• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    On Unit J-clean Rings

    2016-05-05 03:27:00SHENHongdiCHENHuanyin
    關鍵詞:阿貝爾結論杭州

    SHEN Hongdi, CHEN Huanyin

    (School of Science, Hangzhou Normal University, Hangzhou 310036, China)

    On UnitJ-clean Rings

    SHEN Hongdi, CHEN Huanyin

    (School of Science, Hangzhou Normal University, Hangzhou 310036, China)

    An elementa∈Rright (left) unitJ-clean if there is a unitu∈Rsuch thatau(ua) isJ-clean. A ringRis called right (left) unitJ-clean if each element is right (left) unitJ-clean. In this paper, we get the results that everyJ-clean ring is unitJ-clean, every unitJ-clean is unit clean and every 2-good ring is unit clean but the converse of all the three conclusions are not true. Further, we prove that for a unitJ-clean ringRis 2-good if and only if 1=u+vfor someu,v∈U(R). Also whenRis an abelian ring,Iis an ideal ofRandI?J(R), thenRis unitJ-clean if and only if (1)R/Iis unitJ-clean. (2)Idempotents lift moduloJ(R).

    J-clean ring; unitJ-clean ring; idempotent; Jacobson radical

    1 Introduction

    In [1] the author introduce unit clean rings. A ringRis clean if every elementa∈Rcan be written in the form ofa=e+uwhereeis an idempotent anduis a unit. This concept was extended to unit clean ring in [1]. An elementa∈Rright (left) unit clean if there is a unitu∈Rsuch thatau(ua) is clean. A ringRis called right (left) unit clean if each element is right (left) unit clean. Many properties of such rings are studied in[1]. Inspired by this article and combining the notion ofJ-clean (A ring is calledJ-clean if each elementa∈Rcan be written in the form ofa=e+jwhereeis an idempotent andjis a Jacobson radical. ) We call an elementa∈Rright (left) unitJ-clean if there is a unitu∈Rsuch thatau∈R(ua∈R) isJ-clean. A ringRis called right (left) unitJ-clean if each element is right (left) unitJ-clean.

    In this article we also use some related notion such as n-good ring and so on. We call a ringRis a n-good ring if each elementa∈Rcan be presented asa=u1+u2+u3+……+unwhereui∈U(R) for each 1≤i≤n,i∈Z. An elementr∈Ris called unit regular if there exists a unituinRsuch thatrur=r.

    In this paper, we get the results that everyJ-clean ring is unitJ-clean, every unitJ-clean is unit clean and every 2-good ring is unit clean but the converse of all the three conclusions are not true. Further, we prove that for a unitJ-clean ringRis 2-good if and only if 1=u+vfor someu,v∈U(R). Also whenRis an abelian ring,Iis an ideal ofRandI?J(R), thenRis unitJ-clean if and only if (1)R/Iis unitJ-clean (2)Idempotents lift moduloJ(R).

    Throughout this paper, all rings are associative rings with an identity.Id(R) denotes the idempotents ofR,J(R) denotes the Jacobson radical ofR,U(R) denotes the unit ofR, Ureg(R) represents the unit regular elements and we useTn(R) to stand for the ring of alln×nupper triangular matrices over a ringR.

    2 Equivalent Characterizations

    Definition 1 A ringRis called a right (left) unitJ-clean ring if for every elementa∈Rthere is a unitu∈Rsuch thatau=e+j(ua=e+j) wheree∈Id(R) andj∈J(R).

    Lemma 1 An elementa∈Ris right unitJ-clean if and only if it is left unitJ-clean, and then we call it unitJ-clean.

    Proof Letabe a right unitJ-clean element then there exists a unitusuch thatau=e+jwheree∈Id(R) andj∈J(R). Thusa=eu-1+ju-1. We letc=eu-1, thencu=e,cucu=cu,cuc=c, we multiplyuby the left then we get the result thatucuc=uc, thusucis also an idempotent, we note it byf, soc=u-1f,a=c+ju-1=u-1f+ju-1,ua=f+uju-1wheref∈Id(R) anduju-1∈J(R) we can see that it is left unitJ-clean.

    The converse can be proved in a similar way.

    In [1] The following simple fact is known, we include a proof for readers’ convenience.

    Lemma 2 An elementa∈Ris unit regular if and only if it can be written in the form ofa=euwheree∈Id(R) andu∈U(R).

    Proof Letabe unit regular thenaua=awhereuis a unit. We imply thatau=eis an idempotent by the formula given in the front. Thusa=eu-1wheree∈Id(R) andu-1∈U(R). If we assume thata=eu, thenau-1=eand thusau-1au-1=au-1. Multiplying on the right byugives us thatau-1a=aandais unit regular.

    Theorem 1 A ringRis unitJ-clean if and only if every elementainRcan be written in the form ofa=r+jwherer∈Ureg (R) andj∈J(R).

    Proof LetRbe a unitJ-clean ring then for every elementa∈Rthere exists a unitusuch thatau=e+jwheree∈Id(R) andj∈J(R). Thena=eu-1+ju-1whereeu-1∈Ureg(R) by Lemma 2 andju-1∈J(R). Conversely, if for every elementa∈R,a=r+jwherer∈Ureg(R) andj∈J(R), thena=eu+jsinceris an unit regular element and it can be replaced byeufor some idempotenteand some unituby Lemma 2. Soau-1=e+ju-1whereeis an idempotent andju-1belongs to Jacobson radical. Thus we get the result thatRis unitJ-clean.

    Example 1 EveryJ-clean ring is unitJ-clean, but the converse is not true.

    Proof It is obvious that everyJ-clean ring is unitJ-clean as we can just takeu=1. However the converse is not true. We take a division ring which is not isomorphic to Z2. As we all know that in a division ring idempotents are only 0 and 1 and there is only one element 0 in the Jacobson radical. So there must be some elements can not be presented as the form ofa=e+jwheree∈Id(R) andj∈J(R) if there are more than two elements in a division ring. More clearly, Z3is a division ring and 2∈Z3can not be written in the form ofe+jsince 0+0=0 and 1+0=1. Cheerly, we find that every division ring is unitJ-clean. Ifa∈Randa=0,au=0+0 whereuis a unit and 0 is both idempotent and Jacobson radical. On the other hand ifa≠0, thenamust be a unit, thus we can writeain the form thataa-1=1+0 wherea-1is a unit and 1∈Id(R), 0∈J(R). So we get the result.

    Theorem 2 Every unitJ-clean ring is unit clean.

    Proof For any elementa∈R,a-1=r+jwherer∈Ureg(R) andj∈J(R) sinceRis unitJ-clean. Thena=r+1+jwherer∈Ureg(R) and (1+j)∈U(R), thus it is unit clean by [1,Lemma5.2].

    However, the converse is not true. [1,Proposition5.3] gave out an example that is unit clean but not clean, now we will rewrite the example here and give the proof that it is unit clean but also not unitJ-clean.

    Example 2 LetRbe an indecomposable commutative ring. IfRhas exactly two maximal ideals and 2 is a unit inR, thenRis unit clean but not unitJ-clean.

    Proof Firstly, we will show it is unit clean. We noteM1andM2to represent two maximal ideals separately. For any elementa∈Rwe have four cases. (1)ais a unit, (2)a∈M1∩M2=J(R), (3)a∈M1M2and (4)a∈M2M1.

    In the first case, we writea=0+asinceais a unit.

    In the second case, we know that 1-av=ufor someuandvinU(R) sinceais in Jacobson radical, that isav=1-uwhere 1∈Id(R) and -u∈U(R), soais unit clean.

    In the third case,a∈M1M2, thena+1 anda-1 are not belonging toM1. Since otherwise, 1 and -1 would be elements ofM1. If botha+1 anda-1 ∈M2, then (a+1)+(a-1)=2a∈M2. Thusa∈M2since 2 is a unit, a contradiction. So eithera+1 ora-1 is a unit, thusa=-1+u,a·(-1)=1-uora=1+u, it is obvious thatais unit clean.

    Since the third and fourth cases are symmetric, we can prove the fourth case in the same way.

    Next we will show that it is not unitJ-clean. We assume it is unitJ-clean, then for any elementainRwe can write it in the form ofa=eu+j. SinceRis an indecomposable commutative ring, the only idempotents we have are 0 and 1, thusa=0+jora=u+jthat isais either a Jacobson radical or a unit, we get thatRis local, a contradiction. SoRis not a unitJ-clean ring.

    Theorem 3 Every 2-good ringRis a unit clean ring.

    Proof For any elementa∈R,a=u+vwhereu,v∈U(R), thenau-1=1+vu-1where 1 is an idempotent andvu-1is a unit, so it is unit clean.

    From the preceding result, we may ask that if every 2-good ring is unitJ-clean? If we can find a 2-good ring that is not unitJ-clean then we give out another example that a ring is unit clean but not unitJ-clean.

    Example 3 In [2,Propsition 6] the author give the result that a proper matrix ring over an elementary divisor ring is 2-good. Every Euclidean domain proper matrix rings are strongly 2-good. We takeR=M2(Z) for instance. As we all know that Z is an Euclidean domain, soR=M2(Z) is 2-good. HoweverR/J(R)?R(J(R)=0) is not regular of course not unit regular whileR/J(R) is unit regular is a necessary condition for a unitJ-clean ring. Thus we solve the problem.

    Lemma 3 Every unit regular ring in which 1 is the sum of two units is a 2-good ring.

    Proof We get the result in [5].

    Theorem 4 LetRbe a unitJ-clean ring. Then the following are equivalent:

    (1)Ris 2-good;

    (2)1=u+vfor someu,v∈U(R).

    Proof (1)?(2) It is obvious.

    Corollary 1 LetRbe a unitJ-clean ring and 2∈U(R), then R is 2-good.

    Also,wecanprovethiscorollarybyTheorem4, 1=1/2+1/2where1/2isaunit,sowegetit.

    Theorem5Inalocalringeveryunitregularelementiseitheraunitor0.

    ProofForanyelementa∈Ureg(R),ifa∈U(R),thenitisaunit,ifa∈J(R),thena=eu, au-1=e∈J(R).Thuswegetthate=0sinceidempotentinJacobsonradicalmustbe0.Soa=0u=0.

    Proposition1LetRbeaunitJ-cleanringthenanyelementa∈J(R)canbepresenteduniquelyasa=0+awhere0∈Ureg(R)anda∈J(R).

    ProofForanyelementa∈J(R), a=eu+jsinceRisaunitJ-cleanring.Thenau-1=e+ju-1, e=au-1-ju-1∈J(R)sincebothau-1andju-1belongtoJacobsonradical,soe=0anda=0u+j=0+jistheuniquepresentationofa.

    Proposition2EveryhomomorphicimageofaunitJ-cleanringisunitJ-clean.

    Theorem6LetRbeanabelianring. IisanidealofRandI?J(R).ThenRisunitJ-cleanifandonlyif(1)R/IisunitJ-clean; (2)IdempotentsliftmoduloJ(R).

    ProofR/IisthehomomorphicimagineofR,soitisunitJ-cleansinceRisunitJ-cleanbyProposition2.

    Corollary2LetRbeanabelianring.ThenRisunitJ-cleanifandonlyif

    (1)R/J(R)isunitJ-clean; (2)IdempotentsliftmoduloJ(R).

    ProofItisobviousbyTheorem6.

    Corollary3LetRbeanabelianring.ThenRisunitJ-cleanifandonlyif

    (1)R/J(R)isunitregular; (2)IdempotentsliftmoduloJ(R).

    ProofOnedirectionisobvious. R/J(R)isunitregularsinceRisunitJ-clean.WehaveproveIdempotentsliftmoduloJ(R)byTheorem6.

    Conversely,if(1)and(2)hold.AsweknowunitregularringisunitJ-cleanwecangettheresultbyCorollary2.

    Itisobviousthatabovethreeconclusionsarerightforcommunicativering.

    Theorem7LetRbeaunitJ-cleanringwithtwomaximalideals,thenRmustcontainnontrivialidempotent.

    ProofForanyelementa∈R, a=eu+jforsomee∈Id(R), u∈U(R)andj∈J(R)sinceRisaunitJ-cleanring.Ifa∈J(R), a=eu+j, eu=a-j, e=(a-j)u-1∈J(R),sowegete=0.Ifa∈U(R) a=eu+j, eu=a-j, e=(a-j)u-1∈U(R),thene=1.Ifa∈M1M2, a=eu+j,nowweassumethateisatrivialidempotent,ife=0,thena=j∈J(R),acontradiction.ife=1,thena=u+j∈U(R),alsoacontradiction.Wegettheresultthatemustbeanontrivialidempotent.Wecandiscussa∈M2M1inasimilarway.

    LetP(R)betheprimeradicalofR,i.e.,theintersectionofallprimeideals.ItisobviousthatP(R)?J(R)sinceeverymaximalidealisprimeideal.

    Definition2AringRiscalledaunitP-cleanifforeveryelementa∈Rthereisaunitu∈Rsuchthatau=e+p (ua=e+p)wheree∈Id(R)andp∈P(R).

    Theorem8AringRisunitP-cleanifandonlyifeveryelementainRcanbewrittenintheformofa=r+pwherer∈Ureg(R)andp∈P(R).

    ProofLetRbeaunitP-cleanringthenforeveryelementa∈Rthereexistsaunitusuchthatau=e+pwheree∈Id(R)andp∈P(R).Thena=eu-1+pu-1whereeu-1∈Ureg(R)byLemma2andpu-1∈P(R).Conversely,ifforeveryelementa∈R, a=r+pwherer∈Ureg(R)andp∈P(R),thena=eu+psincerisaunitregularelementanditcanbereplacedbyeuforsomeidempotenteandsomeunitubyLemma2.Soau-1=e+pu-1whereeisanidempotentandpu-1belongstoP(R).ThuswegettheresultthatRisunitP-clean.

    Theorem9LetRbearing.ThenRisunitP-cleanifandonlyif

    (1)P(R)=J(R); (2)RisunitJ-clean.

    ProofAsweallknowthatP(R)?J(R),whatweshoulddoistoprovethatJ(R)?P(R).Foranyelementa∈J(R),wehavea=eu+psinceRisunitP-clean.Thuseu=a-p∈J(R)sincea∈J(R)andp∈P(R)?J(R),thene∈J(R), e=0.Wegeta=p∈P(R), J(R)?P(R), J(R)=P(R).AsP(R)?J(R),itisobviousthatunitP-cleanisunitJ-clean.

    Conversely,assumethat(1)and(2)hold.Theconclusionisobvious.

    Theorem10AringRisunitP-cleanifandonlyifR/P(R)isunitregular.

    ProofOnedirectionisobvious.

    Theorem11Everyabelianπ-regularringisunitJ-cleanring.

    ProofIn[3,Lemma5]weknowthatinabelianπ-regularringNil(R)=J(R)andbyCorollary1wegetthateveryelementxinitcanbewriteintheformofx=eu+wwheree∈Id(R), u∈U(R)andw∈Nil(R),thenwegettheresult.

    3 Related Rings

    Inthissection,wefurtherconsiderunitJ-cleannessforvariousrelatedrings.

    Theorem12 ∏RiisafiniteunitJ-cleanifandonlyifeveryRiisunitJ-clean.

    ProofOnedirectionisobvioussinceeveryRiisthehomomorphicimageof∏Ri.

    OntheotherhandifeveryRiisunitJ-clean,thenforanyelement(a1,a2,a3……an)∈∏Riforsomen∈Z,thenai=ri+jiwhereri∈Ureg(Ri)andji∈J(Ri),thus(a1,a2,a3……an)=(r1,r2,r3……rn)+(j1,j2,j3……jn)where(r1,r2,r3……rn)∈Ureg(∏Ri)and(j1,j2,j3……jn)∈J(∏Ri),so∏RiisunitJ-clean.

    Theorem13 R[[x]]isunitJ-cleanifandonlyifRisunitJ-clean.

    ProofOnedirectionisobvioussinceRisthehomomorphicimageofR[[x]].

    OntheotherhandifRisunitJ-clean,thenforanyelementa0+a1x+a2x2+……∈R[[x]],thena0=r0+j0wherer0∈Ureg(R)andj0∈J(R),thus(a0+a1x+a2x2+……=r0+j0+a1x,a2x2……where(r0∈Ureg(R[[x]])andj0+a1x+a2x2+……∈J(R[[x]]),sinceJ(R[[x]])havetheformofj0+a1x+a2x2+……wherej0∈J(R),soR[[x]]isunitJ-clean.

    SetR×M={(r,m)|r∈R,m∈RMR}wedefinetheoperationby(r,m)+(s,v)=(r+s,m+v), (r,m)(s,v)=(rs,rv+ms).ThenR×Mformsaring,whichiscalledthetrivialextensionsofRandM.AsweallknowJ(R×M)={(r,m)|r∈J(R),m∈RMR}.

    Theorem16LetRbearing.ThenRisunitJ-cleanifandonlyifR×M={(r,m)|r∈R,m∈RMR}isunitJ-clean.

    Proof IfRis unitJ-clean, for any (r,m)∈R×MsinceRis unitJ-clean,r=eu+jwheree∈Id(R),u∈U(R),j∈J(R), we have (r,m)=(eu,0)+(j,m) where (eu,0)∈Ureg(R×M) and (j,m)∈J(R×M) which impliesR×Mis unitJ-clean whenRis unitJ-clean.

    Conversely, ifR×Mis unitJ-clean, we setP=(0,M), then we haveR?R×M/PsoRis unitJ-clean whenR×Mis unitJ-clean.

    :

    [1] BOSSALLER D P. On a generalization of clean rings[D].Saint Louis: Saint Louis University,2013.

    [2] VAMOS P. 2-good rings[J]. The Quarterly Journal of Mathematics,2005,56(3):417-430.

    [3] BADAWI A. On abelian π-regular rings[J]. Communication in Algebra,1997,25(4):1009-1021.

    [4] NICHOLSON W K, ZHOU Y. Clean general rings[J]. J Algebra,2005,291(1):297-311.

    [5] WANG Y, REN Y L. 2-good rings and their extentions[J]. Bull Korean Math Soc,2013,50(5):1711-1723.

    [6] GROVER H K, WANG Z, KHURANA D, et al. Sums of units in rings[J]. Journal of Algebra and Its Applications, 2014,13(1):1350072.

    關于UnitJ-clean環(huán)

    沈洪地 ,陳煥艮

    (杭州師范大學理學院,浙江 杭州310036)

    一個元素叫做右單位J-clean(左單位J-clean)如果在R中存在一個單位u,使得au(ua)是J-clean 的.一個環(huán)R叫做右單位J-clean(左單位J-clean)環(huán)當且僅當環(huán)中的每個元素都是右單位J-clean(左單位J-clean)的.文章得到了以下幾個結論:每個J-clean 環(huán)是 unitJ-clean 環(huán), 每個unitJ-clean 環(huán)是 unit clean環(huán),每個2-good 環(huán)是unit clean 環(huán),但是以上三個結論反過來就不正確.文章還證明了一個unitJ-clean 環(huán),那么它是2-good 環(huán)當且僅當1能表示成兩個單位的和.當R是一個阿貝爾環(huán),I是一個R的包含在Jacobson根里的理想,那么R是unitJ-clean 環(huán)當且僅當(1)R/I是unitJ-clean 的.(2)冪等元關于J(R)可提升.

    J-clean環(huán);unitJ-clean環(huán);冪等元;Jacobson根

    date:2015-06-16

    Supported by the Natural Science Foundation of Zhejiang Province(LY13A010019).

    CHEN Huanyin (1963—),Male,Professor,ph. Doctor, majored in algebra of basic mathematics. E-mail:huanyinchen@aliyun.com

    10.3969/j.issn.1674-232X.2016.02.009

    O153.3 MSC2010: 16E50,16S34,16U10 Article character: A

    1674-232X(2015)02-0163-08

    猜你喜歡
    阿貝爾結論杭州
    杭州
    幼兒畫刊(2022年11期)2022-11-16 07:22:36
    由一個簡單結論聯(lián)想到的數(shù)論題
    立體幾何中的一個有用結論
    追風的小鷹
    狄利克雷與阿貝爾收斂判別法的教學研究
    作家風采 阿貝爾
    劍南文學(2018年1期)2018-04-11 02:30:47
    阿貝爾獎
    G20 映像杭州的“取勝之鑰”
    傳媒評論(2017年12期)2017-03-01 07:04:58
    杭州
    汽車與安全(2016年5期)2016-12-01 05:21:55
    杭州舊影
    看天下(2016年24期)2016-09-10 20:44:10
    亚洲精品aⅴ在线观看| 欧美少妇被猛烈插入视频| 一级毛片电影观看| 欧美日韩av久久| 国产乱人偷精品视频| 国产av一区二区精品久久| 美女脱内裤让男人舔精品视频| 亚洲熟女精品中文字幕| 久久综合国产亚洲精品| 亚洲av免费高清在线观看| 国产免费一区二区三区四区乱码| 亚洲精品,欧美精品| 日日爽夜夜爽网站| 最近最新中文字幕大全免费视频 | 亚洲欧美成人精品一区二区| 成年女人毛片免费观看观看9 | 国产一区二区激情短视频 | 下体分泌物呈黄色| 日韩 亚洲 欧美在线| 咕卡用的链子| 99久国产av精品国产电影| a级毛片黄视频| 在现免费观看毛片| 热99国产精品久久久久久7| 91精品伊人久久大香线蕉| 亚洲色图综合在线观看| 久久久久久久精品精品| 亚洲色图综合在线观看| 亚洲欧洲精品一区二区精品久久久 | 一区二区三区激情视频| 伊人久久大香线蕉亚洲五| 亚洲国产毛片av蜜桃av| 久久久国产欧美日韩av| 下体分泌物呈黄色| 日韩成人av中文字幕在线观看| 99热网站在线观看| 亚洲伊人久久精品综合| 久久久精品94久久精品| 久久97久久精品| 日产精品乱码卡一卡2卡三| 久久女婷五月综合色啪小说| 成年动漫av网址| 国产欧美日韩一区二区三区在线| 在线 av 中文字幕| 精品国产一区二区久久| 久久这里有精品视频免费| 亚洲,一卡二卡三卡| 精品国产露脸久久av麻豆| 亚洲三区欧美一区| 欧美亚洲日本最大视频资源| 日韩欧美精品免费久久| 成年人午夜在线观看视频| 丝袜美足系列| 少妇猛男粗大的猛烈进出视频| 99久久综合免费| 男人爽女人下面视频在线观看| 在线观看www视频免费| 国产野战对白在线观看| 精品人妻在线不人妻| 国产在线视频一区二区| 日本-黄色视频高清免费观看| 亚洲av中文av极速乱| 最黄视频免费看| 可以免费在线观看a视频的电影网站 | 国产男人的电影天堂91| 少妇人妻精品综合一区二区| 亚洲精品久久成人aⅴ小说| 亚洲av日韩在线播放| 免费不卡的大黄色大毛片视频在线观看| 亚洲av.av天堂| 王馨瑶露胸无遮挡在线观看| 伊人久久大香线蕉亚洲五| 日韩熟女老妇一区二区性免费视频| 美女主播在线视频| 9191精品国产免费久久| 亚洲av在线观看美女高潮| 久久久久久久久久久免费av| 99久久中文字幕三级久久日本| 精品卡一卡二卡四卡免费| 韩国精品一区二区三区| 香蕉丝袜av| 久久久久久伊人网av| 精品国产国语对白av| 丝瓜视频免费看黄片| 人人妻人人澡人人爽人人夜夜| 国产成人91sexporn| 久久精品国产综合久久久| 精品亚洲乱码少妇综合久久| 美女脱内裤让男人舔精品视频| 桃花免费在线播放| 久久久久精品性色| 欧美黄色片欧美黄色片| 亚洲美女黄色视频免费看| 日本爱情动作片www.在线观看| 老汉色∧v一级毛片| 国产探花极品一区二区| 日韩一卡2卡3卡4卡2021年| av国产久精品久网站免费入址| 亚洲精品一区蜜桃| 人体艺术视频欧美日本| 国产精品三级大全| 飞空精品影院首页| 亚洲av电影在线进入| 国产精品秋霞免费鲁丝片| 热re99久久国产66热| 老熟女久久久| 成人毛片60女人毛片免费| 日本猛色少妇xxxxx猛交久久| 成年人午夜在线观看视频| 两个人免费观看高清视频| 麻豆av在线久日| 国产日韩一区二区三区精品不卡| 午夜精品国产一区二区电影| 欧美激情高清一区二区三区 | 性色avwww在线观看| 免费黄频网站在线观看国产| 成人毛片a级毛片在线播放| 精品一区在线观看国产| 国产成人欧美| 女性生殖器流出的白浆| 啦啦啦在线观看免费高清www| 人妻少妇偷人精品九色| 国产探花极品一区二区| 精品久久蜜臀av无| 国产乱来视频区| 久久人人97超碰香蕉20202| 成人亚洲精品一区在线观看| 一级,二级,三级黄色视频| 有码 亚洲区| 亚洲五月色婷婷综合| 人妻一区二区av| 国产熟女午夜一区二区三区| 国产精品久久久久成人av| 精品视频人人做人人爽| 哪个播放器可以免费观看大片| 精品第一国产精品| 精品99又大又爽又粗少妇毛片| 国产高清不卡午夜福利| 激情五月婷婷亚洲| 伊人久久大香线蕉亚洲五| 狠狠婷婷综合久久久久久88av| 国产亚洲欧美精品永久| 丝袜在线中文字幕| 人成视频在线观看免费观看| 久久国产亚洲av麻豆专区| 国产野战对白在线观看| a级毛片在线看网站| 校园人妻丝袜中文字幕| av在线app专区| 永久网站在线| 黄色怎么调成土黄色| 黑人巨大精品欧美一区二区蜜桃| 一级片免费观看大全| 国产一区二区 视频在线| 国产深夜福利视频在线观看| 边亲边吃奶的免费视频| 制服人妻中文乱码| videos熟女内射| 人成视频在线观看免费观看| 热re99久久国产66热| 青春草视频在线免费观看| freevideosex欧美| 黄色毛片三级朝国网站| 秋霞伦理黄片| 视频区图区小说| 免费在线观看视频国产中文字幕亚洲 | 国产极品粉嫩免费观看在线| 亚洲欧美中文字幕日韩二区| 五月开心婷婷网| 免费不卡的大黄色大毛片视频在线观看| 午夜91福利影院| 男女无遮挡免费网站观看| 亚洲精品日韩在线中文字幕| 王馨瑶露胸无遮挡在线观看| 国产成人一区二区在线| 日韩中文字幕视频在线看片| 国产精品久久久久久精品古装| 国产免费现黄频在线看| 激情五月婷婷亚洲| 亚洲av在线观看美女高潮| 久久久久久久久久久久大奶| 久久久久久久精品精品| 久久精品aⅴ一区二区三区四区 | 少妇人妻精品综合一区二区| 国产精品一区二区在线观看99| 国产激情久久老熟女| 精品国产超薄肉色丝袜足j| 国产免费现黄频在线看| 制服人妻中文乱码| 美女午夜性视频免费| 只有这里有精品99| 日本欧美国产在线视频| 国产成人精品福利久久| 国产激情久久老熟女| 久久久久久久大尺度免费视频| 免费高清在线观看日韩| 久久人人爽av亚洲精品天堂| 精品人妻一区二区三区麻豆| 欧美亚洲 丝袜 人妻 在线| 久久韩国三级中文字幕| 亚洲精华国产精华液的使用体验| 又大又黄又爽视频免费| 亚洲精品成人av观看孕妇| 国产白丝娇喘喷水9色精品| 亚洲综合色网址| 国产无遮挡羞羞视频在线观看| 黑丝袜美女国产一区| 97在线视频观看| 狠狠精品人妻久久久久久综合| 国产成人精品久久二区二区91 | 一级毛片我不卡| 考比视频在线观看| 免费不卡的大黄色大毛片视频在线观看| 老司机亚洲免费影院| 人妻一区二区av| 亚洲一级一片aⅴ在线观看| 一边摸一边做爽爽视频免费| 免费女性裸体啪啪无遮挡网站| 国产日韩一区二区三区精品不卡| 男女无遮挡免费网站观看| 日韩中字成人| 久久人人爽人人片av| 久久国产精品大桥未久av| 日本猛色少妇xxxxx猛交久久| 亚洲精品国产av蜜桃| 国产成人精品无人区| xxxhd国产人妻xxx| 久久久精品免费免费高清| 26uuu在线亚洲综合色| 99久国产av精品国产电影| 亚洲精品美女久久av网站| 大码成人一级视频| 日韩制服丝袜自拍偷拍| 一区在线观看完整版| 亚洲精品国产av成人精品| 欧美+日韩+精品| 国产精品亚洲av一区麻豆 | 国产精品二区激情视频| 亚洲欧洲日产国产| 新久久久久国产一级毛片| 日韩av在线免费看完整版不卡| 男男h啪啪无遮挡| 久久久欧美国产精品| 极品人妻少妇av视频| 激情视频va一区二区三区| 久久国产精品大桥未久av| 亚洲av电影在线观看一区二区三区| 在线观看人妻少妇| 最新中文字幕久久久久| 少妇人妻精品综合一区二区| 亚洲第一区二区三区不卡| 国精品久久久久久国模美| 久久精品熟女亚洲av麻豆精品| 亚洲美女视频黄频| 久久久久久免费高清国产稀缺| 久久人妻熟女aⅴ| 啦啦啦在线免费观看视频4| av在线老鸭窝| 男女边摸边吃奶| 美女xxoo啪啪120秒动态图| 老熟女久久久| 欧美日韩精品成人综合77777| 曰老女人黄片| 男女免费视频国产| 男男h啪啪无遮挡| 国产毛片在线视频| 熟女少妇亚洲综合色aaa.| 自线自在国产av| 超色免费av| 国产片特级美女逼逼视频| 美女高潮到喷水免费观看| 欧美国产精品一级二级三级| 男女无遮挡免费网站观看| 亚洲伊人久久精品综合| 午夜精品国产一区二区电影| 一区在线观看完整版| 亚洲男人天堂网一区| 色婷婷av一区二区三区视频| 久久久久久久国产电影| 亚洲av国产av综合av卡| 久久久久精品性色| 一级毛片黄色毛片免费观看视频| 毛片一级片免费看久久久久| 国产伦理片在线播放av一区| 欧美另类一区| 精品视频人人做人人爽| 啦啦啦在线观看免费高清www| 黑人巨大精品欧美一区二区蜜桃| 哪个播放器可以免费观看大片| 久久久久国产精品人妻一区二区| 日本-黄色视频高清免费观看| 黄色毛片三级朝国网站| 不卡视频在线观看欧美| 国产精品女同一区二区软件| 人妻 亚洲 视频| xxx大片免费视频| 日韩制服丝袜自拍偷拍| 国产国语露脸激情在线看| 国产精品国产三级国产专区5o| 男女下面插进去视频免费观看| 色播在线永久视频| 亚洲中文av在线| 丰满迷人的少妇在线观看| 欧美97在线视频| 日韩制服骚丝袜av| 国产在线一区二区三区精| 哪个播放器可以免费观看大片| 欧美成人午夜精品| 91午夜精品亚洲一区二区三区| 高清欧美精品videossex| 欧美激情极品国产一区二区三区| 黄色怎么调成土黄色| 考比视频在线观看| 男女国产视频网站| 国产又色又爽无遮挡免| 搡老乐熟女国产| 久久精品aⅴ一区二区三区四区 | 国产日韩欧美亚洲二区| 国产成人91sexporn| 18禁观看日本| 看非洲黑人一级黄片| 热re99久久精品国产66热6| 老鸭窝网址在线观看| 久久久久网色| 成人毛片a级毛片在线播放| 亚洲四区av| 熟女电影av网| 一区二区三区乱码不卡18| 岛国毛片在线播放| 美女福利国产在线| 波野结衣二区三区在线| 毛片一级片免费看久久久久| 成人免费观看视频高清| 好男人视频免费观看在线| 亚洲中文av在线| 91在线精品国自产拍蜜月| 欧美老熟妇乱子伦牲交| 中国国产av一级| 久久这里有精品视频免费| 午夜激情久久久久久久| 精品国产一区二区三区四区第35| 国产精品人妻久久久影院| 伊人久久国产一区二区| 中国三级夫妇交换| 一个人免费看片子| 国产男人的电影天堂91| 成年动漫av网址| 国产亚洲欧美精品永久| 久久精品aⅴ一区二区三区四区 | 少妇精品久久久久久久| 亚洲成国产人片在线观看| 亚洲av在线观看美女高潮| 视频区图区小说| 999久久久国产精品视频| 最黄视频免费看| 如何舔出高潮| 欧美日韩一级在线毛片| 韩国精品一区二区三区| 精品久久久久久电影网| 日日啪夜夜爽| 国产97色在线日韩免费| 高清在线视频一区二区三区| 亚洲av男天堂| 国产亚洲av片在线观看秒播厂| 久久这里只有精品19| 99久久人妻综合| 又大又黄又爽视频免费| 97在线人人人人妻| 国产精品人妻久久久影院| 国产精品久久久av美女十八| 日韩av免费高清视频| 欧美在线黄色| 丰满乱子伦码专区| 精品人妻在线不人妻| 免费av中文字幕在线| h视频一区二区三区| 国产男人的电影天堂91| 久久久精品免费免费高清| 丰满乱子伦码专区| 一本一本久久a久久精品综合妖精 国产伦在线观看视频一区 | 国产乱人偷精品视频| 日韩一卡2卡3卡4卡2021年| 97在线人人人人妻| 亚洲国产欧美在线一区| 两个人免费观看高清视频| 男女高潮啪啪啪动态图| 一本一本久久a久久精品综合妖精 国产伦在线观看视频一区 | 天天躁狠狠躁夜夜躁狠狠躁| 777米奇影视久久| 国产成人精品一,二区| 欧美精品国产亚洲| 成年动漫av网址| 欧美少妇被猛烈插入视频| 国产成人午夜福利电影在线观看| 欧美日韩视频高清一区二区三区二| 久久亚洲国产成人精品v| 国产高清国产精品国产三级| 一本一本久久a久久精品综合妖精 国产伦在线观看视频一区 | 免费少妇av软件| 精品久久蜜臀av无| 午夜福利一区二区在线看| 亚洲精品国产色婷婷电影| 国产伦理片在线播放av一区| 国产av国产精品国产| 黄色配什么色好看| 精品久久久精品久久久| 亚洲欧美精品自产自拍| 下体分泌物呈黄色| 久久99精品国语久久久| 美女视频免费永久观看网站| 精品一区二区三区四区五区乱码 | 不卡av一区二区三区| 边亲边吃奶的免费视频| 国产精品国产三级国产专区5o| 黄片无遮挡物在线观看| 日韩制服丝袜自拍偷拍| 国产97色在线日韩免费| 欧美在线黄色| 制服人妻中文乱码| 精品酒店卫生间| 午夜91福利影院| 久久人妻熟女aⅴ| 亚洲欧美中文字幕日韩二区| 91国产中文字幕| 女人被躁到高潮嗷嗷叫费观| 桃花免费在线播放| 午夜免费观看性视频| www.熟女人妻精品国产| 一本一本久久a久久精品综合妖精 国产伦在线观看视频一区 | 丝瓜视频免费看黄片| 视频区图区小说| 国产亚洲av片在线观看秒播厂| 中文精品一卡2卡3卡4更新| 久久精品熟女亚洲av麻豆精品| 激情五月婷婷亚洲| 老汉色av国产亚洲站长工具| 丰满少妇做爰视频| 男女免费视频国产| 三级国产精品片| 如日韩欧美国产精品一区二区三区| 亚洲国产欧美日韩在线播放| 国产成人免费观看mmmm| 男人添女人高潮全过程视频| 91久久精品国产一区二区三区| 尾随美女入室| 久久 成人 亚洲| 欧美激情高清一区二区三区 | av视频免费观看在线观看| 久久综合国产亚洲精品| 波野结衣二区三区在线| 男人爽女人下面视频在线观看| 国产黄色免费在线视频| 亚洲精品国产av蜜桃| 国产97色在线日韩免费| 国产av一区二区精品久久| 观看美女的网站| 女人久久www免费人成看片| 欧美日韩亚洲高清精品| 成人国产av品久久久| 久久女婷五月综合色啪小说| 老司机亚洲免费影院| 丝袜人妻中文字幕| 女的被弄到高潮叫床怎么办| 桃花免费在线播放| 国产精品国产av在线观看| 在线观看美女被高潮喷水网站| 亚洲经典国产精华液单| 国产精品熟女久久久久浪| 国产极品天堂在线| 999久久久国产精品视频| 亚洲精品乱久久久久久| 国产又爽黄色视频| 久久影院123| 九草在线视频观看| 热99国产精品久久久久久7| 2022亚洲国产成人精品| 老熟女久久久| 欧美国产精品一级二级三级| 大香蕉久久网| 亚洲国产色片| 美女主播在线视频| 国产免费又黄又爽又色| 青春草亚洲视频在线观看| 九草在线视频观看| 老司机影院成人| 2022亚洲国产成人精品| 乱人伦中国视频| 欧美中文综合在线视频| 亚洲精品美女久久久久99蜜臀 | 日本爱情动作片www.在线观看| 人体艺术视频欧美日本| 一级黄片播放器| 99热国产这里只有精品6| 一个人免费看片子| 美女xxoo啪啪120秒动态图| 波野结衣二区三区在线| 九色亚洲精品在线播放| 久久精品久久久久久噜噜老黄| 男人舔女人的私密视频| 精品国产一区二区久久| 韩国精品一区二区三区| 男女边摸边吃奶| 精品国产乱码久久久久久男人| 国产在视频线精品| 国产成人精品无人区| av网站在线播放免费| 欧美精品高潮呻吟av久久| 免费人妻精品一区二区三区视频| 亚洲精品中文字幕在线视频| 午夜av观看不卡| 飞空精品影院首页| 日本色播在线视频| 欧美成人精品欧美一级黄| 国产熟女欧美一区二区| 亚洲av福利一区| 男人添女人高潮全过程视频| 欧美另类一区| 国产一区二区三区综合在线观看| 精品国产国语对白av| 亚洲欧美一区二区三区黑人 | 欧美激情 高清一区二区三区| 熟女少妇亚洲综合色aaa.| 狠狠精品人妻久久久久久综合| 欧美日韩精品成人综合77777| 久热久热在线精品观看| 大香蕉久久成人网| 日韩一区二区三区影片| 亚洲av中文av极速乱| 韩国av在线不卡| 久久99蜜桃精品久久| 亚洲精品在线美女| 波多野结衣一区麻豆| 午夜精品国产一区二区电影| 久久久精品国产亚洲av高清涩受| 国产乱人偷精品视频| 爱豆传媒免费全集在线观看| 巨乳人妻的诱惑在线观看| 一边亲一边摸免费视频| 另类亚洲欧美激情| 亚洲欧洲精品一区二区精品久久久 | 啦啦啦在线免费观看视频4| 性高湖久久久久久久久免费观看| 国产免费一区二区三区四区乱码| 美女脱内裤让男人舔精品视频| 亚洲av免费高清在线观看| 亚洲av欧美aⅴ国产| 一级a爱视频在线免费观看| 欧美亚洲 丝袜 人妻 在线| 国产野战对白在线观看| 天堂8中文在线网| 你懂的网址亚洲精品在线观看| 热re99久久精品国产66热6| 国产一区亚洲一区在线观看| 中文字幕人妻丝袜一区二区 | 国产免费又黄又爽又色| 国精品久久久久久国模美| 伊人亚洲综合成人网| 自线自在国产av| 欧美精品av麻豆av| 99精国产麻豆久久婷婷| 啦啦啦啦在线视频资源| 亚洲综合色网址| 女人久久www免费人成看片| 久久久久国产精品人妻一区二区| 亚洲av.av天堂| 亚洲成av片中文字幕在线观看 | 人体艺术视频欧美日本| 亚洲精品在线美女| 高清av免费在线| 成人亚洲精品一区在线观看| 久久人人爽人人片av| 亚洲一级一片aⅴ在线观看| 久久久久精品人妻al黑| 午夜激情av网站| 亚洲欧美成人综合另类久久久| 久久久精品免费免费高清| 亚洲欧美一区二区三区久久| 国产一区二区三区av在线| 国产淫语在线视频| 在线观看免费高清a一片| 2022亚洲国产成人精品| 天天影视国产精品| 少妇猛男粗大的猛烈进出视频| freevideosex欧美| 亚洲欧美色中文字幕在线| 免费观看性生交大片5| 永久免费av网站大全| 成年av动漫网址| 激情五月婷婷亚洲| 中文字幕人妻丝袜制服| 美女视频免费永久观看网站| √禁漫天堂资源中文www| 99国产综合亚洲精品| 国产成人欧美| 久久久精品94久久精品| 肉色欧美久久久久久久蜜桃| 黄色 视频免费看| 欧美少妇被猛烈插入视频| 欧美激情高清一区二区三区 | 波野结衣二区三区在线| 久久久久久免费高清国产稀缺| 熟女少妇亚洲综合色aaa.| 久久久久久久久久人人人人人人| 超碰97精品在线观看| 多毛熟女@视频| 欧美日韩一区二区视频在线观看视频在线| 国产在视频线精品| 免费观看a级毛片全部| 久久毛片免费看一区二区三区| 性色avwww在线观看| 欧美日韩一级在线毛片| 亚洲精品一二三| 亚洲av免费高清在线观看| 亚洲国产av新网站| 十八禁网站网址无遮挡|