• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Processes Leading to Second-Year Cooling of the 2010–12 La Ni?na Event, Diagnosed Using GODAS

    2015-02-24 03:39:54FENGLichengZHANGRongHuaWANGZhangguiandCHENXingrong
    Advances in Atmospheric Sciences 2015年3期

    FENG Licheng,ZHANG Rong-Hua,WANG Zhanggui,and CHEN Xingrong

    1National Marine Environmental Forecasting Center,State Oceanic Administration,Beijing100081

    2Key Laboratory of Ocean Circulation and Waves,Institute of Oceanology, Chinese Academy of Sciences,Qingdao266071

    3Earth System Science Interdisciplinary Center(ESSIC),University of Maryland, College Park,Maryland,USA,20740

    Processes Leading to Second-Year Cooling of the 2010–12 La Ni?na Event, Diagnosed Using GODAS

    FENG Licheng?1,ZHANG Rong-Hua2,3,WANG Zhanggui1,and CHEN Xingrong1

    1National Marine Environmental Forecasting Center,State Oceanic Administration,Beijing100081

    2Key Laboratory of Ocean Circulation and Waves,Institute of Oceanology, Chinese Academy of Sciences,Qingdao266071

    3Earth System Science Interdisciplinary Center(ESSIC),University of Maryland, College Park,Maryland,USA,20740

    Isopycnal analyses were performed on the Global Ocean Data Assimilation System(GODAS)to determine the oceanic processes leading to so-called second-year cooling of the La Ni?na event.In 2010–12,a horseshoe-like pattern was seen, connecting negative temperature anomalies off and on the Equator,with a dominant infuence from the South Pacifc.During the 2010 La Ni?na event,warm waters piled up at subsurface depths in the western tropical Pacifc.Beginning in early 2011, these warm subsurface anomalies propagated along the Equator toward the eastern basin,acting to reverse the sign of sea surface temperature(SST)anomalies(SSTAs)there and initiate a warm SSTA.However,throughout early 2011,pronounced negative anomalies persisted off the Equator in the subsurface depths of the South Pacifc.As isopycnal surfaces outcropped in the central equatorial Pacifc,negative anomalies from the subsurface spread upward along with mean circulation pathways,naturally initializing a cold SSTA.In the summer,a cold SSTA reappeared in the central basin,which subsequently strengthened due to the off-equatorial effects mostly in the South Pacifc.These SSTAs acted to initiate local coupled air–sea interactions,generating atmospheric–oceanic anomalies that developed and evolved with the second-year cooling in the fall of 2011.However,the cooling tendency in mid-2012 did not develop into another La Ni?na event,since the cold anomalies in the South Pacifc were not strong enough.An analysis of the 2007–09 La Ni?na event revealed similar processes to the 2010–12 La Ni?na event.

    La Ni?na,second-year cooling,off-equatorial effects,isopycnal analyses,circulation pathways,GODAS

    1. Introduction

    The El Ni?no–Southern Oscillation(ENSO)is the leading mode of interannual variability in the tropical Pacifc climate system,signifcantly impacting global weather and climate. In the past several decades,extensive studies have led to substantial progress in understanding,modeling and predicting El Ni?no events(e.g.,McCreary and Anderson,1984; Cane and Zebiak,1985;Zebiak and Cane,1987;Philander, 1992;Wang et al.,2011,2013).The delayed oscillator mechanism has been proposed to explain ENSO dynamics and its interannual oscillation within the tropical Pacifc climate system(Battisti and Hirst,1989).This theory emphasizes equatorial wave processes(Rossby wave and its refection along the low-latitude western boundaryinto a Kelvin wave).Another is the recharge/discharge mechanism(Jin,1997), which focuses on water exchange in the ocean on and off the Equator.As implied by these theories,the ENSO can be a cyclic oscillation between El Ni?no and La Ni?na conditions within the tropical Pacifc climate system.

    However,as observed,the ENSO also exhibits signifcant variability from one event instance to another.For example,multi-year cooling events can be seen during ENSO cycles from historical SST data(e.g.,Hu et al.,2014).During 2010–12,the tropical Pacifc had a persistent La Ni?na condition,with a second-year sea surface cooling that occurred in the fall of 2011.Further,many coupled models have failed to predict the Ni?no 3.4 sea surface temperature(SST)cooling when initialized from early-to mid-2011.Yet,one intermediate coupled model—an integrated climate model(ICM) operated at the Earth System Science Interdisciplinary Center(ESSIC),University of Maryland(UMD),the so-called ESSIC ICM(Zhang et al.,2003,2005)—gave a successful forecast of the 2011 negative SSTAs with a lead time of oneyear or so(Zhang et al.,2013,2014aZhang,R.-H,L.C.Feng,and Z.G.Wang,2014:Role of atmospheric wind forcing in the second-year cooling of the 2010–12 La Ni?na event.Atmos. Sci.Lett.,submitted.).This presents a challenge to the ENSO prediction community and indicates an urgent need to understand processes leading to the secondyear cooling.

    Previously,ICM-based experiments were carried out to examine the roles played by the temperature of subsurface water entrained into the mixed layer,and wind forcing (Zhang et al.,2013,2014aZhang,R.-H,L.C.Feng,and Z.G.Wang,2014:Role of atmospheric wind forcing in the second-year cooling of the 2010–12 La Ni?na event.Atmos. Sci.Lett.,submitted.).The reappearance of a negative SSTA in the central equatorial Pacifc in early summer of 2011 was closely related to off-equatorial thermal anomalies in the South Pacifc.However,the three-dimensional structure and evolution of these have not been illustrated,as theoceanicprocessesresponsibleforthesecond-yearcooling duringthe2010–12LaNi?na eventare still poorlyunderstood. The causes of the occurrence of a multi-year La Ni?na in general,and the 2011–12 La Ni?na event in particular,are not fully understood(Hu et al.,2014).

    In this paper,we examine the oceanic processes responsible for the second-year cooling of the 2010–12 La Ni?na event using reanalysis data,with a focus on the roles played by off-equatorial subsurface anomalies in the South Pacifc.To better represent pathways,isopycnal analyses were performed using three-dimensional temperature and salinity felds(Zhang and Rothstein,2000).Since subsurface temperature anomalies tend to propagate along density surfaces,an isopycnal analysis can better characterize the threedimensional structure and time evolution in a natural and physical way,therefore enabling us to trace pathways consistently throughout the basin.Our major fnding was that a distinct pathway of off-equatorial temperature anomalies occurred along the South Equatorial Current(SEC),clearly associated with the onset of second-year cooling during the 2010–12 La Ni?na event.Through examining the subsurface temperature evolution on isopycnals,connections were more clearly illustrated between thermal anomalies at the subsurface and surface,and off and on the Equator,leading to an improved understanding of ENSO variability.Additionally,re-evaluating the historical ENSO evolution showed that another multi-year cooling case occurred in the tropical Pacifc in 2007–09.The similarities and differences of these two events were analyzed to describe the nature of these strikingly different ENSO evolutions associated with various forcings and feedbacks within the Pacifc climate system.

    The remainder of the paper is organized as follows.We introduce the data and methodologyused in this work in section 2.The results are presented in section 3,followed by a summary and discussion in section 4.

    2. Data and methodology

    Monthly-mean data for currents,sea surface height,temperature and salinity came from the Global Ocean Data Assimilation System(GODAS)(Behringer and Xue,2004),operational at the National Centers for Environmental Prediction(NCEP).GODAS has a horizontal resolution of 1°× 1/3°in the zonal and meridional directions;it has 40 levels in the vertical,with a 10 m resolutionin the upper 200 m.We used the GODAS data coveringthe periodfromJanuary1980 throughDecember2012.Additionally,surface winds at 10 m height were from the NCEP–NCAR(National Center for Atmospheric Research)Reanalysis(Kalnay et al.,1996),with a longitudinal and latitudinal resolution of 1.904°×1.875°on a T62 Gaussian grid(192×94).

    Long-term climatological felds were formed from the period 1980–2012,including monthly-mean current vectors. Interannualanomaliesfortemperature,windstress andothers werethencalculatedrelativetotheir climatologicalfelds.Finally,isopycnal surfaces were estimated using monthly temperatureandsalinity data.Thetemperatureanomaliesat level depths were interpolated to constant density surfaces by using a cubic spline.Climatological current vectors on isopycnal surfaces were formed in the same way.In this study, interannual anomaly felds on isopycnal surfaces were used to investigate the roles played by anomalous temperature advection in the 2010–12 and 2007–09 La Ni?na events.

    3. Results

    3.1.SST evolution

    Figure 1 illustrates the horizontal distributions of SSTAs and surface wind anomalies for selected time intervals in 2011.In January,there was a La Ni?na state over the tropical Pacifc.Consequently,negative SSTAs prevailed in the central and eastern tropical Pacifc with the maxima exceeding-2°C between 150°and 170°W along the Equator.Surface easterly winds were stronger than normal over the western central equatorial Pacifc and southeasterly wind anomalies dominated off the Equator in the South Pacifc(Fig.1a). Thereafter,the cold SSTA diminished and the SSTA became normal in the eastern tropical Pacifc domain.Simultaneously,the wind stress anomalies weakened in most regions (Fig.1b).This warming process persisted during the following months and peaked in June,when a neutral SST state prevailed throughout the Equator except for a weak negative anomaly along 160°W.At this time,easterly wind anomalies weakened in the central tropical Pacifc(Fig.1d).In August, negative SSTA strengthened in the central equatorial Pacifc (Fig.1f),and this cooling tendency persisted during the following months(Figs.1g–h).

    Themechanismofformationofthe coldSSTA in the central eastern equatorial Pacifc during mid–late 2011 has not been fully explained.Some possible factors,such as wind forcing or a subsurface thermal anomaly,may play an important role.Note that southeasterly wind became stronger in the tropical South Pacifc(Fig.1e),forcing the cold waters located in the South Pacifc to move to the equatorial band (Fig.1e)and leadingto the negativeSSTA.However,the cur-rent driven by anomalous wind was not enough to produce strong and persistent negative SSTAs in the central equatorial Pacifc,especially after the wind anomalies changed direction during September and October(Figs.1g–h).Otherprocesses,such as subsurface effects,are required to fully understand the cause of the second-year cooling.

    3.2.Subsurface temperature anomaly pathway

    The climatological Bernoulli function(B)was calculated on the isopycnal surfaces to study the mean fow pattern.According to Cox and Bryan(1984),Bcan be written as

    whereσ=ρ-1000 is an isopycnal surface,andρis density with units of kg m-3;ρ0is mean density;gis the acceleration due to gravity,andηis dynamic height.Brepresents geostrophic streamlines that measure the geostrophic fow away from the Equator;thus,it can be used to illustrate fow paths on isopycnal surfaces.

    Figures 2a and 2c show the mean depth distributions of the 23.4 and 25.2 isopycnal surfaces.These two isopycnal surfaces had similar patterns in the tropical Pacifc.On the Equator,the thermocline was deep in the west and shallow in the east.The deepest regions on the isopycnal surfaces were located around 15°N and 5°S,respectively,in the western central Pacifc,with a relatively shallow band between 6°and 10°N.The isopycnal surfaces shoaled eastward along the Equator and reached minima in the far-eastern Pacifc.The 23.4 isopycnal surface intersected with the sea surface(i.e., outcropped)in the central and eastern basin on and south of the Equator(Fig.2a).

    Pathways along which off-equatorial waters move onto the Equator have been examined in many studies(e.g.Zhang et al.,1999;Zhang and Busalacchi,1999;Wang et al.,2007). However,mostpreviousanalysesfocusedontheeffectsinthe North Pacifc,with fewer studies in the South Pacifc.Chang et al.(2001)pointed out the potential importance of south tropical Pacifc variability in the decadal modulation of the ENSO.Luoetal.(2003)investigatedtheoriginofthedecadal ENSO-like variation.Luo et al.(2005)carried out 49-year simulations,and found that decadal variability of temperatureandsalinityalongtheEquatororiginatesfromsubsurface spiciness anomalies in the South Pacifc.

    FromFigs.2b andd,onecan see clear pathways originating from the southeastern tropical Pacifc:water carried by the South Equator Current(SEC)extending northwestward to south of the equatorial band and then transported by the strong Equator Undercurrent(EUC)onto the Equator.The South Pacifc water pathways intersect with the surface in the eastern equatorial and Southeast Pacifc domain(Fig.2b).

    Figure 3 gives subsurface temperature anomalies evaluated on the 25.2 isopycnal surface(see Fig.2c for its depth information)at some selected time periods in 2011;the vertical distribution of temperature anomalies in the upper ocean along the Equator is presented in Fig.4.During the 2010–11 La Ni?na event,there was a buildup of warm waters in the western Pacifc Ocean due to stronger than normal easterly winds in the central basin,characterizedby positive thermal anomalies in the upper ocean.For example,in January 2011,a large positive anomaly was observed in the western central tropical Pacifc and a negative anomaly was locatedin the central eastern tropical Pacifc regions.These two anomaly bands with opposite signs intersected along 160°W with a sharp temperature front(Figs.3a and 4a).Beginning in early 2011,accompanied by the seasonal strengthening of the EUC,warm waters in the western Pacifc expanded eastward across the Equator;cold anomalies in the central eastern equatorial Pacifc diminished and reversed to above normal(Figs.3b and 4b).This warming tendency peakedin April(Fig.3c),when positive temperature anomalies occupied almost the whole equatorial Pacifc except for near 150°W.Temperature anomalies reached more than 2°C in the far-eastern equatorial Pacifc.In the meantime,cold waters retreated to northeastern and southeastern regions off the Equator.As seen from the vertical section along the Equa-tor(Fig.4c),cold waters shrank back dramatically,and were confned to a narrow region of the central Pacifc.

    In May,positive anomalies along the Equator were seen to have two separate western and eastern bands(Fig.3d), with below-normal temperature anomalies amplifed in the regions of 140°–160°W(Fig.4d).Subsequently,the neg-ative anomalies dominated over the central Pacifc in June (Fig.3e),forming a horseshoe-like thermal anomaly pattern connecting large negative thermal anomalies on and off the Equator.Comparing Figs.3e and 3d,the EUC decelerated in the far-eastern equatorial Pacifc in June(Yu et al.,1997), but the off-equatorialcold anomalies strengthenedin the central South Pacifc.These changes were in favor of cold water advection to the equatorial regions through the well-defned SouthPacifcwaterpathway(Fig.2d),andthenextendedinto the equatorial region to combine with the negative anomalies located north of the Equator.In July,the EUC weakened further,and was even replaced by the SEC in the eastern Pacifc on the 25.2 isopycnal surface.At this time,cold anomalies were transported by SEC from the Southeastern Pacifc, and amplifed on and off the central equatorial Pacifc.This cooling tendency persisted in the following months.Positive anomalies along the Equator disappeared gradually,and cold anomalies dominated over the whole equatorial band(Figs. 3g and h).The vertical sections along the Equator displayed the same behavior(Figs.4e–h).

    3.3.Phase relationships between subsurface and surface temperature anomalies

    As analyzed above,the subsurface thermal anomalies at the Equator exhibited similar evolution to the SSTAs,but with a 2 month phase lead time:negative sea temperatureanomalies(Fig.3)re-strengthened at subsurface depths in June,while those in Fig.1 re-strengthened at the sea surface in August.This indicates the existence of close links between subsurface temperature anomalies and the SSTAs. During boreal spring,positive SSTAs in the far-eastern equatorial Pacifc(Figs.1b and c)cannot be explained by surface temperature advection,and they are likely to originate from the outcrop of subsurface warm anomalies(Figs.4b and c). This process can be described as follows.During the previous La Ni?na event,warm waters piled up in the western Pacifc Ocean due to stronger than normal easterly winds in the central basin.As the EUC became seasonally strengthened, the subsurface warm water was transported from the western Pacifc to the central and eastern Pacifc across the Equator (Figs.3b–c).Since the thermocline shoaled eastward(Figs. 2a and c),the warm water was exposed to the sea surface in the eastern Pacifc,acting to generate positive SSTAs(Figs. 1b and c;Figs.4b and c).

    As for the sea surface coolingin the fall of 2011,it can be traced to the subsurface anomalies.Beginning in mid-2011, subsurfacecoldanomalieslocatedinthesoutheasterntropical PacifcwerecontinuallyadvectednorthwestwardbytheSEC, to the south of the equatorial band,and then transported by the EUC to the Equator,where they were accumulated(Figs. 3e–h).But how did the subsurface cold water in the central Pacifc affect the sea surface?Since there was no systematic surface wind stress curl(fgures not shown),the related Ekman pumpingwas not a major factor infuencingthe outcropping of subsurface cold water,so the upwelling can only be driven by oceanic processes.Figure 5 presents the tempera-ture anomalies,and the horizontal and vertical velocity felds on the 23.4 and 25.2 isopycnals.The convergence pattern of the horizontal currents agreed reasonably well with the vertical velocity feld.For example,the convergence center was located on the Equator near 110°W,where the EUC met the SEC,giving rise to a strong upwelling(Fig.5b).

    InJune,small coldanomalieswere accompaniedbyweak upwelling in the central equatorial Pacifc(Fig.5a).With time,both cold anomalies and vertical velocity strengthened in the central equatorial Pacifc on the 25.2 isopycnal surface (Figs.5b and c).For example,in June the cold anomalies were confned between 130°W and 150°W along the Equator,but it dominated the eastern central Pacifc in July.These changes were induced by the weakened EUC and strengthened SEC,which favored the accumulation of cold water at the Equator.Figures 5e–h indicate that the vertical current in the upperlayerwas strongerthanthat at the lowerlayer(Figs. 5a–d),and the cold anomalies appeared later than that on the subsurface layer,which confrmed that the cold water originated from the subsurface.As discussed above,there was a clear pathway along which subsurface cold water was transported to the sea surface.Firstly,the subsurface cold water located in the southeastern tropical Pacifc was advected by the SEC south of the Equator.Subsequently,the EUC transported it to the equatorial Pacifc,where the EUC met the SEC and induced upwelling.Finally,under the effects of the EUC and SEC,the cold water spread upward and westward to the sea surface.

    In the fall of 2011(Figs.1g and h),negative SSTAs dominated in the central and eastern equatorial Pacifc basin.The negative SSTAs in the east affected winds to the west,which in turn affected the thermocline and SST in the east.This essentiallyinvolvedinteractionsamonganomaliesofSST,wind and the thermocline,forming a coupling loop and leading to the second-year cooling during 2010–12.

    3.4.Evolution during the 2012 decay phase

    Figure 6 gives the horizontal distributions of SSTAs and surface wind anomalies at some selected time intervals in 2012.From February onwards,the cold SSTA diminished and the SSTA became normal in the eastern tropical Pacifc domain(Fig.6a).This warming process persisted during the following months,and the SSTAs in the central and eastern tropical Pacifc rose above normal(Fig.6d),except in the far-eastern Pacifc.Figure 7 illustrates the subsurface temperature anomalies evaluated on the 25.2 isopycnal surface at some selected time periods in 2012;the vertical distribution of temperature anomalies in the upper ocean along the Equator is presented in Fig.8.Beginning in early 2012,accompanied by the seasonal strengthening of the EUC,warm waters in the western Pacifc expanded eastward across the Equator (Figs.7a and 8a).In May,with the seasonal maximum EUC, warm anomalies occupied the whole central eastern equatorial Pacifc(Figs.7band8b).Negativeanomaliesre-emerged twice(Figs.7c and e;Figs.8c and e)in the central equatorial Pacifc,since the EUC decelerated from June onwards. However,these coolingprocessesdidnotpersist anddevelop, perhaps because the cold anomalies in the South Pacifc weretoo weak to provideenoughcold water(Figs.7d–f;Figs.8d–f).Finally,the SSTAs did not return to the La Ni?na state,as happened during 2011.

    3.5.Evolution during the 2008 La Ni?na event

    Figure 9 gives the horizontal distributions of the SSTAs and surface wind anomalies at some selected time intervalsin 2008.In January,a La Ni?na state occupied the tropical Pacifc:negative SSTAs prevailed in the central and eastern tropical Pacifc with the maxima exceeding-2.5°C,located at 170°W along the Equator(Fig.9a).Thereafter,the cold SSTA diminished and the SSTA increased above normal in the far-eastern tropical Pacifc domain(Fig.9b).This warm-ingprocesspersistedduringthefollowingmonthsandpeaked in August(Fig.9d).In September,the negative SSTA restrengthened in the central equatorial Pacifc(Fig.9e),and this cooling tendency persisted during the following months (Fig.9f).

    Figure 10 illustrates the subsurface temperature anomalies evaluated on the 25.4 isopycnal surface at some selected time periods in 2008;the vertical distribution of temperature anomalies in the upper ocean along the Equator is presented in Fig.11.Beginning in early 2008,accompanied by the seasonal strengthening of the EUC,warm waters in the western Pacifc expanded eastward across the Equator(Fig.10b). This warming tendency peaked in mid-2008(Figs.10d and 11d),when positive temperature anomalies occupied almost the whole equatorial Pacifc.There was a 1–2 month lead time into the SSTAs.Compared with the warming process in 2011(Figs.3c and 4c),it lagged by about 2 months,possibly attributable to stronger negative anomalies in the eastern tropical Pacifc.Beginning in August,the subsurface cold anomalies located in the southeastern tropical Pacifc were continually advected northwestward by the SEC to the south of the equatorial band,and then transported by the EUC to the Equator,where they accumulated(Figs.10e–h).The cold anomalies were then transported by a vertical current to the sea surface and induced negative SSTAs.From September,cold water re-strengthened in the central-equatorial Pacifc(Fig.9e),and this cooling tendency persisted and extendedeastwardduringthefollowingmonths(Figs.9h);consequently,the double-trough La Ni?na developed.

    4. Summary and discussion

    The reanalysis products from GODAS were used to produce isopycnalsurfaces to better illustrate and understandthe processes leading to the second-year cooling of the 2010–12 La Ni?na event.We found anomaly patterns originating at depth from the southeastern tropical Pacifc that could be responsible for generating and sustaining negative SSTAs in the central equatorial Pacifc.

    A sequence of events leading to the La Ni?na conditions in the fall of 2011 was described.During the 2010 La Ni?na event,warm waters piled up at subsurface depths in the western tropical Pacifc.Beginning in early 2011,and accompanied by a strongEUC,subsurfacewarm waters in the western Pacifc transmitted eastward along the Equator.Positive temperature anomalies occupied the equatorial Pacifc in April, and cold waters retreated to northeastern and southeastern off-equatorial Pacifc regions.Since the thermocline shoaled along the Equator and was close to the surface in the eastern Pacifc,subsurface warm waters were directly exposed to the sea surface in the eastern Pacifc,and induced a warm SSTA. Normal SST conditions appeared in the central and eastern equatorial Pacifc in mid-2011.

    In August a negative SSTA reappeared in the central Pacifc.We hypothesized that this anomaly came from the subsurface cold waters off the Equator through the Southern Pacifc pathway.Based on the GODAS analyses,the processes were described as follows:Cold anomalies located in southeastern tropical Pacifc region were advected continually by the SEC northwestward to the south of the equatorial band, and then by the EUC northeastward to the Equator.With time,the EUC weakened and the SEC strengthened in the eastern equatorial Pacifc,inducing cold waters that accumulated in the central tropical Pacifc and then tended to spread upwardwith theconvergenceofhorizontalcurrentsandeventually outcropped to the surface.These subsurface-induced SSTAs actedtoinitiatelocalcoupledair–seainteractionsgenerating atmospheric–oceanic anomalies that developed and evolved with the second-year cooling in the fall of 2011.

    Further study of the 2012 processes indicated that the cooling tendency did not develop into another La Ni?na event, since the cold anomalies in the South Pacifc were not strong enough.An analysis around the 2007–09 La Ni?na event revealed similar evolution processes with around a 2—month phase lag,compared to the 2010–12 La Ni?na event.

    These analyses provide an observational basis for an understanding of the processes involved.The results can be used to explain the ways in which coupled models predict the second-year cooling case,and offer guidance for historical analysesforothermulti-yearcoolingevents.Furthersupporting modeling studies are needed to quantify the role played by off-equatorial subsurface anomalies in triggering La Ni?na events in the tropical Pacifc.Here,we discussed the effect of interannual variability on the multi-year cooling.The effect of modulation of decadal to interdecadal timescale variability on the multi-year cooling,such as tropical Pacifc decadal variability(Choi et al.,2013),requires further study.

    Acknowledgements.This work has benefted a great deal from Prof.A.J.BUSALACCHI’s support.This research was jointly supported by National Natural Science Foundation of China (Grant No.40906014),the Ocean Public Welfare Scientifc Research Project(Grant No.201205018-2),the National Key Basic Research Program of China(Grant No.2010CB950302),and the China Scholarship Council(CSC).ZHANG is supported partly by the National Science Foundation(NSF)(Grant No.ATM-0727668),NASA(Grant No.NNX08AI74G),and the National Oceanic and Atmospheric Administration(NOAA)(Grant No. NA08OAR4310885).

    REFERENCES

    Battisti,D.S.,and A.C.Hirst,1989:Interannual variability in the tropical atmosphere-ocean system:Infuence of the basis state,ocean geometry and nonlinearity.J.Atmos.Sci.,46, 1687–1712.

    Behringer,D.W.,and Y.Xue,2004:Evaluation of the global ocean data assimilation system at NCEP:The Pacifc Ocean. Preprints,Eighth Symp.on Integrated Observing and Assimilation Systems for Atmosphere,Oceans,and Land Surface, Seattle,WA,Amer.Meteor.Soc.,2.3.[Available online athttps://ams.confex.com/ams/84Annual/techprogram/paper 70720.htm.]

    Cane,M.A.,and S.E.Zebiak,1985:A theory for El Ni?no and the Southern Oscillation.Science,228,1085–1087.

    Chang,P.,B.S.Giese,L.Ji,H.F.Seidel,and F.Wang,2001: Decadal change in the South Tropical Pacifc in a global assimilation analysis.Geophys.Res.Lett.,28,3461–3464.

    Choi,J.,S.I.An.,S.W.Yeh,and J.Y.Yu,2013:ENSO-like and ENSO-induced tropical Pacifc decadal variability in CGCMs.J.Climate,26,1485–1501.

    Cox,M.D.,and K.Bryan,1984:A numerical model of the ventilated thermocline,J.Phys.Oceanogr.,14,674–687.

    Hu,Z.-Z.,A.Kumar,Y.Xue,and B.Jha,2014:Why were some La Ni?na followed by another La Ni?na?Climate Dyn.,42, 1029–1042,doi:10.1007/s00382-013-1917-3.

    Jin,F.-F.,1997:An equatorial ocean recharge paradigm for ENSO.Part I:Conceptual model.J.Atmos.Sci.,54,811–829.

    Kalnay,E.,and Coauthors,1996:The NCEP/NCAR 40-year reanalysis project.Bull.Amer.Meteor.Soc.,77(3),437–471.

    Luo,J.-J.,S.Masson,S.K.Behera,P.Delecluse,S.Gualdi, A.Navarra,and T.Yamagata,2003:South Pacifc Origin of the decadal ENSO-like variation as simulated by a coupled GCM.Geophys.Res.Lett.,30(24),2250,doi:10.1029/ 2003GL018649.

    Luo,Y.-Y.,L.M.Rothstein,R.-H.Zhang,and A.J.Busalacchi,2005:On the connection between South Pacifc subtropical spiciness anomalies and decadal equatorial variability in an ocean general circulation model.J.Geophys.Res.,110, C10002,doi:10.1029/2004JC002655.

    McCreary,J.P.Jr.,and D.L.T.Anderson,1984:A simple model of El Ni?no and the Southern Oscillation.Mon.Wea.Rev.,112, 934–946.

    Philander,S.G.H,1992:Ocean-atmosphere interactions in the tropics:A review of recent theories and models.J.Appl.Meteoro.,31,938–945.

    Wang,X.,C.Y.Li,and W.Zhou,2007:Interdecadal mode and its propagating characteristics of SSTA in the South Pacifc.Meteor.Atmos.Phys.,98,115–124,doi:10.1007/s00703-006-0235-2.

    Wang,X.,C.Z.Wang,W.Zhou,D.X.Wang,and J.Song,2011: Teleconnected infuence of NorthAtlanticsea surface temperature on the El Ni?no onset.Climate Dyn.,37,663–676,doi: 10.1007/s00382-010-0833-z.

    Wang,X.,C.Z.Wang,W.Zhou,L.Liu,and D.X.Wang,2013: Remote infuence of North Atlantic SST on the equatorial westerly wind anomalies in the western Pacifc for initiating an El Ni?no event:An Atmospheric General Circulation Model Study.Atmos.Sci.Lett.,14,107–111.

    Yu,Z.-J.,P.S.Schopf,and J.P.McCreary Jr.,1997:On the annual cycle of upper-ocean circulation in the eastern equatorial Pacifc.J.Phys.Oceanogr.,27 309–324.

    Zebiak,S.E.,and M.A.Cane,1987:A model El Ni?no-Southern Oscillation.Mon.Wea.Rev.,115,2262–2278.

    Zhang,R.-H.,and A.J.Busalacchi,1999:A possible link between off-equatorial warm anomalies propagating along the NECC path and the onset of the 1997–98 El Ni?no.Geophys.Res. Lett.,26(18),2873–2876.

    Zhang,R.-H.,and L.M.Rothstein,2000:Role of off-equatorial subsurface anomalies in initiating the 1991-1992 El Ni?no as revealed by the National Centers for Environmental Prediction ocean reanalysis data.J.Geophys.Res.,105(C3),6327–6339.

    Zhang,R.-H.,L.M.Rothstein,A.J.Busalacchi,and X.Z.Liang, 1999:The onset of the 1991-92 El Ni?no event in the tropical Pacifc Ocean:The NECC subsurface pathway.Geophys. Res.Lett.,26(7),847–850.

    Zhang,R.-H.,S.E.Zebiak,R.Kleeman,and N.Keenlyside, 2003:A new intermediate coupled model for El Ni?no simulation and prediction.Geophys.Res.Lett.,30(19),doi: 10.1029/2003GL018010.

    Zhang,R.-H.,S.E.Zebiak,R.Kleeman,and N.Keenlyside,2005: Retrospective El Nino forecast using an improved intermediate coupled model.Mon.Wea.Rev.,133,2777–2802.

    Zhang,R.-H.,F.Zheng,J.Zhu,and Z.G.Wang,2013:A successful real–time forecast of the 2010–11 La Ni?na event.Sci. Rep.,3,1108,doi:10.1038/srep01108.

    :Feng,L.C.,R.-H.Zhang,Z.G.Wang,and X.R.Chen,2015:Processes leading to the second-year cooling of the 2010–12 La Ni?na event,diagnosed using GODAS.Adv.Atmos.Sci.,32(3),424–438,

    10.1007/s00376-014-4012-8.

    (Received 7 February 2014;revised 12 July 2014;accepted 22 July 2014)

    ?Corresponding author:FENG Licheng

    Email:fenglich@nmefc.gov.cn

    制服人妻中文乱码| 少妇 在线观看| 我的亚洲天堂| 日韩高清综合在线| 天天添夜夜摸| 9热在线视频观看99| 日本撒尿小便嘘嘘汇集6| 一区福利在线观看| 午夜两性在线视频| 国产亚洲欧美98| 欧美成人性av电影在线观看| 美女高潮喷水抽搐中文字幕| 一区福利在线观看| 此物有八面人人有两片| 在线国产一区二区在线| 精品熟女少妇八av免费久了| 91av网站免费观看| АⅤ资源中文在线天堂| 亚洲精品在线观看二区| 99国产精品一区二区三区| 美女扒开内裤让男人捅视频| 久久午夜亚洲精品久久| 黑丝袜美女国产一区| 国产精品香港三级国产av潘金莲| 精品国产亚洲在线| 精品高清国产在线一区| 很黄的视频免费| 精品熟女少妇八av免费久了| 国产精品一区二区三区四区久久 | 18禁美女被吸乳视频| 亚洲片人在线观看| 亚洲熟女毛片儿| 久久青草综合色| 免费不卡黄色视频| 欧美在线一区亚洲| 国产精品二区激情视频| 午夜影院日韩av| 老司机深夜福利视频在线观看| 久久久久国产一级毛片高清牌| 国产欧美日韩综合在线一区二区| 久久精品91无色码中文字幕| 国产蜜桃级精品一区二区三区| 亚洲色图av天堂| 欧美 亚洲 国产 日韩一| 中文字幕av电影在线播放| 日韩欧美国产在线观看| 国内精品久久久久久久电影| 久久午夜亚洲精品久久| 麻豆国产av国片精品| 成年人黄色毛片网站| 香蕉国产在线看| 日本vs欧美在线观看视频| www.www免费av| 国产免费av片在线观看野外av| 精品福利观看| 成人精品一区二区免费| 精品卡一卡二卡四卡免费| 亚洲欧美日韩高清在线视频| 国产亚洲欧美精品永久| 午夜亚洲福利在线播放| av视频免费观看在线观看| 麻豆成人av在线观看| 欧美最黄视频在线播放免费| 成人手机av| 禁无遮挡网站| 一级,二级,三级黄色视频| 国产亚洲欧美在线一区二区| or卡值多少钱| www.999成人在线观看| 久热这里只有精品99| 在线观看免费视频网站a站| 国产又爽黄色视频| 日韩精品免费视频一区二区三区| 女人高潮潮喷娇喘18禁视频| 精品不卡国产一区二区三区| 亚洲一区中文字幕在线| 成人永久免费在线观看视频| 亚洲va日本ⅴa欧美va伊人久久| 午夜福利影视在线免费观看| 成人三级做爰电影| 欧美人与性动交α欧美精品济南到| 亚洲欧美一区二区三区黑人| 国产一区二区在线av高清观看| 日韩欧美一区视频在线观看| 91成人精品电影| 精品电影一区二区在线| 国产精品亚洲一级av第二区| 国产精品一区二区精品视频观看| 美国免费a级毛片| 亚洲精品国产色婷婷电影| 黄色视频,在线免费观看| 国产精品一区二区三区四区久久 | 亚洲精品粉嫩美女一区| 日韩精品中文字幕看吧| 看免费av毛片| 欧美日韩亚洲国产一区二区在线观看| 香蕉国产在线看| 欧美在线一区亚洲| 露出奶头的视频| 午夜福利,免费看| 国产精品久久久av美女十八| 动漫黄色视频在线观看| 国产免费男女视频| 一级毛片精品| 色尼玛亚洲综合影院| 桃色一区二区三区在线观看| 香蕉国产在线看| 久久久久久久久久久久大奶| 国产精品日韩av在线免费观看 | bbb黄色大片| 午夜免费激情av| 最近最新免费中文字幕在线| 久久久久久国产a免费观看| 97人妻精品一区二区三区麻豆 | 国产精品电影一区二区三区| 热re99久久国产66热| 久久久久国产一级毛片高清牌| 午夜精品久久久久久毛片777| 亚洲五月天丁香| 男人的好看免费观看在线视频 | 黄色 视频免费看| 亚洲av五月六月丁香网| 老熟妇乱子伦视频在线观看| 亚洲午夜精品一区,二区,三区| 精品不卡国产一区二区三区| 国产一级毛片七仙女欲春2 | 日本撒尿小便嘘嘘汇集6| 啪啪无遮挡十八禁网站| 免费人成视频x8x8入口观看| 最近最新免费中文字幕在线| 91国产中文字幕| 久久久久九九精品影院| 国产伦人伦偷精品视频| 俄罗斯特黄特色一大片| 亚洲av日韩精品久久久久久密| 99国产精品免费福利视频| 男女床上黄色一级片免费看| 淫秽高清视频在线观看| 搡老妇女老女人老熟妇| 1024视频免费在线观看| 一级,二级,三级黄色视频| 老鸭窝网址在线观看| 青草久久国产| 麻豆av在线久日| 搡老妇女老女人老熟妇| 国产精品久久久久久人妻精品电影| 日韩高清综合在线| 日韩有码中文字幕| 麻豆国产av国片精品| 啪啪无遮挡十八禁网站| 精品午夜福利视频在线观看一区| 久久久久国内视频| 欧美成狂野欧美在线观看| 国产国语露脸激情在线看| 久久性视频一级片| 99riav亚洲国产免费| 夜夜爽天天搞| 国产精品 国内视频| 国产高清有码在线观看视频 | 电影成人av| 欧美在线一区亚洲| 桃红色精品国产亚洲av| 欧美成狂野欧美在线观看| 国产精华一区二区三区| 免费搜索国产男女视频| 日韩欧美免费精品| 亚洲av电影在线进入| videosex国产| 国产午夜精品久久久久久| 岛国视频午夜一区免费看| 精品人妻在线不人妻| 亚洲国产精品999在线| 国产三级在线视频| 婷婷精品国产亚洲av在线| 91字幕亚洲| 精品电影一区二区在线| 日本免费一区二区三区高清不卡 | 嫩草影院精品99| 午夜福利免费观看在线| 欧美成人性av电影在线观看| 一级作爱视频免费观看| 亚洲熟妇中文字幕五十中出| 亚洲自拍偷在线| 亚洲专区国产一区二区| 欧美激情久久久久久爽电影 | 国产黄a三级三级三级人| 亚洲熟妇熟女久久| 亚洲精品粉嫩美女一区| 亚洲av成人av| 国产精品九九99| 久久香蕉国产精品| 51午夜福利影视在线观看| 男人的好看免费观看在线视频 | 亚洲电影在线观看av| 变态另类成人亚洲欧美熟女 | 俄罗斯特黄特色一大片| 满18在线观看网站| 亚洲一卡2卡3卡4卡5卡精品中文| 久久精品国产99精品国产亚洲性色 | 欧美亚洲日本最大视频资源| 精品福利观看| 麻豆久久精品国产亚洲av| 亚洲国产毛片av蜜桃av| 成人三级黄色视频| 日韩欧美一区视频在线观看| 一区二区日韩欧美中文字幕| 国产av一区二区精品久久| 国产精品久久久人人做人人爽| 黄色视频,在线免费观看| 又大又爽又粗| 十分钟在线观看高清视频www| 级片在线观看| 脱女人内裤的视频| 亚洲中文日韩欧美视频| 岛国在线观看网站| 精品高清国产在线一区| 亚洲精品国产区一区二| 12—13女人毛片做爰片一| 午夜a级毛片| 女性生殖器流出的白浆| 一级片免费观看大全| 精品熟女少妇八av免费久了| 久久久久国产一级毛片高清牌| 欧美大码av| 成人永久免费在线观看视频| 少妇 在线观看| 国产av在哪里看| 亚洲熟妇中文字幕五十中出| 母亲3免费完整高清在线观看| 波多野结衣一区麻豆| 欧美丝袜亚洲另类 | 不卡av一区二区三区| 国产精品亚洲一级av第二区| 亚洲精品一卡2卡三卡4卡5卡| 国产亚洲精品久久久久久毛片| 午夜精品国产一区二区电影| 精品久久久久久,| 午夜免费观看网址| 久久天堂一区二区三区四区| av有码第一页| 狠狠狠狠99中文字幕| 亚洲人成电影观看| 成人av一区二区三区在线看| 村上凉子中文字幕在线| 午夜免费观看网址| 国产私拍福利视频在线观看| 美女高潮喷水抽搐中文字幕| 女性生殖器流出的白浆| 搡老妇女老女人老熟妇| 色精品久久人妻99蜜桃| 一级作爱视频免费观看| 大码成人一级视频| 日本在线视频免费播放| 久久久久精品国产欧美久久久| av电影中文网址| 丝袜在线中文字幕| 男女做爰动态图高潮gif福利片 | 岛国视频午夜一区免费看| or卡值多少钱| 亚洲国产精品成人综合色| 精品无人区乱码1区二区| 亚洲色图综合在线观看| 成人特级黄色片久久久久久久| 91成人精品电影| 日韩欧美三级三区| 久久精品国产亚洲av高清一级| 99久久国产精品久久久| 久久午夜综合久久蜜桃| 精品福利观看| 亚洲国产精品999在线| 欧美激情 高清一区二区三区| 午夜福利免费观看在线| 国产成人精品久久二区二区91| 精品国产一区二区久久| 两个人看的免费小视频| 日日爽夜夜爽网站| 女人爽到高潮嗷嗷叫在线视频| 欧美精品亚洲一区二区| 日韩成人在线观看一区二区三区| 男女做爰动态图高潮gif福利片 | 悠悠久久av| 亚洲全国av大片| 久久精品国产亚洲av香蕉五月| 欧美激情极品国产一区二区三区| www.www免费av| 婷婷丁香在线五月| 国产伦一二天堂av在线观看| 久久人人97超碰香蕉20202| 免费高清视频大片| 99在线视频只有这里精品首页| 黄片播放在线免费| 女性被躁到高潮视频| 最好的美女福利视频网| 99国产精品免费福利视频| 中国美女看黄片| 首页视频小说图片口味搜索| 夜夜躁狠狠躁天天躁| 欧美精品亚洲一区二区| 巨乳人妻的诱惑在线观看| 欧美日韩乱码在线| 亚洲色图 男人天堂 中文字幕| 午夜免费鲁丝| 侵犯人妻中文字幕一二三四区| 色在线成人网| 国产黄a三级三级三级人| 高清黄色对白视频在线免费看| 一区在线观看完整版| 国产aⅴ精品一区二区三区波| 激情在线观看视频在线高清| 999久久久国产精品视频| 午夜福利一区二区在线看| 19禁男女啪啪无遮挡网站| 国产精品 国内视频| 女人精品久久久久毛片| 亚洲精品av麻豆狂野| 国产精品免费视频内射| 久久久国产欧美日韩av| 欧美日本中文国产一区发布| 国内毛片毛片毛片毛片毛片| 国产精品美女特级片免费视频播放器 | 久久久国产欧美日韩av| 88av欧美| 男女下面插进去视频免费观看| 麻豆国产av国片精品| 亚洲精品国产一区二区精华液| 久久青草综合色| 国产精品98久久久久久宅男小说| 午夜福利高清视频| 精品一品国产午夜福利视频| 国产精品爽爽va在线观看网站 | 日韩精品青青久久久久久| 在线永久观看黄色视频| 久久中文字幕人妻熟女| 波多野结衣一区麻豆| √禁漫天堂资源中文www| 国产亚洲精品av在线| 日本黄色视频三级网站网址| 日本欧美视频一区| 深夜精品福利| 午夜亚洲福利在线播放| 欧美丝袜亚洲另类 | 成人av一区二区三区在线看| 欧美老熟妇乱子伦牲交| av视频在线观看入口| 老司机午夜福利在线观看视频| 亚洲自偷自拍图片 自拍| 欧美在线黄色| 国产日韩一区二区三区精品不卡| 手机成人av网站| 黄色 视频免费看| 欧美黑人欧美精品刺激| 欧美成人一区二区免费高清观看 | 男女床上黄色一级片免费看| 后天国语完整版免费观看| 我的亚洲天堂| 日韩精品青青久久久久久| 此物有八面人人有两片| 亚洲人成77777在线视频| 亚洲五月婷婷丁香| 黄片播放在线免费| 999精品在线视频| 99国产精品免费福利视频| 国产亚洲av嫩草精品影院| 50天的宝宝边吃奶边哭怎么回事| 色哟哟哟哟哟哟| 岛国视频午夜一区免费看| 99精品久久久久人妻精品| 韩国av一区二区三区四区| 999久久久国产精品视频| 亚洲久久久国产精品| 黄片大片在线免费观看| 欧美国产日韩亚洲一区| 欧美日韩瑟瑟在线播放| 亚洲自拍偷在线| 免费观看人在逋| 国产成人一区二区三区免费视频网站| 国产激情欧美一区二区| 午夜福利高清视频| 国产一区二区激情短视频| 午夜老司机福利片| 看片在线看免费视频| 免费看a级黄色片| 90打野战视频偷拍视频| 国产成人av教育| 脱女人内裤的视频| 亚洲精品国产区一区二| 国产精品久久久人人做人人爽| 日日干狠狠操夜夜爽| 国产成人欧美在线观看| 精品国产国语对白av| 日韩欧美国产一区二区入口| 在线天堂中文资源库| 18禁裸乳无遮挡免费网站照片 | 亚洲伊人色综图| videosex国产| 精品一区二区三区四区五区乱码| 国产99久久九九免费精品| 999精品在线视频| 老汉色av国产亚洲站长工具| 嫁个100分男人电影在线观看| 欧美大码av| 日本黄色视频三级网站网址| 在线免费观看的www视频| 一区二区三区精品91| 中文字幕最新亚洲高清| 精品少妇一区二区三区视频日本电影| 精品人妻在线不人妻| 亚洲精华国产精华精| 色尼玛亚洲综合影院| 亚洲五月色婷婷综合| 久久精品国产亚洲av香蕉五月| 午夜福利在线观看吧| 久久午夜综合久久蜜桃| 老熟妇仑乱视频hdxx| 久久久久久大精品| 成人三级做爰电影| 夜夜看夜夜爽夜夜摸| 国产一区二区三区在线臀色熟女| 欧美中文日本在线观看视频| 亚洲色图av天堂| 男人舔女人下体高潮全视频| 国产精品久久久久久人妻精品电影| 精品久久久久久成人av| 在线观看66精品国产| 亚洲熟妇中文字幕五十中出| 久久精品国产99精品国产亚洲性色 | 国产精品美女特级片免费视频播放器 | 久久精品91无色码中文字幕| 高潮久久久久久久久久久不卡| 大型黄色视频在线免费观看| 日日干狠狠操夜夜爽| xxx96com| 97碰自拍视频| 亚洲欧美一区二区三区黑人| 色尼玛亚洲综合影院| 老熟妇乱子伦视频在线观看| 在线永久观看黄色视频| 亚洲人成电影观看| 欧美黄色片欧美黄色片| 桃色一区二区三区在线观看| 免费无遮挡裸体视频| 老汉色av国产亚洲站长工具| 久久久久久亚洲精品国产蜜桃av| 欧美精品亚洲一区二区| 精品乱码久久久久久99久播| 在线观看免费日韩欧美大片| 国产黄a三级三级三级人| 天堂√8在线中文| 久久久久久亚洲精品国产蜜桃av| 欧美激情久久久久久爽电影 | 亚洲人成伊人成综合网2020| 曰老女人黄片| 亚洲熟妇熟女久久| 精品午夜福利视频在线观看一区| 夜夜看夜夜爽夜夜摸| 免费在线观看完整版高清| 免费在线观看黄色视频的| 中文字幕精品免费在线观看视频| 亚洲国产看品久久| 中文字幕人妻熟女乱码| 99国产精品一区二区三区| 97人妻精品一区二区三区麻豆 | 在线国产一区二区在线| 欧美激情极品国产一区二区三区| 中文字幕久久专区| 日韩欧美一区视频在线观看| 久久精品国产99精品国产亚洲性色 | 看免费av毛片| 日韩大尺度精品在线看网址 | 日韩高清综合在线| 亚洲国产精品合色在线| 国产av精品麻豆| 一区二区三区国产精品乱码| 亚洲精品美女久久久久99蜜臀| 国产人伦9x9x在线观看| 久久亚洲精品不卡| 成熟少妇高潮喷水视频| 无遮挡黄片免费观看| 很黄的视频免费| 18禁观看日本| 精品欧美国产一区二区三| 国产精品亚洲一级av第二区| 国产成人精品久久二区二区91| 香蕉久久夜色| 黑丝袜美女国产一区| 一级毛片高清免费大全| 国产午夜精品久久久久久| 怎么达到女性高潮| 美女高潮喷水抽搐中文字幕| 亚洲天堂国产精品一区在线| 国产xxxxx性猛交| 老司机午夜福利在线观看视频| 涩涩av久久男人的天堂| x7x7x7水蜜桃| 嫩草影视91久久| 欧美人与性动交α欧美精品济南到| 午夜两性在线视频| 最近最新免费中文字幕在线| 欧美精品啪啪一区二区三区| 搡老妇女老女人老熟妇| 午夜福利影视在线免费观看| 大陆偷拍与自拍| 成人精品一区二区免费| 国产亚洲欧美在线一区二区| 国产精品电影一区二区三区| 长腿黑丝高跟| 久久青草综合色| 免费高清视频大片| 高潮久久久久久久久久久不卡| 午夜福利,免费看| 久久国产精品人妻蜜桃| 国产精品免费一区二区三区在线| 丰满人妻熟妇乱又伦精品不卡| 一区二区日韩欧美中文字幕| 亚洲国产中文字幕在线视频| avwww免费| 午夜成年电影在线免费观看| 在线观看免费视频网站a站| 精品久久久久久成人av| 在线观看免费视频网站a站| 亚洲精品国产一区二区精华液| 国产不卡一卡二| 国产精品久久电影中文字幕| 午夜福利欧美成人| 精品久久久久久成人av| 日本 av在线| 欧美中文综合在线视频| 99re在线观看精品视频| 美女扒开内裤让男人捅视频| 国产不卡一卡二| 日本三级黄在线观看| 久久亚洲精品不卡| 午夜久久久在线观看| 国产免费av片在线观看野外av| 午夜久久久在线观看| 国产精品久久久人人做人人爽| 亚洲欧洲精品一区二区精品久久久| 久久天堂一区二区三区四区| 亚洲精品国产色婷婷电影| 午夜免费观看网址| 国产在线精品亚洲第一网站| 中文字幕人妻丝袜一区二区| 精品国内亚洲2022精品成人| 国产一区二区三区综合在线观看| 日韩大尺度精品在线看网址 | 日日摸夜夜添夜夜添小说| 国产一区二区在线av高清观看| 高潮久久久久久久久久久不卡| 亚洲熟妇熟女久久| 中文字幕高清在线视频| 免费高清在线观看日韩| 国产精品亚洲美女久久久| 51午夜福利影视在线观看| 美女国产高潮福利片在线看| 国产精品 国内视频| 中文亚洲av片在线观看爽| 久久久久九九精品影院| 国产成人欧美| 午夜老司机福利片| 精品久久久久久,| 成人亚洲精品av一区二区| 一区二区日韩欧美中文字幕| 亚洲天堂国产精品一区在线| 99精品欧美一区二区三区四区| 99精品在免费线老司机午夜| videosex国产| 无限看片的www在线观看| 久久久久久久精品吃奶| 久热爱精品视频在线9| 91国产中文字幕| 日本免费一区二区三区高清不卡 | 午夜免费成人在线视频| 狂野欧美激情性xxxx| 日本 av在线| 亚洲情色 制服丝袜| 免费高清视频大片| 国产亚洲精品综合一区在线观看 | 一区二区三区激情视频| 欧美乱妇无乱码| 大型黄色视频在线免费观看| 亚洲免费av在线视频| 一a级毛片在线观看| 伦理电影免费视频| 国产一区二区三区综合在线观看| 熟妇人妻久久中文字幕3abv| 日日干狠狠操夜夜爽| 麻豆成人av在线观看| 这个男人来自地球电影免费观看| 欧美亚洲日本最大视频资源| 国产精品秋霞免费鲁丝片| av中文乱码字幕在线| 婷婷丁香在线五月| 亚洲视频免费观看视频| 看免费av毛片| 国产av精品麻豆| 老司机在亚洲福利影院| 91国产中文字幕| 欧美+亚洲+日韩+国产| 大码成人一级视频| 一进一出好大好爽视频| 精品国内亚洲2022精品成人| 国产精品精品国产色婷婷| 日韩精品中文字幕看吧| 午夜免费激情av| 嫩草影视91久久| 人妻久久中文字幕网| 在线免费观看的www视频| 99精品在免费线老司机午夜| 国产精品av久久久久免费| 激情在线观看视频在线高清| 丝袜人妻中文字幕| 纯流量卡能插随身wifi吗| www国产在线视频色| 亚洲视频免费观看视频| 国产精品野战在线观看|