• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    The Tensile Properties and Creep Performance of a Long-term Thermally Aged Plastic Bonded Explosive

    2016-05-08 13:18:50ZHOUHongpingHEQiangLIMingPANGHaiyanWEIXingwenWENMaoping
    含能材料 2016年9期

    ZHOU Hong-ping, HE Qiang, LI Ming, PANG Hai-yan, WEI Xing-wen, WEN Mao-ping

    (Institute of Chemical Materials, China Academy of Engineering Physics, Mianyang 621999, China)

    1 Introduction

    The physical and chemical changes of polymer bonded explosives(PBXs) with aging under diverse storage environments have been extensively studied, for instance, the effects of thermal aging at elevated temperatures on well known composition of PBX-9501 have been studied and the changes resulted from this type of treatment have been found[1-2]. It shows that the major aging mechanism, i.e., the hydrolysis of the binder, for instance Estane, may occur and the molecular weight may decrease and, thus degrade the tensile or compression mechanical properties of PBX 9501[3]. Similar studies have been done for LX-14 and many other compositions[4-6]. Most of the surveillance methods for aging evaluation were to inspect the conventional mechanical properties, which involve measurements of compression/tensile strength and elastic modulus[7-8]. According to the previous studies, it seems that there is no evidence of catastrophic structural integrity loss for all known PBXs which have been exposed to various aging environments[9]. But, as well known, the measurement of conventional mechanical properties, for instance, the tensile strength testing just takes less minutes and thus has its weakness to manifest the time-dependent effects of the PBXs. Lots of PBX compositions, such as EDC37, LX-17 and PBX 9501, show strongly time-dependent behaviors resulted from the polymer binders inside the compositions[11-13].

    Although the time-depend behaviors of creep of PBXs have been investigated extensively[12-13], very few studies on the creep performance for those PBXs having been long-term aged up to years are available. Most of the published studies attributed the time-dependent behaviors of PBXs to the binders, and forgot that the physical interfaces between the binder and the energetic crystals may play a key role on the creep behavior, especially on the sustainable creep time until to failure. In fact, in a long-term aging environment, especially when the temperature of storage is above the glassy transition temperature of the binder, the interfaces may change slowly and the residual stains induced by the mould pressing may release. The slowing changes in interfaces can not be easily inspected through conventional mechanical strength testing. The principal motivation of this study is to find and evaluate measurable changes of a pressed PBX after 6 month and 3 year storage under different temperature environments through mechanical tensile testing and creep testing.

    2 Experimental

    2.1 PBX Composition and Specimen Preparation

    PBX-901 employed in this study, is a PBX pressed from molding powder, which comprises about 95% crystalline cyclotetramethylen tetranitramine (HMX) and a small portion binder of 5% fluoro-rubber binder by mass. The pressed PBX-901 stocks were machined to standard cylindrical dumbbell specimens (Fig.1) which meet the requirements of the Chinese military standard for tensile strength and tensile creep testing. All the specimens had been inspected by Non-destructive methods to ensure those with pre-exiting defects were eliminated before thermally storage and mechanical testing started.

    Fig.1 Size of the specimen

    2.2 Thermal Aging Treatment

    The dumbbell specimens were stored in different environmental ovens at the temperature of 25, 45, 55, 65 ℃ and 75 ℃, respectively. Each oven was equipped with safety thermostats, the temperature variation was maintained within ±1 ℃ and monitored by a remote-controlled recording device. Some of the specimens were stored for 6 months and some up to 36 months. After treatment, the aged specimens were removed from the environmental chambers for tensile testing and tensile creep testing.

    2.3 Tensile Testing

    The clamp-method tensile testing was carried out by an Instron 5582 universe test machine equipped with an environmental temperature chamber as well as a high precise dual- extensometer. The constant crosshead speed is 0.05 mm·min-1that gives a nominal strain rate of 0.0033 s-1,and the testing temperature was at 45 ℃ which has been proved as a transition temperature in term of mechanical property for this type of PBX[14]. The stress-strain curve was obtained and Young′s modulus of each specimen can be calculated. It should be noted that each tensile strength or elastic modulus was an average output of five replicate tensile specimens per condition. The tensile strength for pristine and aged specimen at 25 ℃, i.e. the ambient temperature, were also measured in order to determinate the creep testing stress level, which will be detailed later.

    2.4 Tensile Creep Testing

    The tensile creep experiments were conducted by using Instron 8862 creep testing machine equipped with a temperature-controlled chamber[15]. The creep strains were recorded by a dual extensometer. All creep testing temperatures were at 45 ℃, same as the tensile testing. The tensile creep stress of the specimens aged for 3 years was kept constant of 2.88 MPa, which was about 60 percent of the tensile strength of 4.8 MPa at 45 ℃ or 52 percent of the tensile strength of 6.90 MPa at 25 ℃. For those stored for 6 months, the tensile creep stress level was kept constant of 3.58 MPa, which was about 75 percent of the tensile strength at 45 ℃. Setting such higher creep stress was to accelerate the time to rupture(TTR). In this work, the TTR can be an indictor to evaluate the aging effect on the creep performance of PBXs. To start the creep testing, the specimen was firstly loaded to the pre-determinate creep stress with the crosshead speed of 0.05 mm·min-1and then the stress was kept constant by load-hold method of the testing machine. The tensile creep strains were recorded automatically. For those specimens stored at room temperature, the creep rupture occurred very early and the creep testing will stop automatically after rupture, otherwise the testing will stop intentionally after the creep maintains for 8 hours since the beginning.

    3 Results and Discussion

    3.1 Tensile Mechanical Properties after Aging

    The tensile stress-strain curves at 45 ℃ for the specimens stored for 3 years under the temperature of 45, 55, 65 ℃ and 75 ℃, respectively, are given in figure 2, where the curve of the pristine specimen is presenting together. The tensile strength and Young′s modulus as well as the standard deviation are listed in table 1. From the figure 2 and table 1, it shows that the tensile strength and Young′s modulus at 45 ℃ are almost unchangeable even after 3 year thermally storage at difference temperature regarding the test uncertainty, except for slightly increasing for those stored at 55 ℃ or 65 ℃. The tensile strength (4.64 MPa) and Young′s modulus (9.17 GPa) of those stored at 75 ℃ for 3 years were slightly degraded and it suggests that above the temperature of 45 ℃ the thermal aging takes effect on the mechanical properties.

    Fig.2 Tensile stress-stain curves at 45 ℃ of 3 year stored specimens under difference temperature (the pristine specimens included)

    Table 1 Tensile strength and modulus at 45 ℃

    agingtemperature/℃tensilestrength/MPatensilemodulus/GPapristine4.73±0.279.92±0.4545(3year)4.74±0.1410.27±0.3055(3year)5.03±0.2210.45±0.3265(3year)5.20±0.2110.05±0.2775(3year)4.64±0.139.17±0.29

    3.2 Tensile Creep Behaviors

    The tensile creep curves of those specimens stored for 3 years were plotted together with pristine specimen in figure 3. It is found that the pristine specimen ruptured after 17326 s, much less time than those thermally treated specimens, which kept intact for 28800 s, i.e. 8 h. Similar results were obtained for those 6 month thermally treated specimens. Table 2 gives the creep testing results of those 6 month thermally aged specimen at a constant tensile stress of 3.58 MPa. Because the creep stress level for 6 month aged specimens was higher than 3 year stored specimens, the TTR was shortened accordingly. The pristine specimen has the shortest TTR of 2100 s, compared to all 6 month thermally treated specimens, in which those stored at 55 ℃ bear the longest TTR of 9600 s. But, for those at 75 ℃ for 6 months, the TTR was dramatically shortened to 2280 seconds and this shortened TTR result was similar with the slightly degraded tensile strength and Young′s modulus for those 3 year stored specimens as described previously. Although we do not present the tensile results for 6 month stored specimens, we can safely say that the temperature of 75 ℃ is not a safe condition for PBX-901 and the specimens will be assuredly thermally damaged at 75 ℃. It suggests that for PBX-901 a suitable long-term thermally storage environment will improve the creep performance and the storage temperature should be below 75 ℃.

    Table 2 Creep parameters of 6-month aged and pristine under 3.58 MPa and 45 ℃

    parameterTTR/sfailurestrain/%pristine21000.082agedat45℃40200.073agedat55℃96000.078agedat65℃51600.073agedat75℃22800.073

    Fig.3 Tensile creep curves of pristine (marked “1” in the plot) and 3 year stored specimens (2, 3, 4, and 5) at different temperature, all tests were performed under 2.88 MPa and 45 ℃

    3.3 Morphology of Cross Section of Ruptured Specimen

    To understand the failure mechanism of tensile testing as well as creep testing, the SEM observations of the broken faces were carried on. Figure 4 gives the morphology photos of a broken pristine and two 3 year aged specimens, which were tensile failures at 45 ℃ as described previously in chapter 3.1. From figure 4, it shows that the tensile broken sections of pristine resemble the aged specimens with much smoother faces, which are big different from the creep failure (figure 5) sections. In tensile testing, the HMX crystals inside the specimen have been transgranular sectioned and the smooth morphology was left as shown in figure 4a. This transgranular failure model is contradiction to de-bonding model that is accepted as a very common failure model for PBXs. The tensile creep failure of the specimens still comply with the de-bonding model as shown in figure 5, which presents the morphology of creep rupture of 6-month-aged specimens. As figure 5 shows, there was a hollow left in position 1 (figure 5a) and a HMX single crystal (figure 5b) was left in position 2 for the pristine specimen which was creeping ruptured, and a clear de-bonding interface in position 3 can be found in the failure face (figure 5c).

    As the morphology of the tensile broken sections nearly keep same whether in pristine or aged specimens (figure 4), it suggests the conventional tensile testing can not reveal the aging effects in terms of degradation of mechanical properties, whereas short-term creep testing within several hours in this work can disclose the slowing change during thermally storage, and the interface de-bonding between the crystals and binder can be clearly demonstrated.

    3.4 Analysis of Contact Angle

    The SEM observations demonstrate that the failure model of PBX-901 in tensile testing is different from the creep testing and we attribute this difference to the evolution of the interface status between HMX crystals and fluoro-rubber binder during aging treatments. However, few investigations are availably so far on the time-dependent interfacial property when PBX creeps. The contact angle measurement is considered as an effective method to evaluate the interface statue. Further the contact angle measurements were carried on this work.

    a. pristine b. aged at 45 ℃ for 3 years c. aged at 75 ℃ for 3 years

    Fig.4 Morphology of tensile failure specimens at 45 ℃

    a.position 1 b.position 2 c. position 3

    Fig.5 Morphology of tensile creep rupture specimens at 45 ℃

    a. binder aged at 45 ℃ b. binder aged at 55 ℃

    c. binder aged at 65 ℃ d. binder aged at 75 ℃

    Fig.6 Contact angles of binder with different reference liquids

    Small pellets for the Wihelmy plate method were fabricated from fluoro-rubber binder used in PBX-901 and were respectively stored at temperature of 45, 55, 65 ℃ and 75 ℃ for 2 months, 4 months and 6 months. A series of reference liquids including water, ethylene glycol and diodo-methane were employed to measure the static contact angle using contact angle analyzer(JY-82) and the results are plotted in figure 6.

    It can be found that at each aging temperature the contact angle decreases as time passed at early aging stage, but this trend did not keep monotonic decreasing except for the case of 55 ℃, contrarily, the contact angle goes up after a certain aging period. For the binder aged at 45 ℃ or 55 ℃ the turning time is in 4 months or less, and 2 months is for those aged at 65 ℃ and 75 ℃. It helps to understand that the wetting resulted from the long-term dependent thermo rheological mechanism of the binder takes effects, and the slower interaction between binder and crystals can release the residual strains resulted from pressing process. After turning time, for instance, the binder aged at 75 ℃, the contact angle goes up rapidly, it suggests that the thermally damage inside the interface dominates and in turn to shorten the TTR during creeping.

    Interesting result comes from the binder aged at 55 ℃ when the contact angle keeps monotonic decreasing. If referring to the creep testing, the specimen treated at 55 ℃ bears the longest TTR compared to the rest specimens. These two results are consistent very well with each other and it implies that for this kind of PBX the best stored temperature should be at 55 ℃.

    Base on the results and analysis, we propose that there are two competing mechanisms during thermally aging process: one, for store environment at lower temperatures, is the wetting induced by thermally rheological evolution which makes better interface, where the initial micro-defects such as the microvoids and micro delaminating induced probably from pressing can be healed and the residual strains are released slowly. The other, with the temperature increasing, is the thermal damage which poses a severe de-bonding stress in the interface that may come from the mismatch between the HMX crystal and the binder. But, the long time-dependent aging evolution can not be revealed distinctly by tensile testing, so we recommend using short-term creep testing within several hours to evaluate the long-term aging effects for plastic bonding explosives, especially for those pressing made PBXs.

    4 Conclusions

    It demonstrates that the short-term creep testing within several hours is a very useful method to evaluate the thermally effects on the mechanical properties and mechanical performance of long-term aged PBX. The TTR during creep testing can be a characteristic indicator to quantify the effects compared to the conventionally employed tensile strength testing.

    The thermally treated specimenemployed in the work shows much resistance to the creep failure in terms of much longer TTR compared to the pristine specimen and it suggests that for the types of pressed PBXs, much longer storage duration under a suitable storing temperature benefits eliminating the residual strains caused by pressing.

    Acknowledgement:The authors would like to thank the Environment Testing Group at ICM for the valuable long term aging experiments.

    [1] Burgess C E, Woodyard J D, Rainwater K A, et al. Literature Review of the Lifetime of DOE Materials: Aging of Plastic Bonded Explosives and the Explosives and Polymers Contained Therein[R], ANRCP-1998-12, Amarillo National Resource Center for Plutonium, 1998.

    [2] Skimore C B, Idar D J, Buntain G A, et al. Aging and PBX9502[R], LA-UR-98-1206, LANL, 1998.

    [3] Salazar M R, Kress J D, Lightfoot J M, et al. Experimental study of the oxidative degradation of PBX 9501 and its components[J].Propellants,Explosives,Pyrotechnics, 2008, 33(3): 182-201.

    [4] Deanne J. Idar Sheldon A. Larson, Cary B. Skidmore, Joanne R. Wendelberger, PBX 9502 Tensile Analysis[R], LA-UR-004948 LANL, 2000.

    [5] Ellis K, Leppard C, Radesk H. Mechanical properties and damage evaluation of a UK PBX[J].Mater.Sci. ,2005, 40 6241-8.

    [6] Rae P J, Palmer S J P, Goldrein H T, et al. Quasi-static studies of the deformation and failure of PBX 9501[J].Proc.R.Soc.Lond.A, 2002, 458, 2227-42.

    [7] Idar D J, Thompson D G, Gray III G T, et al. Influence on polymer molecular weight, temperature, and strain rate on the mechanical properties of PBX 9501[R], Shock Compression of Condensed Matter—2001 ed M D Furnish et al (Melville, NY: American Institute of Physics) 2002: 281-4.

    [8] Cady C M, Blumenthal W R, G.T. Gray G T III, Idar D Mechanical properties of plastic-bonded explosive binder materials as a function of strain-rate and temperature[C]∥Polymer Engineering and Science, 2006, 46(6): 812-819.

    [9] Lundberg A W. High explosives in stockpile surveillance indicate constancy[J].Science&TechnologyReview,December, 1996: 13-17.

    [10] Mang J T, Skidmore C B, Son S F, et al. An optical microcopy and small angle scattering study of porosity in thermally treated PBX9501[C]∥Shock Compression of Condensed Matter-2001, M. D. Furnish, N. N. Thadhani and Y. Horie, eds., AIP Press Conference Proc. 620, New York, 833-836.

    [11] Saw, Cheng K., Tarver, Craig M. ,Binder/HMX interaction in PBX9501 at Elevated Temperatures (UCRL-CONF-200156),13th Annual APS Topical Conference Portland, OR. 2003.

    [12] Williamson D M, Siviour C R, Proud W G, et al. Temperature-time response of a polymer bonded explosive in compression[J]. (EDC37),J.Phys.D:Appl.Phys, 2008, 41: 085404.

    [13] Gagliardi F J, Cunningham B J. Creep Testing Plastic Bonded Explosives in uniaxial Compression[C]∥10th International Conference on Experimental and Applied Mechanics, Orlando, Florida, 2008, June 2-5.

    [14] ZHOU Hong-ping, HE Qiang , LI Ming, et al. Experimental study on aging of pbx under low tensile stress[J].ChineseJournalofExplosives&Propellants, 2009, 32(5): 8-10.

    [15] LI Ming, WEN Mao-ping, HE Qiang, et al. The Compressive creep behaviour of PBX based on TATB[J].ChineseJournalofEnergeticMaterials(HannengCailiao), 2005,13(3): 150-154.

    人妻少妇偷人精品九色| 99久久精品一区二区三区| 三级国产精品欧美在线观看| 亚洲国产精品成人久久小说 | 久久精品国产清高在天天线| 此物有八面人人有两片| 中文资源天堂在线| 干丝袜人妻中文字幕| 久久久国产成人免费| 一本久久中文字幕| 久久久久久大精品| av天堂中文字幕网| 我要看日韩黄色一级片| 国产成人freesex在线| 美女高潮的动态| 亚洲四区av| 能在线免费看毛片的网站| 夜夜爽天天搞| 久久久久久久久久黄片| 日韩欧美精品v在线| 中文字幕av成人在线电影| 99久国产av精品| 国产精品嫩草影院av在线观看| 97在线视频观看| 国产一区二区激情短视频| 看非洲黑人一级黄片| 欧美激情国产日韩精品一区| 欧美高清性xxxxhd video| 亚洲欧美清纯卡通| 亚洲欧美日韩卡通动漫| 又粗又爽又猛毛片免费看| 国产又黄又爽又无遮挡在线| 麻豆国产av国片精品| av在线天堂中文字幕| 人人妻人人澡欧美一区二区| 精品久久久久久久久久久久久| 乱人视频在线观看| 国产精品免费一区二区三区在线| 夫妻性生交免费视频一级片| 天堂影院成人在线观看| 51国产日韩欧美| 欧美性感艳星| www.色视频.com| 久久久午夜欧美精品| 国语自产精品视频在线第100页| 国产精品永久免费网站| 亚洲欧美日韩高清专用| 午夜亚洲福利在线播放| 成人国产麻豆网| 精品人妻偷拍中文字幕| 色综合色国产| 国产精品综合久久久久久久免费| 国产精品电影一区二区三区| 女的被弄到高潮叫床怎么办| 久久久久网色| 亚洲av第一区精品v没综合| 国产精品一区二区三区四区久久| av在线观看视频网站免费| 亚洲国产高清在线一区二区三| 免费av观看视频| 久久精品国产亚洲av涩爱 | 波野结衣二区三区在线| 国产在线男女| 男人舔奶头视频| 啦啦啦观看免费观看视频高清| 美女高潮的动态| 国产黄色视频一区二区在线观看 | 久久久精品欧美日韩精品| 综合色丁香网| 天堂√8在线中文| 亚洲精品久久久久久婷婷小说 | 1024手机看黄色片| 久99久视频精品免费| 亚洲欧美中文字幕日韩二区| 欧美日韩乱码在线| 亚洲内射少妇av| 91久久精品国产一区二区三区| 亚洲av男天堂| 99国产极品粉嫩在线观看| 边亲边吃奶的免费视频| 成人毛片a级毛片在线播放| 亚洲电影在线观看av| 搞女人的毛片| 久久人妻av系列| 欧美日韩乱码在线| 久久久精品欧美日韩精品| 91久久精品国产一区二区成人| 亚洲精品影视一区二区三区av| 赤兔流量卡办理| 亚洲精品久久国产高清桃花| 我要看日韩黄色一级片| av国产免费在线观看| 久久99蜜桃精品久久| 麻豆久久精品国产亚洲av| 直男gayav资源| 日本欧美国产在线视频| 日韩av在线大香蕉| 久久久久久国产a免费观看| 最近中文字幕高清免费大全6| 99热只有精品国产| 黄片wwwwww| 人人妻人人澡欧美一区二区| 国产免费一级a男人的天堂| 久久久久久久久久久免费av| 91狼人影院| 天堂av国产一区二区熟女人妻| 日本一本二区三区精品| 亚洲人成网站高清观看| 亚洲人成网站在线观看播放| 亚洲欧美日韩东京热| 日韩大尺度精品在线看网址| 亚洲精品456在线播放app| 能在线免费看毛片的网站| 午夜精品在线福利| 蜜桃亚洲精品一区二区三区| 亚洲国产精品国产精品| 中文字幕制服av| 极品教师在线视频| 晚上一个人看的免费电影| 亚洲人成网站高清观看| 久久亚洲国产成人精品v| 亚洲中文字幕日韩| 99久久九九国产精品国产免费| 国产 一区 欧美 日韩| 国产日本99.免费观看| 老司机影院成人| 久久草成人影院| 欧美成人精品欧美一级黄| 国产日韩欧美在线精品| 天堂影院成人在线观看| 国产精品麻豆人妻色哟哟久久 | av天堂在线播放| av在线观看视频网站免费| 国内揄拍国产精品人妻在线| 有码 亚洲区| 性插视频无遮挡在线免费观看| 国产一区二区三区在线臀色熟女| 国产高清激情床上av| 亚洲激情五月婷婷啪啪| 欧美日本亚洲视频在线播放| 菩萨蛮人人尽说江南好唐韦庄 | 免费看日本二区| 免费在线观看成人毛片| 青春草国产在线视频 | 天堂av国产一区二区熟女人妻| 99热精品在线国产| 麻豆一二三区av精品| 波多野结衣巨乳人妻| 精品久久久久久久人妻蜜臀av| 少妇熟女aⅴ在线视频| 精品久久久噜噜| 国产在视频线在精品| 免费观看a级毛片全部| 中文在线观看免费www的网站| 亚洲一区高清亚洲精品| 中国国产av一级| 舔av片在线| 中国国产av一级| 少妇裸体淫交视频免费看高清| 免费观看人在逋| 最近中文字幕高清免费大全6| а√天堂www在线а√下载| 一级毛片久久久久久久久女| 我要看日韩黄色一级片| 亚洲最大成人av| 国产一区二区三区在线臀色熟女| 乱人视频在线观看| 免费观看人在逋| 卡戴珊不雅视频在线播放| 我要看日韩黄色一级片| 国产蜜桃级精品一区二区三区| 爱豆传媒免费全集在线观看| av又黄又爽大尺度在线免费看 | 少妇人妻精品综合一区二区 | 欧美一级a爱片免费观看看| kizo精华| 12—13女人毛片做爰片一| 亚洲欧美成人综合另类久久久 | 久久久午夜欧美精品| 精品国产三级普通话版| 欧美性感艳星| 男插女下体视频免费在线播放| 麻豆av噜噜一区二区三区| 天美传媒精品一区二区| 午夜福利在线在线| .国产精品久久| 人人妻人人澡人人爽人人夜夜 | 亚洲美女视频黄频| 综合色av麻豆| 能在线免费看毛片的网站| 好男人在线观看高清免费视频| 国产片特级美女逼逼视频| 极品教师在线视频| 亚洲在线观看片| 天堂网av新在线| 久久这里有精品视频免费| 国产精品.久久久| ponron亚洲| 色噜噜av男人的天堂激情| 3wmmmm亚洲av在线观看| 人妻夜夜爽99麻豆av| 不卡一级毛片| 亚洲精品日韩av片在线观看| 成年女人永久免费观看视频| 亚洲欧美日韩无卡精品| 免费av不卡在线播放| 亚洲国产高清在线一区二区三| 亚洲精品日韩在线中文字幕 | 人妻少妇偷人精品九色| 嘟嘟电影网在线观看| 国产大屁股一区二区在线视频| 久久这里有精品视频免费| 亚洲性久久影院| 1000部很黄的大片| 国产高清激情床上av| 男人舔女人下体高潮全视频| 国产精品av视频在线免费观看| 丰满人妻一区二区三区视频av| 一边亲一边摸免费视频| av又黄又爽大尺度在线免费看 | 熟女电影av网| 色噜噜av男人的天堂激情| 亚洲欧美日韩无卡精品| 只有这里有精品99| eeuss影院久久| 色综合站精品国产| 午夜精品在线福利| 国产久久久一区二区三区| 中国美白少妇内射xxxbb| 国产午夜精品论理片| 亚洲人成网站在线播放欧美日韩| 亚洲成人精品中文字幕电影| a级毛片a级免费在线| 亚洲欧美日韩高清专用| 亚洲av电影不卡..在线观看| 观看免费一级毛片| 成熟少妇高潮喷水视频| 亚洲精品456在线播放app| 亚洲不卡免费看| 一个人看视频在线观看www免费| 亚洲精品乱码久久久久久按摩| 国产精品,欧美在线| 国产精品三级大全| 18禁在线播放成人免费| 人妻少妇偷人精品九色| 成人亚洲精品av一区二区| 欧美一级a爱片免费观看看| 99久久九九国产精品国产免费| 最好的美女福利视频网| 亚洲国产日韩欧美精品在线观看| 国产午夜精品论理片| 色综合色国产| 少妇高潮的动态图| 人妻夜夜爽99麻豆av| 国产 一区精品| 欧美性猛交╳xxx乱大交人| 天美传媒精品一区二区| 久久午夜福利片| 99热这里只有是精品在线观看| 一本精品99久久精品77| 熟妇人妻久久中文字幕3abv| 午夜福利在线观看免费完整高清在 | 成人午夜精彩视频在线观看| 成人亚洲欧美一区二区av| 亚洲成人久久性| 婷婷六月久久综合丁香| 六月丁香七月| 国产美女午夜福利| 国产v大片淫在线免费观看| 国产乱人偷精品视频| 在线国产一区二区在线| 亚洲经典国产精华液单| 一进一出抽搐gif免费好疼| 黄片wwwwww| 久久久精品94久久精品| 美女内射精品一级片tv| 韩国av在线不卡| 观看免费一级毛片| www.av在线官网国产| 国内少妇人妻偷人精品xxx网站| 男女下面进入的视频免费午夜| 床上黄色一级片| 亚洲欧美日韩卡通动漫| а√天堂www在线а√下载| 最近手机中文字幕大全| 免费黄网站久久成人精品| www.av在线官网国产| 日韩,欧美,国产一区二区三区 | av黄色大香蕉| 日韩大尺度精品在线看网址| 日日摸夜夜添夜夜添av毛片| 天天躁夜夜躁狠狠久久av| 嫩草影院精品99| a级毛色黄片| 一个人看视频在线观看www免费| av国产免费在线观看| 69人妻影院| 能在线免费看毛片的网站| 中出人妻视频一区二区| 不卡视频在线观看欧美| 成人三级黄色视频| 亚洲七黄色美女视频| 中文字幕制服av| 国产午夜精品论理片| 午夜福利在线观看免费完整高清在 | 高清午夜精品一区二区三区 | 最近手机中文字幕大全| 亚洲av成人精品一区久久| 成人毛片60女人毛片免费| 九九热线精品视视频播放| 男人的好看免费观看在线视频| 精品99又大又爽又粗少妇毛片| 中国美白少妇内射xxxbb| 亚洲乱码一区二区免费版| 亚洲内射少妇av| 好男人视频免费观看在线| 欧美另类亚洲清纯唯美| 欧美最新免费一区二区三区| 久久久久久伊人网av| 亚洲精品国产av成人精品| 一级av片app| 成人亚洲精品av一区二区| 国产大屁股一区二区在线视频| 国产色婷婷99| 三级男女做爰猛烈吃奶摸视频| www日本黄色视频网| 一夜夜www| 欧美色欧美亚洲另类二区| 一级毛片aaaaaa免费看小| 99精品在免费线老司机午夜| 美女cb高潮喷水在线观看| 国产美女午夜福利| 欧美激情国产日韩精品一区| 欧美又色又爽又黄视频| 不卡一级毛片| 国产蜜桃级精品一区二区三区| 国产视频内射| 欧美日韩一区二区视频在线观看视频在线 | 亚洲最大成人手机在线| 亚洲精华国产精华液的使用体验 | 天堂影院成人在线观看| 国产午夜精品久久久久久一区二区三区| 亚洲精品国产av成人精品| www.av在线官网国产| 国产成人精品婷婷| 别揉我奶头 嗯啊视频| 黄片无遮挡物在线观看| 国产片特级美女逼逼视频| 熟妇人妻久久中文字幕3abv| 日韩欧美一区二区三区在线观看| 日本欧美国产在线视频| 国产亚洲精品av在线| 国产蜜桃级精品一区二区三区| 麻豆国产av国片精品| 搞女人的毛片| 亚洲av免费在线观看| 欧美xxxx性猛交bbbb| 亚洲av成人精品一区久久| 午夜爱爱视频在线播放| 极品教师在线视频| 青春草视频在线免费观看| 99视频精品全部免费 在线| 日日撸夜夜添| 久久国内精品自在自线图片| 欧美+日韩+精品| 亚洲精品日韩在线中文字幕 | 99热全是精品| 青春草视频在线免费观看| 国产成人精品久久久久久| 国产一区二区在线av高清观看| 少妇熟女欧美另类| 91狼人影院| 久久精品久久久久久噜噜老黄 | 久久久久久大精品| 欧美在线一区亚洲| 麻豆av噜噜一区二区三区| 久久久久久久久中文| 日韩精品青青久久久久久| a级毛片免费高清观看在线播放| 麻豆成人午夜福利视频| 国产精品麻豆人妻色哟哟久久 | 少妇的逼好多水| 啦啦啦啦在线视频资源| 久久精品91蜜桃| 国产精品日韩av在线免费观看| av卡一久久| 人妻久久中文字幕网| 国产伦理片在线播放av一区 | 国产高清视频在线观看网站| 插阴视频在线观看视频| 欧美丝袜亚洲另类| 精品久久久久久久久久免费视频| 中文字幕久久专区| 国产精品不卡视频一区二区| 一个人看的www免费观看视频| 在线免费观看的www视频| 18禁在线无遮挡免费观看视频| 色视频www国产| 尾随美女入室| 亚洲经典国产精华液单| 此物有八面人人有两片| 欧美性猛交黑人性爽| 国产美女午夜福利| 国产探花极品一区二区| 热99在线观看视频| 插阴视频在线观看视频| av在线老鸭窝| 变态另类成人亚洲欧美熟女| a级毛片免费高清观看在线播放| 直男gayav资源| 老熟妇乱子伦视频在线观看| 国产不卡一卡二| 亚洲va在线va天堂va国产| 久久久久免费精品人妻一区二区| 高清日韩中文字幕在线| 欧美色欧美亚洲另类二区| 免费av不卡在线播放| av免费在线看不卡| 嫩草影院精品99| 亚洲av电影不卡..在线观看| 身体一侧抽搐| 国产黄片视频在线免费观看| 亚洲人成网站高清观看| 神马国产精品三级电影在线观看| 久久久久久国产a免费观看| 午夜激情欧美在线| 亚洲无线观看免费| 在线观看一区二区三区| 成人av在线播放网站| 白带黄色成豆腐渣| 我要看日韩黄色一级片| 国产色爽女视频免费观看| 国产精品无大码| 欧美成人一区二区免费高清观看| 中文字幕免费在线视频6| 人人妻人人澡人人爽人人夜夜 | 嫩草影院新地址| 老师上课跳d突然被开到最大视频| 成人毛片a级毛片在线播放| 我要搜黄色片| 久久精品国产鲁丝片午夜精品| 国产极品精品免费视频能看的| 久久久久久久午夜电影| 亚洲国产精品成人久久小说 | a级毛片免费高清观看在线播放| 少妇熟女欧美另类| 免费无遮挡裸体视频| 男女做爰动态图高潮gif福利片| 毛片女人毛片| 国产真实乱freesex| 久久亚洲国产成人精品v| 日韩精品有码人妻一区| 毛片女人毛片| 欧美+日韩+精品| 免费av毛片视频| 久久精品夜色国产| 亚洲av二区三区四区| 噜噜噜噜噜久久久久久91| 99久久成人亚洲精品观看| 久久欧美精品欧美久久欧美| 99久久精品国产国产毛片| www.av在线官网国产| 黄色视频,在线免费观看| 亚洲欧美日韩高清在线视频| 亚洲av男天堂| 干丝袜人妻中文字幕| 我的老师免费观看完整版| av在线天堂中文字幕| 99久久人妻综合| 此物有八面人人有两片| 性色avwww在线观看| 可以在线观看毛片的网站| 久久婷婷人人爽人人干人人爱| 观看免费一级毛片| 中文亚洲av片在线观看爽| 99热网站在线观看| 亚洲最大成人手机在线| 国产精品电影一区二区三区| 成人毛片60女人毛片免费| 黑人高潮一二区| 国产精品嫩草影院av在线观看| 成人综合一区亚洲| 亚洲av中文av极速乱| 深爱激情五月婷婷| 国产精品蜜桃在线观看 | 亚洲人成网站在线观看播放| 日日啪夜夜撸| 成年女人永久免费观看视频| 1024手机看黄色片| 啦啦啦韩国在线观看视频| 搡女人真爽免费视频火全软件| 青春草国产在线视频 | 爱豆传媒免费全集在线观看| 精品日产1卡2卡| 日韩av不卡免费在线播放| 99riav亚洲国产免费| 国产免费男女视频| 男女边吃奶边做爰视频| 国产综合懂色| 美女国产视频在线观看| 色尼玛亚洲综合影院| 亚洲精品日韩av片在线观看| 麻豆成人午夜福利视频| 一个人看的www免费观看视频| 美女xxoo啪啪120秒动态图| 啦啦啦观看免费观看视频高清| 亚洲综合色惰| 亚洲人成网站在线播| 91av网一区二区| 麻豆精品久久久久久蜜桃| 成年女人看的毛片在线观看| 99国产精品一区二区蜜桃av| 波多野结衣巨乳人妻| 国产精品一及| 美女高潮的动态| 我要看日韩黄色一级片| 三级男女做爰猛烈吃奶摸视频| 一级毛片久久久久久久久女| 国产精品野战在线观看| 成人国产麻豆网| 性欧美人与动物交配| 一进一出抽搐gif免费好疼| 国产精品久久视频播放| 搞女人的毛片| 成人特级av手机在线观看| 久久久a久久爽久久v久久| 亚洲精品成人久久久久久| 在线免费观看不下载黄p国产| 亚洲中文字幕日韩| 亚洲欧美日韩卡通动漫| 97超碰精品成人国产| 长腿黑丝高跟| av黄色大香蕉| 26uuu在线亚洲综合色| 久久人人爽人人片av| av在线蜜桃| 99riav亚洲国产免费| 国产毛片a区久久久久| 淫秽高清视频在线观看| 男女那种视频在线观看| 久久精品夜夜夜夜夜久久蜜豆| 美女高潮的动态| 亚洲精品乱码久久久久久按摩| 午夜精品在线福利| av福利片在线观看| 日日干狠狠操夜夜爽| 中国美白少妇内射xxxbb| 国产精品三级大全| 亚洲av成人精品一区久久| 久久久成人免费电影| 午夜福利成人在线免费观看| 久久人人精品亚洲av| 少妇人妻精品综合一区二区 | 久久99精品国语久久久| 在线免费十八禁| 成年女人看的毛片在线观看| videossex国产| 免费看光身美女| av在线天堂中文字幕| 小蜜桃在线观看免费完整版高清| 深夜精品福利| 精品久久久久久久久久免费视频| 婷婷六月久久综合丁香| 中文字幕制服av| 美女大奶头视频| 女的被弄到高潮叫床怎么办| 国产 一区精品| 极品教师在线视频| 97人妻精品一区二区三区麻豆| 晚上一个人看的免费电影| 欧美bdsm另类| 精品久久久久久成人av| 哪个播放器可以免费观看大片| 国产人妻一区二区三区在| 九九在线视频观看精品| 美女内射精品一级片tv| 国产精品国产高清国产av| av视频在线观看入口| 国语自产精品视频在线第100页| 亚洲精品国产av成人精品| 身体一侧抽搐| 日韩 亚洲 欧美在线| 国产三级在线视频| 99热这里只有精品一区| 一本—道久久a久久精品蜜桃钙片 精品乱码久久久久久99久播 | 午夜福利在线观看吧| 变态另类成人亚洲欧美熟女| 亚洲高清免费不卡视频| 夫妻性生交免费视频一级片| 亚洲欧美清纯卡通| 两个人的视频大全免费| 51国产日韩欧美| 国产午夜精品久久久久久一区二区三区| 国产单亲对白刺激| 国产不卡一卡二| 国产乱人偷精品视频| 亚州av有码| 国产探花在线观看一区二区| 亚洲欧洲日产国产| 午夜免费男女啪啪视频观看| 狂野欧美激情性xxxx在线观看| 看黄色毛片网站| 综合色av麻豆| 国产欧美日韩精品一区二区| 九九热线精品视视频播放| 亚洲最大成人中文| 一边摸一边抽搐一进一小说| 免费观看在线日韩| 麻豆成人午夜福利视频| 日韩精品青青久久久久久| 欧美丝袜亚洲另类| 哪个播放器可以免费观看大片| 日本三级黄在线观看| 国产精品免费一区二区三区在线| 99热这里只有是精品50|