区免费| 男人舔女人的私密视频| 又爽又黄无遮挡网站| 99re在线观看精品视频| 国产高清videossex| 亚洲,欧美精品.| 啦啦啦观看免费观看视频高清| 亚洲精品粉嫩美女一区| 精品高清国产在线一区| 国产亚洲精品久久久久5区| 757午夜福利合集在线观看| 国产精品 国内视频| 日韩中文字幕欧美一区二区| bbb黄色大片| 国产亚洲精品第一综合不卡| 精品久久久久久成人av| 99热只有精品国产| 亚洲av中文字字幕乱码综合| 久久中文字幕一级| 国产精品一区二区精品视频观看| 午夜精品在线福利| av天堂在线播放| 成年女人毛片免费观看观看9| 日本 av在线| 国产麻豆成人av免费视频| 亚洲成人久久性| 很黄的视频免费| 亚洲国产精品999在线| 欧洲精品卡2卡3卡4卡5卡区| 国产精品一区二区三区四区久久| 亚洲成av人片在线播放无| 51午夜福利影视在线观看| 欧美精品亚洲一区二区| 一本一本综合久久| 99国产极品粉嫩在线观看| 国产97色在线日韩免费| 99久久精品热视频| 免费在线观看日本一区| 国产精品av久久久久免费| 在线十欧美十亚洲十日本专区| 1024视频免费在线观看| 欧美一区二区精品小视频在线| 99久久精品国产亚洲精品| 亚洲成人中文字幕在线播放| 成人18禁高潮啪啪吃奶动态图| 老汉色av国产亚洲站长工具| 搡老熟女国产l中国老女人| 色播亚洲综合网| 精品国产超薄肉色丝袜足j| 国产麻豆成人av免费视频| 亚洲国产精品sss在线观看| 亚洲国产中文字幕在线视频| 男女床上黄色一级片免费看| 中文资源天堂在线| 国产精品久久视频播放| 日韩免费av在线播放| 欧美中文日本在线观看视频| 国产私拍福利视频在线观看| 亚洲中文日韩欧美视频| 成人午夜高清在线视频| 精品一区二区三区视频在线观看免费| 老司机午夜十八禁免费视频| av在线播放免费不卡| 精品第一国产精品| 亚洲性夜色夜夜综合| 国产乱人伦免费视频| 成年人黄色毛片网站| av天堂在线播放| 欧洲精品卡2卡3卡4卡5卡区| 国产黄a三级三级三级人| 在线观看舔阴道视频| 国产精品久久久久久人妻精品电影| 熟女电影av网| 美女 人体艺术 gogo| 一a级毛片在线观看| 黄色a级毛片大全视频| 亚洲人成77777在线视频| 欧美不卡视频在线免费观看 | 最好的美女福利视频网| 久久久久精品国产欧美久久久| 国产一区二区在线av高清观看| 久久精品亚洲精品国产色婷小说| 国产成人影院久久av| 久久精品人妻少妇| 蜜桃久久精品国产亚洲av| 老汉色av国产亚洲站长工具| 国产精品乱码一区二三区的特点| 给我免费播放毛片高清在线观看| av天堂在线播放| 欧美国产日韩亚洲一区| 女生性感内裤真人,穿戴方法视频| 天天一区二区日本电影三级| 香蕉国产在线看| 村上凉子中文字幕在线| 伦理电影免费视频| 亚洲人成77777在线视频| 777久久人妻少妇嫩草av网站| 别揉我奶头~嗯~啊~动态视频| 国产精品久久久av美女十八| 精品久久久久久久久久免费视频| 制服丝袜大香蕉在线| 夜夜看夜夜爽夜夜摸| 97超级碰碰碰精品色视频在线观看| 99久久精品热视频| 在线国产一区二区在线| 夜夜爽天天搞| 又粗又爽又猛毛片免费看| 国产精品久久电影中文字幕| 国产一区二区在线av高清观看| 亚洲国产精品合色在线| 一级作爱视频免费观看| 色噜噜av男人的天堂激情| 免费观看精品视频网站| 最近最新中文字幕大全免费视频| 悠悠久久av| 国产精品亚洲av一区麻豆| 99热只有精品国产| 亚洲自偷自拍图片 自拍| 成年人黄色毛片网站| 欧美av亚洲av综合av国产av| xxx96com| 18禁美女被吸乳视频| 久久婷婷成人综合色麻豆| 欧美一级毛片孕妇| 亚洲精品美女久久av网站| 久久久久国产精品人妻aⅴ院| 久久香蕉激情| 亚洲片人在线观看| 啦啦啦韩国在线观看视频| 欧美成人性av电影在线观看| 免费在线观看影片大全网站| 熟女少妇亚洲综合色aaa.| 国产av不卡久久| 亚洲午夜精品一区,二区,三区| 精品熟女少妇八av免费久了| 欧美黑人精品巨大| 在线国产一区二区在线| 国产成人影院久久av| 亚洲乱码一区二区免费版| 欧美大码av| 日韩欧美免费精品| 亚洲精品中文字幕在线视频| 人妻久久中文字幕网| 国产一区二区在线av高清观看| 国产乱人伦免费视频| 非洲黑人性xxxx精品又粗又长| 久久天堂一区二区三区四区| 国产伦在线观看视频一区| 香蕉国产在线看| 国产一区二区在线观看日韩 | 免费在线观看成人毛片| 丰满人妻一区二区三区视频av | 成熟少妇高潮喷水视频| 19禁男女啪啪无遮挡网站| 国产精品国产高清国产av| 一进一出抽搐动态| 久久天堂一区二区三区四区| 久久精品亚洲精品国产色婷小说| 真人一进一出gif抽搐免费| 色噜噜av男人的天堂激情| 成人精品一区二区免费| 国产成人影院久久av| 亚洲国产精品sss在线观看| 脱女人内裤的视频| 色精品久久人妻99蜜桃| 国产野战对白在线观看| 人妻丰满熟妇av一区二区三区| 国产成人精品无人区| 国产三级中文精品| 成人18禁高潮啪啪吃奶动态图| 男女之事视频高清在线观看| 国产高清视频在线播放一区| 亚洲第一电影网av| 我要搜黄色片| 一区二区三区高清视频在线| 法律面前人人平等表现在哪些方面| 亚洲人成77777在线视频| 动漫黄色视频在线观看| 熟女少妇亚洲综合色aaa.| 亚洲av电影在线进入| 国产午夜福利久久久久久| 久久亚洲精品不卡| 欧美日本视频| tocl精华| 久久婷婷人人爽人人干人人爱| 好看av亚洲va欧美ⅴa在| 国产熟女午夜一区二区三区| 久久婷婷人人爽人人干人人爱| 国产亚洲精品一区二区www| 真人一进一出gif抽搐免费| 国产精品av视频在线免费观看| 亚洲av成人一区二区三| 国产av又大| 久久99热这里只有精品18| 又黄又粗又硬又大视频| 女警被强在线播放| 在线免费观看的www视频| 国产精品一区二区三区四区免费观看 | 久久久久久久午夜电影| 全区人妻精品视频| 欧美中文日本在线观看视频| 国产三级黄色录像|