• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    The Tensile Properties and Creep Performance of a Long-term Thermally Aged Plastic Bonded Explosive

    2016-05-08 13:18:50ZHOUHongpingHEQiangLIMingPANGHaiyanWEIXingwenWENMaoping
    含能材料 2016年9期

    ZHOU Hong-ping, HE Qiang, LI Ming, PANG Hai-yan, WEI Xing-wen, WEN Mao-ping

    (Institute of Chemical Materials, China Academy of Engineering Physics, Mianyang 621999, China)

    1 Introduction

    The physical and chemical changes of polymer bonded explosives(PBXs) with aging under diverse storage environments have been extensively studied, for instance, the effects of thermal aging at elevated temperatures on well known composition of PBX-9501 have been studied and the changes resulted from this type of treatment have been found[1-2]. It shows that the major aging mechanism, i.e., the hydrolysis of the binder, for instance Estane, may occur and the molecular weight may decrease and, thus degrade the tensile or compression mechanical properties of PBX 9501[3]. Similar studies have been done for LX-14 and many other compositions[4-6]. Most of the surveillance methods for aging evaluation were to inspect the conventional mechanical properties, which involve measurements of compression/tensile strength and elastic modulus[7-8]. According to the previous studies, it seems that there is no evidence of catastrophic structural integrity loss for all known PBXs which have been exposed to various aging environments[9]. But, as well known, the measurement of conventional mechanical properties, for instance, the tensile strength testing just takes less minutes and thus has its weakness to manifest the time-dependent effects of the PBXs. Lots of PBX compositions, such as EDC37, LX-17 and PBX 9501, show strongly time-dependent behaviors resulted from the polymer binders inside the compositions[11-13].

    Although the time-depend behaviors of creep of PBXs have been investigated extensively[12-13], very few studies on the creep performance for those PBXs having been long-term aged up to years are available. Most of the published studies attributed the time-dependent behaviors of PBXs to the binders, and forgot that the physical interfaces between the binder and the energetic crystals may play a key role on the creep behavior, especially on the sustainable creep time until to failure. In fact, in a long-term aging environment, especially when the temperature of storage is above the glassy transition temperature of the binder, the interfaces may change slowly and the residual stains induced by the mould pressing may release. The slowing changes in interfaces can not be easily inspected through conventional mechanical strength testing. The principal motivation of this study is to find and evaluate measurable changes of a pressed PBX after 6 month and 3 year storage under different temperature environments through mechanical tensile testing and creep testing.

    2 Experimental

    2.1 PBX Composition and Specimen Preparation

    PBX-901 employed in this study, is a PBX pressed from molding powder, which comprises about 95% crystalline cyclotetramethylen tetranitramine (HMX) and a small portion binder of 5% fluoro-rubber binder by mass. The pressed PBX-901 stocks were machined to standard cylindrical dumbbell specimens (Fig.1) which meet the requirements of the Chinese military standard for tensile strength and tensile creep testing. All the specimens had been inspected by Non-destructive methods to ensure those with pre-exiting defects were eliminated before thermally storage and mechanical testing started.

    Fig.1 Size of the specimen

    2.2 Thermal Aging Treatment

    The dumbbell specimens were stored in different environmental ovens at the temperature of 25, 45, 55, 65 ℃ and 75 ℃, respectively. Each oven was equipped with safety thermostats, the temperature variation was maintained within ±1 ℃ and monitored by a remote-controlled recording device. Some of the specimens were stored for 6 months and some up to 36 months. After treatment, the aged specimens were removed from the environmental chambers for tensile testing and tensile creep testing.

    2.3 Tensile Testing

    The clamp-method tensile testing was carried out by an Instron 5582 universe test machine equipped with an environmental temperature chamber as well as a high precise dual- extensometer. The constant crosshead speed is 0.05 mm·min-1that gives a nominal strain rate of 0.0033 s-1,and the testing temperature was at 45 ℃ which has been proved as a transition temperature in term of mechanical property for this type of PBX[14]. The stress-strain curve was obtained and Young′s modulus of each specimen can be calculated. It should be noted that each tensile strength or elastic modulus was an average output of five replicate tensile specimens per condition. The tensile strength for pristine and aged specimen at 25 ℃, i.e. the ambient temperature, were also measured in order to determinate the creep testing stress level, which will be detailed later.

    2.4 Tensile Creep Testing

    The tensile creep experiments were conducted by using Instron 8862 creep testing machine equipped with a temperature-controlled chamber[15]. The creep strains were recorded by a dual extensometer. All creep testing temperatures were at 45 ℃, same as the tensile testing. The tensile creep stress of the specimens aged for 3 years was kept constant of 2.88 MPa, which was about 60 percent of the tensile strength of 4.8 MPa at 45 ℃ or 52 percent of the tensile strength of 6.90 MPa at 25 ℃. For those stored for 6 months, the tensile creep stress level was kept constant of 3.58 MPa, which was about 75 percent of the tensile strength at 45 ℃. Setting such higher creep stress was to accelerate the time to rupture(TTR). In this work, the TTR can be an indictor to evaluate the aging effect on the creep performance of PBXs. To start the creep testing, the specimen was firstly loaded to the pre-determinate creep stress with the crosshead speed of 0.05 mm·min-1and then the stress was kept constant by load-hold method of the testing machine. The tensile creep strains were recorded automatically. For those specimens stored at room temperature, the creep rupture occurred very early and the creep testing will stop automatically after rupture, otherwise the testing will stop intentionally after the creep maintains for 8 hours since the beginning.

    3 Results and Discussion

    3.1 Tensile Mechanical Properties after Aging

    The tensile stress-strain curves at 45 ℃ for the specimens stored for 3 years under the temperature of 45, 55, 65 ℃ and 75 ℃, respectively, are given in figure 2, where the curve of the pristine specimen is presenting together. The tensile strength and Young′s modulus as well as the standard deviation are listed in table 1. From the figure 2 and table 1, it shows that the tensile strength and Young′s modulus at 45 ℃ are almost unchangeable even after 3 year thermally storage at difference temperature regarding the test uncertainty, except for slightly increasing for those stored at 55 ℃ or 65 ℃. The tensile strength (4.64 MPa) and Young′s modulus (9.17 GPa) of those stored at 75 ℃ for 3 years were slightly degraded and it suggests that above the temperature of 45 ℃ the thermal aging takes effect on the mechanical properties.

    Fig.2 Tensile stress-stain curves at 45 ℃ of 3 year stored specimens under difference temperature (the pristine specimens included)

    Table 1 Tensile strength and modulus at 45 ℃

    agingtemperature/℃tensilestrength/MPatensilemodulus/GPapristine4.73±0.279.92±0.4545(3year)4.74±0.1410.27±0.3055(3year)5.03±0.2210.45±0.3265(3year)5.20±0.2110.05±0.2775(3year)4.64±0.139.17±0.29

    3.2 Tensile Creep Behaviors

    The tensile creep curves of those specimens stored for 3 years were plotted together with pristine specimen in figure 3. It is found that the pristine specimen ruptured after 17326 s, much less time than those thermally treated specimens, which kept intact for 28800 s, i.e. 8 h. Similar results were obtained for those 6 month thermally treated specimens. Table 2 gives the creep testing results of those 6 month thermally aged specimen at a constant tensile stress of 3.58 MPa. Because the creep stress level for 6 month aged specimens was higher than 3 year stored specimens, the TTR was shortened accordingly. The pristine specimen has the shortest TTR of 2100 s, compared to all 6 month thermally treated specimens, in which those stored at 55 ℃ bear the longest TTR of 9600 s. But, for those at 75 ℃ for 6 months, the TTR was dramatically shortened to 2280 seconds and this shortened TTR result was similar with the slightly degraded tensile strength and Young′s modulus for those 3 year stored specimens as described previously. Although we do not present the tensile results for 6 month stored specimens, we can safely say that the temperature of 75 ℃ is not a safe condition for PBX-901 and the specimens will be assuredly thermally damaged at 75 ℃. It suggests that for PBX-901 a suitable long-term thermally storage environment will improve the creep performance and the storage temperature should be below 75 ℃.

    Table 2 Creep parameters of 6-month aged and pristine under 3.58 MPa and 45 ℃

    parameterTTR/sfailurestrain/%pristine21000.082agedat45℃40200.073agedat55℃96000.078agedat65℃51600.073agedat75℃22800.073

    Fig.3 Tensile creep curves of pristine (marked “1” in the plot) and 3 year stored specimens (2, 3, 4, and 5) at different temperature, all tests were performed under 2.88 MPa and 45 ℃

    3.3 Morphology of Cross Section of Ruptured Specimen

    To understand the failure mechanism of tensile testing as well as creep testing, the SEM observations of the broken faces were carried on. Figure 4 gives the morphology photos of a broken pristine and two 3 year aged specimens, which were tensile failures at 45 ℃ as described previously in chapter 3.1. From figure 4, it shows that the tensile broken sections of pristine resemble the aged specimens with much smoother faces, which are big different from the creep failure (figure 5) sections. In tensile testing, the HMX crystals inside the specimen have been transgranular sectioned and the smooth morphology was left as shown in figure 4a. This transgranular failure model is contradiction to de-bonding model that is accepted as a very common failure model for PBXs. The tensile creep failure of the specimens still comply with the de-bonding model as shown in figure 5, which presents the morphology of creep rupture of 6-month-aged specimens. As figure 5 shows, there was a hollow left in position 1 (figure 5a) and a HMX single crystal (figure 5b) was left in position 2 for the pristine specimen which was creeping ruptured, and a clear de-bonding interface in position 3 can be found in the failure face (figure 5c).

    As the morphology of the tensile broken sections nearly keep same whether in pristine or aged specimens (figure 4), it suggests the conventional tensile testing can not reveal the aging effects in terms of degradation of mechanical properties, whereas short-term creep testing within several hours in this work can disclose the slowing change during thermally storage, and the interface de-bonding between the crystals and binder can be clearly demonstrated.

    3.4 Analysis of Contact Angle

    The SEM observations demonstrate that the failure model of PBX-901 in tensile testing is different from the creep testing and we attribute this difference to the evolution of the interface status between HMX crystals and fluoro-rubber binder during aging treatments. However, few investigations are availably so far on the time-dependent interfacial property when PBX creeps. The contact angle measurement is considered as an effective method to evaluate the interface statue. Further the contact angle measurements were carried on this work.

    a. pristine b. aged at 45 ℃ for 3 years c. aged at 75 ℃ for 3 years

    Fig.4 Morphology of tensile failure specimens at 45 ℃

    a.position 1 b.position 2 c. position 3

    Fig.5 Morphology of tensile creep rupture specimens at 45 ℃

    a. binder aged at 45 ℃ b. binder aged at 55 ℃

    c. binder aged at 65 ℃ d. binder aged at 75 ℃

    Fig.6 Contact angles of binder with different reference liquids

    Small pellets for the Wihelmy plate method were fabricated from fluoro-rubber binder used in PBX-901 and were respectively stored at temperature of 45, 55, 65 ℃ and 75 ℃ for 2 months, 4 months and 6 months. A series of reference liquids including water, ethylene glycol and diodo-methane were employed to measure the static contact angle using contact angle analyzer(JY-82) and the results are plotted in figure 6.

    It can be found that at each aging temperature the contact angle decreases as time passed at early aging stage, but this trend did not keep monotonic decreasing except for the case of 55 ℃, contrarily, the contact angle goes up after a certain aging period. For the binder aged at 45 ℃ or 55 ℃ the turning time is in 4 months or less, and 2 months is for those aged at 65 ℃ and 75 ℃. It helps to understand that the wetting resulted from the long-term dependent thermo rheological mechanism of the binder takes effects, and the slower interaction between binder and crystals can release the residual strains resulted from pressing process. After turning time, for instance, the binder aged at 75 ℃, the contact angle goes up rapidly, it suggests that the thermally damage inside the interface dominates and in turn to shorten the TTR during creeping.

    Interesting result comes from the binder aged at 55 ℃ when the contact angle keeps monotonic decreasing. If referring to the creep testing, the specimen treated at 55 ℃ bears the longest TTR compared to the rest specimens. These two results are consistent very well with each other and it implies that for this kind of PBX the best stored temperature should be at 55 ℃.

    Base on the results and analysis, we propose that there are two competing mechanisms during thermally aging process: one, for store environment at lower temperatures, is the wetting induced by thermally rheological evolution which makes better interface, where the initial micro-defects such as the microvoids and micro delaminating induced probably from pressing can be healed and the residual strains are released slowly. The other, with the temperature increasing, is the thermal damage which poses a severe de-bonding stress in the interface that may come from the mismatch between the HMX crystal and the binder. But, the long time-dependent aging evolution can not be revealed distinctly by tensile testing, so we recommend using short-term creep testing within several hours to evaluate the long-term aging effects for plastic bonding explosives, especially for those pressing made PBXs.

    4 Conclusions

    It demonstrates that the short-term creep testing within several hours is a very useful method to evaluate the thermally effects on the mechanical properties and mechanical performance of long-term aged PBX. The TTR during creep testing can be a characteristic indicator to quantify the effects compared to the conventionally employed tensile strength testing.

    The thermally treated specimenemployed in the work shows much resistance to the creep failure in terms of much longer TTR compared to the pristine specimen and it suggests that for the types of pressed PBXs, much longer storage duration under a suitable storing temperature benefits eliminating the residual strains caused by pressing.

    Acknowledgement:The authors would like to thank the Environment Testing Group at ICM for the valuable long term aging experiments.

    [1] Burgess C E, Woodyard J D, Rainwater K A, et al. Literature Review of the Lifetime of DOE Materials: Aging of Plastic Bonded Explosives and the Explosives and Polymers Contained Therein[R], ANRCP-1998-12, Amarillo National Resource Center for Plutonium, 1998.

    [2] Skimore C B, Idar D J, Buntain G A, et al. Aging and PBX9502[R], LA-UR-98-1206, LANL, 1998.

    [3] Salazar M R, Kress J D, Lightfoot J M, et al. Experimental study of the oxidative degradation of PBX 9501 and its components[J].Propellants,Explosives,Pyrotechnics, 2008, 33(3): 182-201.

    [4] Deanne J. Idar Sheldon A. Larson, Cary B. Skidmore, Joanne R. Wendelberger, PBX 9502 Tensile Analysis[R], LA-UR-004948 LANL, 2000.

    [5] Ellis K, Leppard C, Radesk H. Mechanical properties and damage evaluation of a UK PBX[J].Mater.Sci. ,2005, 40 6241-8.

    [6] Rae P J, Palmer S J P, Goldrein H T, et al. Quasi-static studies of the deformation and failure of PBX 9501[J].Proc.R.Soc.Lond.A, 2002, 458, 2227-42.

    [7] Idar D J, Thompson D G, Gray III G T, et al. Influence on polymer molecular weight, temperature, and strain rate on the mechanical properties of PBX 9501[R], Shock Compression of Condensed Matter—2001 ed M D Furnish et al (Melville, NY: American Institute of Physics) 2002: 281-4.

    [8] Cady C M, Blumenthal W R, G.T. Gray G T III, Idar D Mechanical properties of plastic-bonded explosive binder materials as a function of strain-rate and temperature[C]∥Polymer Engineering and Science, 2006, 46(6): 812-819.

    [9] Lundberg A W. High explosives in stockpile surveillance indicate constancy[J].Science&TechnologyReview,December, 1996: 13-17.

    [10] Mang J T, Skidmore C B, Son S F, et al. An optical microcopy and small angle scattering study of porosity in thermally treated PBX9501[C]∥Shock Compression of Condensed Matter-2001, M. D. Furnish, N. N. Thadhani and Y. Horie, eds., AIP Press Conference Proc. 620, New York, 833-836.

    [11] Saw, Cheng K., Tarver, Craig M. ,Binder/HMX interaction in PBX9501 at Elevated Temperatures (UCRL-CONF-200156),13th Annual APS Topical Conference Portland, OR. 2003.

    [12] Williamson D M, Siviour C R, Proud W G, et al. Temperature-time response of a polymer bonded explosive in compression[J]. (EDC37),J.Phys.D:Appl.Phys, 2008, 41: 085404.

    [13] Gagliardi F J, Cunningham B J. Creep Testing Plastic Bonded Explosives in uniaxial Compression[C]∥10th International Conference on Experimental and Applied Mechanics, Orlando, Florida, 2008, June 2-5.

    [14] ZHOU Hong-ping, HE Qiang , LI Ming, et al. Experimental study on aging of pbx under low tensile stress[J].ChineseJournalofExplosives&Propellants, 2009, 32(5): 8-10.

    [15] LI Ming, WEN Mao-ping, HE Qiang, et al. The Compressive creep behaviour of PBX based on TATB[J].ChineseJournalofEnergeticMaterials(HannengCailiao), 2005,13(3): 150-154.

    国产男女内射视频| 日韩一区二区视频免费看| 波野结衣二区三区在线| 五月伊人婷婷丁香| 丰满迷人的少妇在线观看| 国产片特级美女逼逼视频| 日日啪夜夜爽| 成人免费观看视频高清| 在线观看免费日韩欧美大片 | 欧美bdsm另类| 免费观看性生交大片5| 99热全是精品| 亚洲性久久影院| 男女啪啪激烈高潮av片| 成人18禁高潮啪啪吃奶动态图 | 免费黄色在线免费观看| av视频免费观看在线观看| 99视频精品全部免费 在线| 亚洲一区二区三区欧美精品| 久久精品久久久久久噜噜老黄| 九九在线视频观看精品| 中文字幕制服av| 成年av动漫网址| 亚洲国产毛片av蜜桃av| 亚洲精华国产精华液的使用体验| 97超碰精品成人国产| 日韩欧美一区视频在线观看 | 如日韩欧美国产精品一区二区三区 | 久久久久久人妻| 午夜影院在线不卡| 十八禁网站网址无遮挡 | 99九九在线精品视频 | 国内少妇人妻偷人精品xxx网站| 男的添女的下面高潮视频| 91aial.com中文字幕在线观看| 亚洲欧洲国产日韩| 午夜激情久久久久久久| 亚洲精品久久午夜乱码| 99久久精品国产国产毛片| 曰老女人黄片| 久久久久久久国产电影| 国产乱人偷精品视频| 久久久久久人妻| 最近的中文字幕免费完整| 男人爽女人下面视频在线观看| 久久6这里有精品| 黄色毛片三级朝国网站 | 日本黄大片高清| 在线观看免费日韩欧美大片 | 欧美另类一区| 最近中文字幕高清免费大全6| 成人无遮挡网站| 女性被躁到高潮视频| 欧美3d第一页| 乱码一卡2卡4卡精品| 成人午夜精彩视频在线观看| 中国美白少妇内射xxxbb| 内射极品少妇av片p| 高清午夜精品一区二区三区| 日韩av在线免费看完整版不卡| 精品国产一区二区久久| 99久久中文字幕三级久久日本| 免费久久久久久久精品成人欧美视频 | 欧美精品亚洲一区二区| 香蕉精品网在线| 免费少妇av软件| 久久鲁丝午夜福利片| 国产成人精品久久久久久| 免费人妻精品一区二区三区视频| 国内揄拍国产精品人妻在线| 一本色道久久久久久精品综合| 欧美少妇被猛烈插入视频| 91久久精品国产一区二区三区| 亚洲欧美清纯卡通| 少妇人妻精品综合一区二区| 内地一区二区视频在线| 秋霞伦理黄片| 免费大片黄手机在线观看| 男女啪啪激烈高潮av片| 亚洲欧洲国产日韩| 男女边吃奶边做爰视频| √禁漫天堂资源中文www| 欧美日韩视频高清一区二区三区二| 亚洲国产色片| 97在线人人人人妻| 精品久久久噜噜| kizo精华| 99精国产麻豆久久婷婷| 亚洲精品亚洲一区二区| 九九久久精品国产亚洲av麻豆| av天堂久久9| 国产在视频线精品| 美女视频免费永久观看网站| 国产色婷婷99| 亚洲精品一二三| 亚洲经典国产精华液单| 国产精品一区二区性色av| 日韩不卡一区二区三区视频在线| 国产一区亚洲一区在线观看| 免费观看无遮挡的男女| 青春草国产在线视频| 又黄又爽又刺激的免费视频.| 男女无遮挡免费网站观看| 看十八女毛片水多多多| 日韩人妻高清精品专区| 草草在线视频免费看| 18禁裸乳无遮挡动漫免费视频| 伦理电影免费视频| 精品少妇内射三级| 成年人午夜在线观看视频| 亚洲精品456在线播放app| 国产深夜福利视频在线观看| 亚洲精品一二三| 插逼视频在线观看| 99热网站在线观看| 亚洲成人手机| 亚洲人与动物交配视频| 狠狠精品人妻久久久久久综合| 精品视频人人做人人爽| 久久久久久久久久人人人人人人| 欧美日韩在线观看h| 免费久久久久久久精品成人欧美视频 | 黄色视频在线播放观看不卡| 在线亚洲精品国产二区图片欧美 | 尾随美女入室| 国产精品久久久久久久电影| 亚洲欧美精品专区久久| 免费不卡的大黄色大毛片视频在线观看| 国产亚洲午夜精品一区二区久久| 亚洲婷婷狠狠爱综合网| 亚洲av综合色区一区| 成年av动漫网址| 99久久精品一区二区三区| av天堂中文字幕网| av福利片在线| 免费av中文字幕在线| 亚洲精品国产av成人精品| 美女视频免费永久观看网站| 少妇被粗大的猛进出69影院 | 在线观看国产h片| 久久韩国三级中文字幕| 久久精品国产亚洲网站| 少妇精品久久久久久久| 欧美老熟妇乱子伦牲交| 久久国产精品大桥未久av | 特大巨黑吊av在线直播| 久久婷婷青草| 国产男女超爽视频在线观看| 亚洲欧美精品专区久久| 国产成人免费观看mmmm| 18禁在线播放成人免费| 男人和女人高潮做爰伦理| 欧美日韩亚洲高清精品| a级片在线免费高清观看视频| 插逼视频在线观看| 亚洲欧美成人综合另类久久久| 亚洲精品国产成人久久av| 国产亚洲91精品色在线| 啦啦啦中文免费视频观看日本| 简卡轻食公司| 99热6这里只有精品| 建设人人有责人人尽责人人享有的| 免费看av在线观看网站| 另类精品久久| 成年女人在线观看亚洲视频| 亚洲成色77777| 日本av免费视频播放| 2018国产大陆天天弄谢| 国精品久久久久久国模美| 免费黄色在线免费观看| 精品一区二区三卡| 欧美区成人在线视频| 看非洲黑人一级黄片| 亚洲欧洲日产国产| 国内精品宾馆在线| 国产日韩欧美亚洲二区| 免费大片黄手机在线观看| 日日啪夜夜撸| 国国产精品蜜臀av免费| 欧美精品亚洲一区二区| 一个人免费看片子| 久久久久久久久久人人人人人人| 免费观看a级毛片全部| 亚洲精品久久午夜乱码| 国产精品国产三级国产专区5o| 人妻 亚洲 视频| 国产女主播在线喷水免费视频网站| 国产成人91sexporn| 高清不卡的av网站| 人妻系列 视频| 丝袜喷水一区| 九九在线视频观看精品| 久久精品国产自在天天线| 成人18禁高潮啪啪吃奶动态图 | 一级毛片黄色毛片免费观看视频| 久久久久久久久久久久大奶| 国产亚洲91精品色在线| 高清欧美精品videossex| 午夜影院在线不卡| 一级毛片黄色毛片免费观看视频| 3wmmmm亚洲av在线观看| 少妇的逼好多水| 国产老妇伦熟女老妇高清| 新久久久久国产一级毛片| 国产在线免费精品| 在线观看免费日韩欧美大片 | 久久综合国产亚洲精品| 久久精品夜色国产| 亚洲人成网站在线观看播放| 日本-黄色视频高清免费观看| 精品久久久久久电影网| 啦啦啦视频在线资源免费观看| 日本黄色片子视频| 少妇被粗大的猛进出69影院 | 久久青草综合色| 欧美丝袜亚洲另类| 国产毛片在线视频| 自拍偷自拍亚洲精品老妇| 久久午夜综合久久蜜桃| av女优亚洲男人天堂| tube8黄色片| 夜夜看夜夜爽夜夜摸| 最新中文字幕久久久久| 国产精品久久久久久av不卡| 国产91av在线免费观看| 国产av精品麻豆| 国产男人的电影天堂91| 男人爽女人下面视频在线观看| 国产在线男女| 国产女主播在线喷水免费视频网站| 一级毛片电影观看| 亚洲国产色片| 久久精品熟女亚洲av麻豆精品| 男的添女的下面高潮视频| 国产亚洲午夜精品一区二区久久| 国产精品一区www在线观看| 99久久精品一区二区三区| 精品人妻偷拍中文字幕| 激情五月婷婷亚洲| 久久精品国产亚洲网站| 亚洲精华国产精华液的使用体验| 亚洲精品视频女| 国产视频首页在线观看| 免费在线观看成人毛片| 中国美白少妇内射xxxbb| 欧美精品一区二区免费开放| 偷拍熟女少妇极品色| 人人妻人人澡人人看| 亚洲精品国产成人久久av| 亚洲欧美中文字幕日韩二区| 亚洲av成人精品一区久久| 成人毛片60女人毛片免费| 欧美国产精品一级二级三级 | 高清黄色对白视频在线免费看 | 欧美老熟妇乱子伦牲交| 免费人妻精品一区二区三区视频| 免费观看性生交大片5| 伊人久久国产一区二区| 插逼视频在线观看| 亚洲精品色激情综合| 亚洲国产精品成人久久小说| 国产淫语在线视频| 91久久精品电影网| 最近最新中文字幕免费大全7| 啦啦啦视频在线资源免费观看| 自线自在国产av| 黄色日韩在线| 亚洲欧洲国产日韩| 亚洲婷婷狠狠爱综合网| 涩涩av久久男人的天堂| 国产欧美亚洲国产| 大话2 男鬼变身卡| av又黄又爽大尺度在线免费看| 最近的中文字幕免费完整| 91精品国产九色| 久久久久久久久久久免费av| 日日撸夜夜添| 中文字幕精品免费在线观看视频 | 观看美女的网站| 特大巨黑吊av在线直播| 五月开心婷婷网| 丰满人妻一区二区三区视频av| 一本大道久久a久久精品| a级一级毛片免费在线观看| 中文欧美无线码| 日日摸夜夜添夜夜爱| 中文字幕人妻熟人妻熟丝袜美| 国产免费福利视频在线观看| 成人漫画全彩无遮挡| 成年av动漫网址| 亚洲第一区二区三区不卡| 色哟哟·www| 免费在线观看成人毛片| 国产精品99久久久久久久久| 人人妻人人澡人人看| 一级毛片我不卡| 亚洲丝袜综合中文字幕| 日韩av在线免费看完整版不卡| 久久综合国产亚洲精品| 在线亚洲精品国产二区图片欧美 | 人妻夜夜爽99麻豆av| 亚洲欧洲精品一区二区精品久久久 | 国产亚洲av片在线观看秒播厂| 三级国产精品欧美在线观看| 国产视频首页在线观看| 男人狂女人下面高潮的视频| 久久久久国产网址| 精品久久久久久电影网| 亚洲欧美中文字幕日韩二区| 国产精品国产av在线观看| 亚洲欧美成人综合另类久久久| 中文乱码字字幕精品一区二区三区| 中国美白少妇内射xxxbb| 国内揄拍国产精品人妻在线| 啦啦啦在线观看免费高清www| 精品人妻熟女av久视频| 精品少妇黑人巨大在线播放| 日韩一本色道免费dvd| 又大又黄又爽视频免费| 亚州av有码| 中文字幕av电影在线播放| 久久久久国产精品人妻一区二区| 久久久久久人妻| 日韩欧美一区视频在线观看 | 日韩中文字幕视频在线看片| 亚洲精品国产成人久久av| 黄色毛片三级朝国网站 | 人妻制服诱惑在线中文字幕| 肉色欧美久久久久久久蜜桃| 亚洲av.av天堂| 亚洲婷婷狠狠爱综合网| 欧美97在线视频| 亚洲精品久久久久久婷婷小说| 91久久精品国产一区二区成人| 在线观看一区二区三区激情| 亚洲精品久久久久久婷婷小说| 黄色毛片三级朝国网站 | 日本猛色少妇xxxxx猛交久久| 韩国高清视频一区二区三区| h日本视频在线播放| 有码 亚洲区| 在线观看www视频免费| 99视频精品全部免费 在线| 久久人人爽人人爽人人片va| 丰满饥渴人妻一区二区三| 大陆偷拍与自拍| 97在线视频观看| 精品99又大又爽又粗少妇毛片| 三级国产精品欧美在线观看| 91精品国产国语对白视频| 国产亚洲av片在线观看秒播厂| 亚洲真实伦在线观看| 插阴视频在线观看视频| 亚洲精华国产精华液的使用体验| www.色视频.com| 国产亚洲一区二区精品| av.在线天堂| 人人妻人人添人人爽欧美一区卜| 日本91视频免费播放| 国产精品偷伦视频观看了| 男人和女人高潮做爰伦理| 麻豆成人av视频| 女人精品久久久久毛片| 国产黄色视频一区二区在线观看| av天堂中文字幕网| 国产亚洲最大av| 中文字幕免费在线视频6| 国产免费福利视频在线观看| 在线观看国产h片| 99久久人妻综合| 男女啪啪激烈高潮av片| 久久 成人 亚洲| 精品一品国产午夜福利视频| 国产欧美日韩综合在线一区二区 | 人人妻人人看人人澡| 最近中文字幕高清免费大全6| 亚洲不卡免费看| 在线观看av片永久免费下载| av国产精品久久久久影院| 国产精品麻豆人妻色哟哟久久| av在线观看视频网站免费| 一区二区三区免费毛片| 日韩在线高清观看一区二区三区| 久久久久久伊人网av| 一级黄片播放器| 国产成人精品久久久久久| 校园人妻丝袜中文字幕| 在线观看一区二区三区激情| 欧美日韩精品成人综合77777| 精品一区二区三区视频在线| 五月开心婷婷网| 有码 亚洲区| 成年av动漫网址| a级毛片在线看网站| 亚洲婷婷狠狠爱综合网| 欧美高清成人免费视频www| 精品一区二区免费观看| 欧美3d第一页| 亚洲国产精品一区二区三区在线| 久久97久久精品| 18+在线观看网站| 久久久久视频综合| 亚洲国产欧美日韩在线播放 | 国内精品宾馆在线| 精品人妻熟女毛片av久久网站| 在线观看三级黄色| 在线亚洲精品国产二区图片欧美 | 国产 一区精品| 曰老女人黄片| 亚洲成人av在线免费| 欧美性感艳星| 午夜影院在线不卡| 久久久久精品久久久久真实原创| 日韩一区二区三区影片| 免费观看av网站的网址| 欧美日韩视频高清一区二区三区二| 免费人成在线观看视频色| 亚洲综合色惰| 性色av一级| 在线看a的网站| 好男人视频免费观看在线| av专区在线播放| 日本wwww免费看| 香蕉精品网在线| 亚洲激情五月婷婷啪啪| 高清欧美精品videossex| 看十八女毛片水多多多| 噜噜噜噜噜久久久久久91| 免费黄网站久久成人精品| 欧美日韩视频精品一区| 男人爽女人下面视频在线观看| 日韩熟女老妇一区二区性免费视频| 欧美性感艳星| 日韩欧美一区视频在线观看 | 97在线人人人人妻| 少妇被粗大猛烈的视频| 韩国av在线不卡| 91久久精品电影网| 我要看黄色一级片免费的| 看十八女毛片水多多多| 观看美女的网站| 国产午夜精品一二区理论片| 亚洲精品乱久久久久久| 免费黄网站久久成人精品| 欧美精品亚洲一区二区| 热re99久久国产66热| 久久av网站| 色哟哟·www| 少妇精品久久久久久久| 亚洲美女黄色视频免费看| 在线免费观看不下载黄p国产| 日本免费在线观看一区| 久久青草综合色| 亚洲精华国产精华液的使用体验| 国产亚洲欧美精品永久| 欧美成人午夜免费资源| 免费人妻精品一区二区三区视频| 简卡轻食公司| 国产免费福利视频在线观看| av卡一久久| 亚洲欧美日韩东京热| 99九九线精品视频在线观看视频| 在线观看免费视频网站a站| 日韩中文字幕视频在线看片| 极品少妇高潮喷水抽搐| 3wmmmm亚洲av在线观看| 国产精品国产三级国产专区5o| 国产女主播在线喷水免费视频网站| 亚洲欧美清纯卡通| 国产白丝娇喘喷水9色精品| 免费大片18禁| 午夜视频国产福利| 啦啦啦在线观看免费高清www| 久久久国产欧美日韩av| 亚洲伊人久久精品综合| 亚洲av不卡在线观看| 欧美精品一区二区大全| 人妻人人澡人人爽人人| 亚洲经典国产精华液单| 一区二区三区四区激情视频| 国产精品99久久久久久久久| 人人澡人人妻人| 亚洲欧美成人精品一区二区| 午夜久久久在线观看| 亚洲国产毛片av蜜桃av| 桃花免费在线播放| 伊人久久国产一区二区| 亚洲av成人精品一二三区| 三上悠亚av全集在线观看 | 久久精品国产亚洲网站| 只有这里有精品99| 在线 av 中文字幕| 你懂的网址亚洲精品在线观看| 国模一区二区三区四区视频| h日本视频在线播放| 国精品久久久久久国模美| 少妇高潮的动态图| 午夜福利视频精品| 女性生殖器流出的白浆| 日本爱情动作片www.在线观看| 精品少妇黑人巨大在线播放| 久久人人爽av亚洲精品天堂| 午夜福利,免费看| 欧美性感艳星| 麻豆成人av视频| 少妇裸体淫交视频免费看高清| 麻豆成人av视频| 观看美女的网站| 内射极品少妇av片p| av国产精品久久久久影院| 欧美日本中文国产一区发布| 搡老乐熟女国产| 国产探花极品一区二区| 久久6这里有精品| 黄色配什么色好看| 天堂8中文在线网| 欧美变态另类bdsm刘玥| 国产亚洲欧美精品永久| 国产成人精品一,二区| √禁漫天堂资源中文www| 日韩电影二区| 丰满乱子伦码专区| kizo精华| 精品国产露脸久久av麻豆| 欧美性感艳星| 中国美白少妇内射xxxbb| 我要看日韩黄色一级片| 日韩成人伦理影院| 我要看日韩黄色一级片| 18+在线观看网站| 少妇裸体淫交视频免费看高清| 亚洲性久久影院| 91在线精品国自产拍蜜月| 精品人妻熟女毛片av久久网站| 国产黄片视频在线免费观看| 高清视频免费观看一区二区| 人人澡人人妻人| 内射极品少妇av片p| 国产av国产精品国产| 免费大片黄手机在线观看| 久久6这里有精品| 三级经典国产精品| videossex国产| 欧美三级亚洲精品| 亚洲欧美中文字幕日韩二区| 亚洲精品日韩在线中文字幕| 午夜激情福利司机影院| 国产亚洲5aaaaa淫片| 国产无遮挡羞羞视频在线观看| 日本与韩国留学比较| 久久久久久久大尺度免费视频| 久久久久精品久久久久真实原创| 十八禁高潮呻吟视频 | 涩涩av久久男人的天堂| 最近最新中文字幕免费大全7| 久久久国产欧美日韩av| 国产亚洲欧美精品永久| 精品一品国产午夜福利视频| 伦理电影免费视频| 免费看光身美女| 久久青草综合色| 人人妻人人澡人人爽人人夜夜| 性色avwww在线观看| 九九在线视频观看精品| 最近手机中文字幕大全| 制服丝袜香蕉在线| 亚洲国产色片| 久久人妻熟女aⅴ| 水蜜桃什么品种好| 国产亚洲5aaaaa淫片| 亚洲国产欧美日韩在线播放 | 亚洲精品中文字幕在线视频 | 日日摸夜夜添夜夜爱| 波野结衣二区三区在线| 色婷婷久久久亚洲欧美| 男女啪啪激烈高潮av片| 国产亚洲一区二区精品| 免费播放大片免费观看视频在线观看| 国产亚洲av片在线观看秒播厂| 国产欧美另类精品又又久久亚洲欧美| 99久久精品一区二区三区| 欧美性感艳星| 性高湖久久久久久久久免费观看| 夜夜骑夜夜射夜夜干| 22中文网久久字幕| 丝袜脚勾引网站| 午夜av观看不卡| 伊人久久国产一区二区| 大片电影免费在线观看免费| 人妻一区二区av| 国产免费一区二区三区四区乱码| 亚洲国产精品一区二区三区在线| 亚洲欧美日韩另类电影网站| 亚洲天堂av无毛| 老女人水多毛片| 欧美少妇被猛烈插入视频| 国产毛片在线视频| 六月丁香七月| 国产女主播在线喷水免费视频网站| 99热这里只有是精品在线观看| 久久精品国产自在天天线| 久久久a久久爽久久v久久| 黑人猛操日本美女一级片| 精品少妇黑人巨大在线播放| 最后的刺客免费高清国语| 91久久精品电影网| 婷婷色av中文字幕| 久久久久久伊人网av| 秋霞伦理黄片| 一区二区三区四区激情视频| 日本免费在线观看一区| 最近的中文字幕免费完整| 69精品国产乱码久久久| 国产色爽女视频免费观看| 亚洲欧洲精品一区二区精品久久久 |