• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Crystal Structure and Thermal Behavior of Potassium Dinitromethane

    2016-05-08 13:18:59SUNQianWANGXiaohuiXUKangzhenLIYanfengSONGJirongZHAOFengqi
    含能材料 2016年9期

    SUN Qian, WANG Xiao-hui, XU Kang-zhen, LI Yan-feng, SONG Ji-rong, ZHAO Feng-qi

    (1. School of Chemical Engineering, Northwest University, Xi′an 710069, China; 2. Xi′an Modern Chemistry Research Institute, Xi′an 710065, China)

    1 Introduction

    1,1-Diamino-2,2-dinitroethylene (FOX-7) is a novel high-energy and insensitive compound[1-5], and has been considered as the main component to be used in insensitive ammunitions and solid propellants in future. Though the molecular composition and structure of FOX-7 are very simple, its chemical reactivity is surprising[6-7]. 1-Amino-1-hydrazino-2,2-dinitroethylene (AHDNE) is a nucleophilic substitution derivative of FOX-7. AHDNE still belongs to “push-pull” nitro-enamine compound[8], and has the same characteristics to FOX-7. Some energetic salts of AHDNE, such as potassium salt [K(AHDNE)] and guanidinium salt [G(AHDNE)], have been reported[9-11]. Like many complexes of FOX-7[12-15], some metal complexes (Cd, Zn and Ni) of AHDNE were expected to be synthesized, using K(AHDNE) as a raw material. But the result shows that potassium dinitromethane {K[CH(NO2)2]}nwas obtained with the fracture of carbon-carbon double bond of AHDNE-anion in ammonia water at room temperature, which was caused by the addition of Zn2+with the solution exhibiting strong alkalinity.

    {K[CH(NO2)2]}nwas first synthesized by Villiers with a quite low yield in 1884, through the reduction of potassium bromonitromethane with hydrogen sulfide[16]. Feuer obtained this salt with a yield of 23% by Ter Meer reaction of chloronitromethane[17]. Noble reported that {K[CH(NO2)2]}ncan be prepared from the alkali metal salts of dinitroethane[18]. Grakauskas improved the yield to 33% through the synthetic routine of methylcyano dinitromethane acetic acid or methyl dinitro acetic acid[19]. In recent years, some organic salts of dinitromethane, such as 1,3-dimethylimidazolium dinitromethane, ammonium dinitromethane, and 1-butyl-3-methyl-imidazolium dinitromethane, have been reported to be potential energetic materials[19-21].

    In this paper, we reported crystal structure of potassium dinitromethane, investigate its thermal behavior by DSC and TG/DTG, and compared with three similar potassium salts, aiming at enriching the research studies of energetic materials.

    2 Experiments

    2.1 Sample

    FOX-7 was obtained from Xi′an Modern Chemistry Research Institute. K(AHDNE) was prepared according to Ref.[11].

    {K[CH(NO2)2]}nwas obtained by dissolving Zn(NO3)2(0.357 g, 1.2 mmol) and K(AHDNE) (0.402 g, 2 mmol) in ethylenediamine aqueous solution (6 mL). In this reaction system, CC bond was broken due to the strong alkalinity of the solution at room temperature and the catalytic influence of Zn2+. Many yellow crystals of {K[CH(NO2)2]}nwere formed, which were filtered, washed with distilled water and dried under vacuum, yielding 0.461 g (32%) (Scheme 1). FT-IR(KBr,ν/ cm-1): 3146, 1463, 1413, 1365, 1300, 1208, 1079, 1001, 785, 746, 690; Elemental Anal. Calcd. for CHN2O4K(%): C 7.28, H 0.80, N 20.10(%); Found: C 7.25, H 0.83, N 20.15 %.

    Scheme 1 Synthetic route of {K[CH(NO2)2]}n

    2.2 Equipments and Conditions

    Elemental analyses were performed on a VarioEL Ш elemental analyzer (Elemental Co., Germany). IR spectra were determined on EQUINX55 with KBr pellets. DSC curves under a nitrogen atmosphere at a flow rate of 20 mL·min-1were obtained by using a DSC 200 F3 media (NETZSCH, Germany), heating rates used were 5.0, 7.5, 10.0 ℃·min-1and 12.5 ℃·min-1from ambient temperature to 400.0 ℃, respectively. TG-DTG experiment was performed using a SDT-Q600 apparatus (TA, USA) under the condition of flow nitrogen gas at a flow rate of 100 mL·min-1. The heating rate used was 10.0 ℃·min-1from ambient temperature to 400.0 ℃. The impact sensitivity was determined by using a ZBL-B impact sensitivity instrument (NACHEN, China). The mass of drop hammer is 2.5 kg. The sample mass is 30 mg.

    2.3 Determination of the Single Crystal Structure

    The crystal with dimensions of 0.39 nm×0.21 nm×0.19 mm was chosen for X-ray diffraction. The data were collected on a Bruker SMART APEX CCD X-ray diffractometer using graphite-monochromated Mo Kαradiation (λ=0.071073 nm). The structure was solved by the direct methods (SHELXTL-97) and refined by the full-matrix-block least-squares method onF2with anisotropic thermal parameters for all non-hydrogen atoms[22-23]. Crystal data and refinement results of {K[CH(NO2)2]}nare summarized in Table 1(CCDC No.:1059465.

    3 Results and Discussion

    3.1 Crystal Structure

    {K[CH(NO2)2]}ncrystallizes in the triclinic system with space groupP-1 containing two molecules per unit cell. The minimum asymmetric unit, coordinated environments of K+ion and crystal packing are shown in Figs.1-3. Selected bond lengths and bond angles are listed in Table 2.

    Table 1 Crystal data and structures refinement details

    chemicalformulaK[CH(NO2)2]formulamass/g·mol-1144.14temperature/K296(2)wavelength/nm0.071073crystalsystemtriclinicspacegroupP-1a/?4.5285(11)b/?7.0377(17)c/?7.8543(19)α/(°)70.671(3)β/(°)88.557(3)γ/(°)75.818(4)V/?3228.58(10)Z2Dc/g·cm-32.094absorptioncoefficient/mm-11.077F(000)144.0θ/(°)2.75-25.00indexranges-3≤h≤5,-6≤k≤8,-9≤l≤9reflectionscollected804reflectionsunique778refinementmethodfull-matrixleast-squaresonF2goodness-of-fitonF21.060finalRindices[I>2σ(I)]R1=0.0457,wR2=0.1399Rindices(alldata)R1=0.0473,wR2=0.1364largestdiff.peakandhole/e·?-30.484and-1.278

    Fig.1 Minimum asymmetric unit of {K[CH(NO2)2]}n

    Fig.2 Coordinated environments of K+ion

    Fig.3 Crystal packing of {K[CH(NO2)2]}n

    The crystallographic studies show that {K[CH(NO2)2]}nconsists of a K+ion and a [CH(NO2)2]-anion (Fig.1). Delocalization of the negative charge on the entire [CH(NO2)2]-anion is evident from these bond lengths combined with the planarity: bond lengths of C(1)—N(2) (0.13640 nm) and C(1)—N(1) (0.13715 nm) are much shorter than the average value for a normal C—N single bond (0.147 nm)[24], but significantly longer than the normal CN double bond (0.134 nm)[24]. A similar trend is observed by corresponding N—O bonds of [CH(NO2)2]-anion [N(2)—O(4) (0.12596 nm), N(2)—O(3) (0.12522 nm), N(1)—O(1) (0.12499 nm), N(1)—O(2) (0.12411 nm)], which are greatly longer than a normal NO double bond but shorter than a N—O single bond. From the selected bond angles [N(2)—O(4)—K(1) (135.3°), O(3)—N(2)—O(4) (120.0°), O(3)—N(2)—C(1) (124.4°), O(4)—N(2)—C(1) (115.6°), N(2)—C(1)—N(1) (122.8°), O(2)—N(1)—O(1) (119.8°), O(2)—N(1)—C(1)(124.3°), O(1)—N(1)—C(1) (115.9°)], it can be seen that the structure is distorted. The —NO2and —CH groups in the anion are almost coplanar, which is supported by the torsion angles [O(3)—N(2)—C(1)—N(1) (6.2°), O(4)—N(2)—C(1)—N(1) (-171.4°), N(2)—C(1)—N(1)—O(2) (-9.8°), N(2)—C(1)—N(1)—O(1) (169.7°)], and the torsion angles between K+and [CH(NO2)2]-are [K(1)—O(4)—N(2)—O(3) (89.7°), K(1)—O(4)—N(2)—C(1) (-92.6°)].

    Fig.2 indicates that each K+ion is connected with six adjacent [CH(NO2)2]-anions through eight K—O coordinated bonds [K(1)—O(2)B#2 (0.28152 nm), K(1)—O(3)B#2(0.28007 nm), K(1)—O(4)C#1(0.30856 nm), K(1)—O(3)C#1(0.27978 nm), K(1)—O(1)D#3 (0.30690 nm), K(1)—O(2)D#3 (0.28039 nm), K(1)—O(1)E#4 (0.28037 nm), K(1)—O(1)F#5 (0.29853 nm) ] and one K—O coordination bond [K(1)—O(4)A (0.28694 nm)], forming a special structure with K+ion being coordination center. Atom O(4)A, O(1)E and O(1)F are three ends of this badly distorted structure, according to the selected bond lengths and bond angles (Table 2). Each [CH(NO2)2]-anion interacts with six adjacent K+ions through the same coordination interactions simultaneously. Herein, the weak K-K interactions [K(1)—K(1)#6 (0.44623 nm)], [K(1)—N(1)#3 (0.33370 nm)]and [K(1)—N(2)#1 (0.33411 nm)] can also be found.

    Table 2 Selected bond lengths and bond angles of {K[CH(NO2)2]}n

    Note: #1: x-1, y, z; #2: -x+2, -y+1, -z+2; #3: x-1, y, z-1; #4: x, y, z-1; #5: -x+1, -y+2, -z+2; #6: -x+1, -y+2, -z+1.

    No hydrogen bonding is observed in the crystal packing (Fig.3), the crystal packing is highly ordered, which means the infinite expansion of the unit involving central K+and K—O bonds that connect the adjacent structures, exiting a regular configuration.

    3.2 Thermal Behavior

    Typical DSC and TG-DTG curves (Fig.4 and Fig.5) indicate that the thermal decomposition of {K[CH(NO2)2]}ncan be divided into two obvious exothermic decomposition stages. The first stage is a slight decomposition process, occurring at 165-195 ℃ with a mass loss of about 54.8%, and the extrapolated onset temperature and peak temperature at the heating rate of 10.0 ℃·min-1are 172.8 ℃ and 178.2 ℃, respectively. The second stage is an intense exothermic decomposition process with a mass loss of about 23.2 % at the temperature range of 195-240 ℃, and the extrapolated onset temperature and peak temperature at the heating rate of 10.0 ℃·min-1are 224.9 and 225.6 ℃, respectively. The final residue at 400 ℃ is about 16.4%. Comparing {K[CH(NO2)2]}nwith some similar potassium salts like K(NNMPA)[25], K(AHDNE)[10]and K(DNDZ)[26], it can be seen that their thermal behaviors are all divided into two exothermic decomposition processes. Correspondingly, the extrapolated onset temperatures and peak temperatures of the first stages are 146.7 ℃ and 152.3 ℃ for K(NNMPA), 179.8 ℃ and 181.9 ℃ for K(AHDNE), 220.4 and 222.7 ℃ for K(DNDZ) respectively, indicating that the thermal stability of these four potassium salts is ordered as K(DNDZ)>K(AHDNE)>{K[CH(NO2)2]}n>K(NNMPA).

    A multiple heating method was employed to obtain the kinetic parameters [the apparent activation energy(E) and pre-exponential factor (A)]. The DSC data and results obtained by Kissinger method and Ozawa method of the first exothermic decomposition process for {K[CH(NO2)2]}nare listed in Table 3[27-28]. The apparent activation energy obtained by Kissinger method agrees well with that by Ozawa method. The linear correlation coefficients (r) are very close to 1. So, the results are credible. Moreover, the apparent activation energy is lower, indicating that {K[CH(NO2)2]}neasily decomposes at high temperature.

    The self-accelerating decomposition temperature (TSADT) and critical temperature of thermal explosion (Tb) are two important parameters required to ensure safe storage and process operations for energetic materials and then to evaluate the thermal stability.TSADTandTbcan be obtained by Eqs. (1) and (2)[29-30, 32], respectively.

    (1)

    (2)

    whereEOis the apparent activation energy obtained by Ozawa method,kJ·mol-1;nandmare coefficients.

    TSADTandTbfor {K[CH(NO2)2]}nare 161.0 ℃ and 162.8 ℃ respectively, which are lower than these of K(ANDNE) (162.5 ℃and 171.4 ℃)[11]and these of K(DNDZ) (196.0℃ and 208.6 ℃)[26], but higher than that of K(NNMPA) as 137.4 ℃ and 146.3 ℃[31].

    Fig.4 DSC curve of {K[CH(NO2)2]}nat a heating rate of 10 ℃·min-1

    Fig.5 TG/DTG curves of{K[CH(NO2)2]}nat a heating rate of 10 ℃·min-1

    Table 3 The parameters determined by DSC curves at different heating rates (β)

    β/℃·min-1Te/℃Tp/℃EK/kJ·mol-1log(A/s-1)rKEO/kJ·mol-1rO5.0164.8169.47.5169.4174.410.0172.8178.212.5176.8181.0125.512.610.9996126.40.9997

    Note: Subscript K, data obtained by Kissinger method; subscript O, data obtained by Ozawa method.

    3.3 Sensitivity

    The test result indicates that impact sensitivity of {K[CH(NO2)2]}nis >15.7 J. {K[CH(NO2)2]}nis relatively insensitive. The sensitivity is much lower than that of K(AHDNE) (>5 J), but slightly higher than that of K(NNMPA) (>16.7 J)[31].

    4 Conclusions

    Potassium dinitromethane {K[CH(NO2)2]}nwas synthesized and structurally characterized. {K[CH(NO2)2]}ncrystallizes in triclinic system with space groupP-1 containing two molecules per unit cell.The thermal behavior of {K[CH(NO2)2]}npresents two exothermic decomposition processes. The self-accelerating decomposition temperature and critical temperature of thermal explosion of {K[CH(NO2)2]}nare 161.0 ℃and 162.8 ℃ respectively. {K[CH(NO2)2]}nexhibits lower thermal stability than K(DNDZ) and K(AHDNE), but higher thermal stability than K(NNMPA). {K[CH(NO2)2]}nis relatively insensitive.

    [1] Latypov N V, Bergman J, Langlet A, et al. Synthesis and reaction of 1,1-diamino-2,2-dinitroethylene[J].Tetrahedron, 1998, 54: 11525-11536.

    [2] CAI H Q, SHU Y J, YU W F, et al. Research development of 1,1-diamino-2, 2-dinitroethylene[J].ChineseJournalofEnergeticMaterials(HannengCailiao), 2003,12(2):124-128.

    [3] CHEN Y S, XU K Z, WANG M, et al. A review on the reactivity of 1,1-diamino-2,2-dinitroethylene(FOX-7)[J].ChineseJournalofEnergeticMaterials(HannengCailiao), 2012, 20(1):120-125.

    [4] Lochert I J. FOX—a new insensitive explosive, DSTO-TR-1238[R]. Weapons Systems Division, Aeronautical and Maritime Research Laboratory, 2001.

    [5] Trzcinski W A, Cudzilo S, Chylek Z, et al. Detonation properties and thermal behavior of FOX-7-based explosives[J].JournalofEnergeticMaterials, 2008, 31: 72-85.

    [6] YUAN Z F, ZHANG Y, GAO Z, et al. Synthesis, crystal structure and thermal behavior of [Zn(en)3](FOX-7)2[J].ChineseJournalofEnergeticMaterials(HannengCailiao), 2014, 22(4): 436-440.

    [7] XU K Z, QIU Q Q, PANG J Y, et al. Thermal properties of 1-amino-1-hydrazino-2,2-dinitroethylene cesium salt[J].JournalofEnergeticMaterials, 2013, 31: 273-286.

    [8] Herve G, Guy J, Latypov N. The reactivity of 1,1-diamino-2,2-dinitroethene (FOX-7)[J].Tetrahedron, 2005, 61: 6743-6748.

    [9] Bellamy A J, Contini A E, Latypov N V. 1-Amino-1-hydrazo-2,2-dinitroethene—a hazard warning[J].Propellants,Explosives,Pyrotechnics, 2008, 33: 87-88.

    [10] Lü L, Xu K Z, Qiu Q Q, Non-isothermal decomposition kinetics of K(AHDNE)[J].ChemicalResearchinChineseUniversities, 2012, 28: 878-881.

    [11] Xu K Z, Zuo X G, Zhang H, et al. Synthesis and thermal behavior of a new high-energy organic potassium salt K(AHDNE)[J].JournalofThermalAnalysisandCalorimetry, 2012, 110: 585-591.

    [12] Qiu Q Q, Gao Z, Chen Y S, et al. Non-isothermal decomposition kinetic of Cu(NH3)2(FOX-7)2[J].ChineseJournalofEnergeticMaterials(HannengCailiao), 2014, 22(2): 206-209.

    [13] Luo J A, Xu K Z, Wang M, et al. Syntheses and thermal behaviors of Rb(FOX-7)·H2O and Cs(FOX-7)·H2O[J].BulletinoftheKoreanChemistrySociety, 2010, 31(10): 2867-2872.

    [14] Vo T T, Parrish D A, Shreeve J M. 1,1-Diamino-2,2-dintroethene (FOX-7) in copper and nickel diamine complexes and copper FOX-7[J].InorganicChemistry, 2012, 51: 1963-1968.

    [15] Garg S, Gao H X , Parrish D A, et al. FOX-7 (1,1-Diamino-2,2-dinitroethene): trapped by copper and amines[J].InorganicChemistry, 2011, 50: 390-395.

    [16] Cao D, Song Q H, Huang H F, et al. Synthesis and property of energetic dinitromethanide salts and their thermal decomposition reaction kinetics[J].ActaArmamentarii, 2012, 33: 560-565.

    [17] Feuer H, Bachman G B, Kispersky J P. A new preparation of potassium dinitromethane and its conversion to 2,2-dinitro-1,3-propanediol[J].JournaloftheAmericanChemicalSociety, 1951, 73: 1360.

    [18] Noble P, Borgardt F G, Reed W L. Chemistry of the aliphatic compounds and their derivatives[J].ChemicalReview, 1964, 64: 19-57.

    [19] Grakauskas V, Guest A M. Dinitromethane[J].JournalofOrganicChemistry, 1978, 43: 3485-3488.

    [20] Jalovy Z, Ottis J, Ruzicka A, et al. Organic salts of dinitromethane[J].Tetrahedron, 2009, 65: 7163-7170.

    [21] Ling H, Guo H T, Parrish D A, et al. Liquid dinitromethanide Salts[J].InorganicChemistry, 2001, 50: 679-685.

    [22] Sheldrick G M. SHELXS[CP], University of G?ttingen, Germany, 1997.

    [23] Sheldrick G M. SHELXL, Program for x-ray crystal structure refinement[CP], University of G?ttingen, Germany, 1997.

    [24] Chen X M, Cai J W. Single crystal structure analysis theory and practice (2nd)[M]. Beijing: Science Press, 2007: 117-132.

    [25] Qiu Q Q, Yang X, Xu K Z, et al. Synthesis, crystal structure and thermal behaviors of 2,3-dihydro-4-nitro-3-(dinitromethylene)-1H-pyrazol-5-amine potassium salt [K(NNMPA)][J].InorganicChimicaActa, 405: 356-361.

    [26] Xu K Z, Zhao F Q, Song J R, et al. Non-isothermal decomposition kinetics of a new high-energy organic potassium salt: K(DNDZ)[J].BulletinoftheKoreanChemicalSociety, 2009, 30: 2259-2264.

    [27] Kissinger H E. Reaction kinetics in differential thermal analysis[J].AnalyticalChemistry, 1957, 29: 1702-1706.

    [28] Ozawa T. A method of analying thermogravimetric data[J].BulletinofChemicalSocietyJpn, 1965, 38: 1881-1886.

    [29] Hu R Z, Gao S L, Zhao F Q, et al. Thermal analysis kinetics (2nd)[M]. Science Press, Beijing, 2008: 151-155.

    [30] Zhang T L, Hu R Z, Xie Y, et al. The estimation of critical temperatures of thermal explosion for energetic materials using non-isothermal DSC[J].ThermochimicaActa,1994, 244 :171-176.

    [31] Zhang W T, Huang J, Xu K Z, et al. Thermolysis, specific heat capacity and adiabatic time-to-explosion of 2,3-dihydro-4-nitro-3-(dinitromethylene)-1H-pyrazol-5-amine potassium salt[J].JournalofAnalyticalandAppliedPyrolysis, 2013, 104: 703-706.

    [32] Xiao J X, Du X L,Qiao L Y, et al. The synthesis and thermal behaviors of 4,4-azo-1H-1, 2, 4-triazol-5-one ammonium salt[J].ChineseJournalofEnergeticMaterials(HannengCailiao), 2015, 23: 741-745.

    伊人久久精品亚洲午夜| 高清欧美精品videossex| 久久久精品94久久精品| 国产亚洲最大av| 国产精品精品国产色婷婷| 嫩草影院新地址| 国产精品精品国产色婷婷| 六月丁香七月| 99久国产av精品国产电影| 麻豆乱淫一区二区| 建设人人有责人人尽责人人享有的 | 性插视频无遮挡在线免费观看| 国产精品熟女久久久久浪| 女人被狂操c到高潮| 国产综合懂色| 国产伦在线观看视频一区| 日韩一本色道免费dvd| 国产一区亚洲一区在线观看| 黄色欧美视频在线观看| 波野结衣二区三区在线| 国产精品一及| 亚洲四区av| 最近最新中文字幕大全电影3| av福利片在线观看| 丰满人妻一区二区三区视频av| 欧美成人a在线观看| 成人亚洲精品av一区二区| 久久久久久久久久成人| av免费观看日本| 超碰av人人做人人爽久久| 非洲黑人性xxxx精品又粗又长| 久久这里有精品视频免费| 三级国产精品欧美在线观看| 国产亚洲午夜精品一区二区久久 | 国产成人a区在线观看| 大陆偷拍与自拍| 男女下面进入的视频免费午夜| 日本av手机在线免费观看| 国产精品一二三区在线看| 赤兔流量卡办理| 22中文网久久字幕| 偷拍熟女少妇极品色| 人妻系列 视频| 欧美高清成人免费视频www| 男女边摸边吃奶| 有码 亚洲区| 熟女人妻精品中文字幕| 尾随美女入室| 欧美bdsm另类| 欧美成人a在线观看| 欧美成人午夜免费资源| 在线天堂最新版资源| 一级毛片 在线播放| 97热精品久久久久久| 国产在线一区二区三区精| 国产精品1区2区在线观看.| 亚洲欧美成人综合另类久久久| 少妇猛男粗大的猛烈进出视频 | 一个人看的www免费观看视频| 久久精品国产自在天天线| 久久6这里有精品| 欧美极品一区二区三区四区| 亚洲色图av天堂| 日韩精品有码人妻一区| 婷婷色综合www| av黄色大香蕉| 国产高潮美女av| 国产成人福利小说| 建设人人有责人人尽责人人享有的 | 卡戴珊不雅视频在线播放| 国产91av在线免费观看| 99视频精品全部免费 在线| 七月丁香在线播放| 亚洲国产色片| 欧美日本视频| eeuss影院久久| 国产av国产精品国产| 精品99又大又爽又粗少妇毛片| 久久久久久久久久成人| 两个人的视频大全免费| 亚洲四区av| 亚洲国产av新网站| 国产精品国产三级国产av玫瑰| 综合色av麻豆| 亚洲婷婷狠狠爱综合网| 一级黄片播放器| 老师上课跳d突然被开到最大视频| 高清视频免费观看一区二区 | 天美传媒精品一区二区| 国模一区二区三区四区视频| 免费看日本二区| 国产在线男女| 日本-黄色视频高清免费观看| 男女下面进入的视频免费午夜| 亚洲最大成人av| 国产片特级美女逼逼视频| 九九爱精品视频在线观看| 中文资源天堂在线| 女人久久www免费人成看片| 亚洲激情五月婷婷啪啪| 国产成年人精品一区二区| 校园人妻丝袜中文字幕| 久久久久网色| 免费观看精品视频网站| 亚洲精品aⅴ在线观看| 国产一区亚洲一区在线观看| av国产久精品久网站免费入址| 亚洲不卡免费看| 色网站视频免费| xxx大片免费视频| 国产精品美女特级片免费视频播放器| 欧美+日韩+精品| 久久精品国产自在天天线| 亚洲国产最新在线播放| 精品久久久久久久人妻蜜臀av| 只有这里有精品99| 97热精品久久久久久| 免费少妇av软件| 国产永久视频网站| 日日摸夜夜添夜夜爱| 午夜久久久久精精品| 国产精品一区二区性色av| 国国产精品蜜臀av免费| 欧美日韩亚洲高清精品| 永久网站在线| 国产精品精品国产色婷婷| 亚洲精品国产av蜜桃| 一级毛片黄色毛片免费观看视频| 国产视频首页在线观看| 精品久久久久久久久久久久久| 永久网站在线| 免费大片18禁| 特大巨黑吊av在线直播| 国产免费一级a男人的天堂| 国产精品爽爽va在线观看网站| 又爽又黄无遮挡网站| 一个人看的www免费观看视频| 黑人高潮一二区| 亚洲精品第二区| 不卡视频在线观看欧美| 五月玫瑰六月丁香| 嘟嘟电影网在线观看| 国产高清不卡午夜福利| 久久久精品欧美日韩精品| 亚洲精品456在线播放app| 国产精品1区2区在线观看.| 久99久视频精品免费| 国产成人午夜福利电影在线观看| 亚洲欧美成人综合另类久久久| 国产亚洲精品久久久com| 成人欧美大片| 亚洲欧洲国产日韩| 免费黄色在线免费观看| 大陆偷拍与自拍| 色哟哟·www| 久久草成人影院| 国产熟女欧美一区二区| 国产精品女同一区二区软件| 亚洲av在线观看美女高潮| 人妻夜夜爽99麻豆av| 青青草视频在线视频观看| 亚洲精品乱码久久久v下载方式| 国产精品久久久久久久电影| 国产亚洲最大av| 成年av动漫网址| 亚洲欧美一区二区三区黑人 | 久久久久久久久久久免费av| 麻豆国产97在线/欧美| 美女高潮的动态| 欧美最新免费一区二区三区| 深爱激情五月婷婷| 极品少妇高潮喷水抽搐| 深夜a级毛片| 午夜老司机福利剧场| 联通29元200g的流量卡| 久久这里只有精品中国| 99热这里只有是精品在线观看| 成年版毛片免费区| av一本久久久久| 美女高潮的动态| 亚洲在久久综合| 国产白丝娇喘喷水9色精品| 亚洲av成人精品一区久久| 三级男女做爰猛烈吃奶摸视频| 最近最新中文字幕免费大全7| 91在线精品国自产拍蜜月| 欧美3d第一页| 人妻制服诱惑在线中文字幕| 日本wwww免费看| 大香蕉97超碰在线| 大又大粗又爽又黄少妇毛片口| 成人毛片60女人毛片免费| 亚洲av福利一区| 日本欧美国产在线视频| 国产综合懂色| 网址你懂的国产日韩在线| 国产真实伦视频高清在线观看| 国产亚洲最大av| 午夜激情福利司机影院| 国产在线男女| 日本黄大片高清| 亚洲av免费在线观看| 午夜老司机福利剧场| 中文字幕免费在线视频6| 日本熟妇午夜| 精品久久久久久久久亚洲| 我要看日韩黄色一级片| 国产视频内射| 女人久久www免费人成看片| 一级a做视频免费观看| 国产精品美女特级片免费视频播放器| 欧美高清性xxxxhd video| 国产男人的电影天堂91| 一区二区三区免费毛片| 国产精品一二三区在线看| 久久久精品免费免费高清| 国产精品综合久久久久久久免费| 少妇的逼好多水| 国产黄色视频一区二区在线观看| 成人午夜精彩视频在线观看| 久久久亚洲精品成人影院| 有码 亚洲区| 欧美xxxx性猛交bbbb| 久久久欧美国产精品| 日韩人妻高清精品专区| 在线免费观看的www视频| 中文乱码字字幕精品一区二区三区 | 亚洲国产日韩欧美精品在线观看| 国产黄a三级三级三级人| 欧美极品一区二区三区四区| 人人妻人人澡欧美一区二区| 乱系列少妇在线播放| 国产精品1区2区在线观看.| 国产高清国产精品国产三级 | 亚洲久久久久久中文字幕| 日韩一本色道免费dvd| 欧美成人一区二区免费高清观看| 伊人久久精品亚洲午夜| 国产国拍精品亚洲av在线观看| 国产精品熟女久久久久浪| 午夜老司机福利剧场| 啦啦啦中文免费视频观看日本| 亚洲人成网站在线播| 岛国毛片在线播放| 日本wwww免费看| 91精品伊人久久大香线蕉| 成人亚洲精品av一区二区| 伦理电影大哥的女人| 色综合亚洲欧美另类图片| 国产在视频线精品| 日本一本二区三区精品| 国产免费福利视频在线观看| 国产一区二区亚洲精品在线观看| 亚洲综合精品二区| 久久久a久久爽久久v久久| 成年女人看的毛片在线观看| 久久久国产一区二区| 亚洲欧美一区二区三区国产| 97超碰精品成人国产| 国产精品国产三级专区第一集| 在线观看美女被高潮喷水网站| 女的被弄到高潮叫床怎么办| 国产男女超爽视频在线观看| 国产黄色小视频在线观看| 中文字幕久久专区| 热99在线观看视频| 建设人人有责人人尽责人人享有的 | 久久精品久久精品一区二区三区| 尾随美女入室| 舔av片在线| 黄色欧美视频在线观看| 久久久久久久久久黄片| 伊人久久国产一区二区| 五月伊人婷婷丁香| 麻豆av噜噜一区二区三区| 大话2 男鬼变身卡| 亚洲四区av| 波野结衣二区三区在线| 男女视频在线观看网站免费| 黄色一级大片看看| 欧美高清成人免费视频www| 亚洲精品久久久久久婷婷小说| 亚洲四区av| 波野结衣二区三区在线| 毛片一级片免费看久久久久| 国产探花极品一区二区| av一本久久久久| 夜夜爽夜夜爽视频| 一本—道久久a久久精品蜜桃钙片 精品乱码久久久久久99久播 | 国产大屁股一区二区在线视频| 精品久久久久久久久亚洲| 国产精品国产三级国产专区5o| 寂寞人妻少妇视频99o| av国产久精品久网站免费入址| 十八禁网站网址无遮挡 | 白带黄色成豆腐渣| 99九九线精品视频在线观看视频| 国产精品不卡视频一区二区| a级毛片免费高清观看在线播放| 免费少妇av软件| 免费av毛片视频| 欧美 日韩 精品 国产| freevideosex欧美| 99热6这里只有精品| 亚洲av日韩在线播放| 国产精品久久视频播放| 一个人看的www免费观看视频| 青春草亚洲视频在线观看| 成人一区二区视频在线观看| 久久久久久久久久黄片| 亚洲av成人精品一区久久| 精品一区二区免费观看| 直男gayav资源| 欧美bdsm另类| 精品久久久久久成人av| 少妇被粗大猛烈的视频| 国产一级毛片在线| 91av网一区二区| 少妇熟女欧美另类| 免费高清在线观看视频在线观看| 99热6这里只有精品| 男的添女的下面高潮视频| 国产亚洲av嫩草精品影院| 在线a可以看的网站| 卡戴珊不雅视频在线播放| 国产成人freesex在线| 美女xxoo啪啪120秒动态图| a级一级毛片免费在线观看| 777米奇影视久久| 最近最新中文字幕大全电影3| 菩萨蛮人人尽说江南好唐韦庄| 午夜福利成人在线免费观看| 国产不卡一卡二| 男人狂女人下面高潮的视频| 国产一区二区三区av在线| 成年免费大片在线观看| 久久99精品国语久久久| 欧美3d第一页| av国产免费在线观看| 国产精品一二三区在线看| 亚洲av中文av极速乱| 国产精品久久久久久精品电影小说 | 久久久久久久大尺度免费视频| 欧美日韩在线观看h| 麻豆av噜噜一区二区三区| 国产亚洲5aaaaa淫片| 99热6这里只有精品| 日韩av在线免费看完整版不卡| 亚洲精品日本国产第一区| 大话2 男鬼变身卡| 国产精品一区www在线观看| 国产女主播在线喷水免费视频网站 | www.av在线官网国产| 一级二级三级毛片免费看| 亚洲精华国产精华液的使用体验| 中国国产av一级| 久久久久久久久中文| 男女边吃奶边做爰视频| 97超碰精品成人国产| 国产高清国产精品国产三级 | 精品国内亚洲2022精品成人| 男女下面进入的视频免费午夜| 国产亚洲av嫩草精品影院| 精品一区在线观看国产| 免费观看的影片在线观看| 高清在线视频一区二区三区| 国产爱豆传媒在线观看| 成人漫画全彩无遮挡| 国产 一区 欧美 日韩| 自拍偷自拍亚洲精品老妇| 亚洲va在线va天堂va国产| 国产亚洲精品av在线| 免费电影在线观看免费观看| 久久精品国产亚洲网站| 亚洲电影在线观看av| 听说在线观看完整版免费高清| 国产在视频线在精品| 街头女战士在线观看网站| 久久国内精品自在自线图片| 伊人久久精品亚洲午夜| 色哟哟·www| 丝瓜视频免费看黄片| 久久久午夜欧美精品| 一区二区三区乱码不卡18| 中文资源天堂在线| 国产精品一及| 亚洲精品中文字幕在线视频 | h日本视频在线播放| 免费大片18禁| 欧美不卡视频在线免费观看| 精品久久久精品久久久| 国产精品一区二区性色av| 简卡轻食公司| 自拍偷自拍亚洲精品老妇| 又爽又黄无遮挡网站| 精华霜和精华液先用哪个| 午夜福利成人在线免费观看| 久久久久久久久大av| 乱码一卡2卡4卡精品| 久久久久久久久久黄片| 国产激情偷乱视频一区二区| 久久综合国产亚洲精品| 亚洲色图av天堂| 丰满少妇做爰视频| 天堂中文最新版在线下载 | 成人鲁丝片一二三区免费| 日韩欧美精品v在线| 亚洲国产成人一精品久久久| 久久久久久久久大av| 国产一区有黄有色的免费视频 | 国产在视频线在精品| 亚洲精品色激情综合| 亚洲丝袜综合中文字幕| 久久久精品欧美日韩精品| 久久久久久久久久成人| 六月丁香七月| 成年女人看的毛片在线观看| 99久国产av精品国产电影| av网站免费在线观看视频 | 人妻夜夜爽99麻豆av| 亚洲欧美一区二区三区国产| 国产真实伦视频高清在线观看| 中文字幕亚洲精品专区| 一级毛片 在线播放| 一级爰片在线观看| 狂野欧美激情性xxxx在线观看| 久久久久免费精品人妻一区二区| 欧美激情在线99| 欧美区成人在线视频| 亚洲精品日本国产第一区| 亚洲精品自拍成人| 一级av片app| 日韩不卡一区二区三区视频在线| 国产色爽女视频免费观看| 国产黄a三级三级三级人| 亚洲欧美成人精品一区二区| 日日干狠狠操夜夜爽| av天堂中文字幕网| 国产片特级美女逼逼视频| 国产乱人视频| 国产精品熟女久久久久浪| 男女边摸边吃奶| 成人二区视频| 高清日韩中文字幕在线| 免费人成在线观看视频色| 综合色av麻豆| 少妇的逼水好多| 色综合站精品国产| 精品国内亚洲2022精品成人| 亚洲熟妇中文字幕五十中出| 丰满乱子伦码专区| 欧美日韩亚洲高清精品| 91久久精品电影网| 超碰av人人做人人爽久久| 91狼人影院| 最近视频中文字幕2019在线8| 亚洲av二区三区四区| 亚洲欧美成人综合另类久久久| 美女高潮的动态| 国产精品国产三级专区第一集| 乱系列少妇在线播放| 日本-黄色视频高清免费观看| 午夜福利在线观看吧| 少妇高潮的动态图| 少妇裸体淫交视频免费看高清| 国产激情偷乱视频一区二区| 国产国拍精品亚洲av在线观看| 亚洲av成人精品一区久久| 最近最新中文字幕免费大全7| 久久精品国产亚洲av天美| 日韩伦理黄色片| 国产v大片淫在线免费观看| 日本与韩国留学比较| 日韩一区二区三区影片| 午夜日本视频在线| 麻豆精品久久久久久蜜桃| 男女边摸边吃奶| 美女高潮的动态| eeuss影院久久| 亚洲人成网站在线播| 在线观看一区二区三区| 亚洲天堂国产精品一区在线| 成人特级av手机在线观看| 亚洲最大成人中文| 日本欧美国产在线视频| 国产黄频视频在线观看| 高清在线视频一区二区三区| 男女国产视频网站| 三级经典国产精品| 国产精品一区www在线观看| 91av网一区二区| 国产色爽女视频免费观看| 国产高清国产精品国产三级 | 中文在线观看免费www的网站| 久久久久久久午夜电影| 黄色配什么色好看| 国产老妇伦熟女老妇高清| 亚洲精品,欧美精品| 国产久久久一区二区三区| 九色成人免费人妻av| 国产成人freesex在线| 免费观看的影片在线观看| 免费高清在线观看视频在线观看| 亚洲精品一区蜜桃| 色综合站精品国产| 亚洲色图av天堂| 久久久久精品性色| 看非洲黑人一级黄片| 一级爰片在线观看| 搡老妇女老女人老熟妇| 国产精品久久久久久久电影| 国产精品一二三区在线看| 亚洲综合色惰| 在线播放无遮挡| 18禁在线无遮挡免费观看视频| 国产女主播在线喷水免费视频网站 | 欧美xxⅹ黑人| 一级av片app| 国产欧美另类精品又又久久亚洲欧美| 麻豆成人av视频| 亚洲综合精品二区| 中文欧美无线码| 国产高清三级在线| 日韩成人av中文字幕在线观看| 美女脱内裤让男人舔精品视频| 免费黄色在线免费观看| 色综合亚洲欧美另类图片| 18+在线观看网站| 成人无遮挡网站| 久久久亚洲精品成人影院| 蜜桃久久精品国产亚洲av| 久久这里只有精品中国| 中文字幕人妻熟人妻熟丝袜美| 亚洲乱码一区二区免费版| 国产成人精品婷婷| 在线观看人妻少妇| 欧美精品国产亚洲| 成人一区二区视频在线观看| 色哟哟·www| 免费av观看视频| 欧美性感艳星| 尾随美女入室| 日本爱情动作片www.在线观看| 岛国毛片在线播放| 18禁在线无遮挡免费观看视频| 全区人妻精品视频| 成年人午夜在线观看视频 | 菩萨蛮人人尽说江南好唐韦庄| 尤物成人国产欧美一区二区三区| 99热网站在线观看| 99热这里只有是精品50| 国产成人精品婷婷| 国产精品人妻久久久久久| 在线观看美女被高潮喷水网站| 黄色一级大片看看| 18禁裸乳无遮挡免费网站照片| 国产免费福利视频在线观看| 日韩 亚洲 欧美在线| 日产精品乱码卡一卡2卡三| 久久草成人影院| 亚洲欧美成人综合另类久久久| 免费黄频网站在线观看国产| 九色成人免费人妻av| 亚洲精华国产精华液的使用体验| 天美传媒精品一区二区| .国产精品久久| 中文乱码字字幕精品一区二区三区 | 国产男人的电影天堂91| 色播亚洲综合网| 久久久久国产网址| 午夜老司机福利剧场| 午夜福利网站1000一区二区三区| 少妇熟女欧美另类| 又大又黄又爽视频免费| 丝袜喷水一区| 精品一区在线观看国产| 大香蕉久久网| 日韩亚洲欧美综合| 日韩精品青青久久久久久| 晚上一个人看的免费电影| 七月丁香在线播放| 看黄色毛片网站| 免费观看性生交大片5| 插逼视频在线观看| 简卡轻食公司| 日产精品乱码卡一卡2卡三| 美女高潮的动态| 热99在线观看视频| 欧美一级a爱片免费观看看| 久久久精品94久久精品| 伊人久久精品亚洲午夜| 能在线免费看毛片的网站| ponron亚洲| 男人狂女人下面高潮的视频| 久久久久久伊人网av| 秋霞伦理黄片| 视频中文字幕在线观看| av天堂中文字幕网| 国产淫片久久久久久久久| 亚洲自拍偷在线| 精品亚洲乱码少妇综合久久| 午夜激情久久久久久久| 91狼人影院| 精品久久久久久久末码| 日本黄大片高清| 久久99热6这里只有精品| 草草在线视频免费看| 亚洲三级黄色毛片| 偷拍熟女少妇极品色| .国产精品久久| 国产美女午夜福利| 日韩精品有码人妻一区| 日韩成人伦理影院| 亚洲欧美中文字幕日韩二区| av免费在线看不卡|