• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Processes Leading to Second-Year Cooling of the 2010–12 La Ni?na Event,Diagnosed Using GODAS

    2015-05-16 11:05:40FENGLichengZHANGRongHuaWANGZhangguiandCHENXingrongNationalMarineEnvironmentalForecastingCenterStateOceanicAdministrationBeijing0008
    Advances in Atmospheric Sciences 2015年3期

    FENG Licheng,ZHANG Rong-Hua,WANG Zhanggui,and CHEN XingrongNational Marine Environmental Forecasting Center,State Oceanic Administration,Beijing 0008

    2Key Laboratory of Ocean Circulation and Waves,Institute of Oceanology,Chinese Academy of Sciences,Qingdao 266071

    3Earth System Science Interdisciplinary Center(ESSIC),University of Maryland,College Park,Maryland,USA,20740

    1.Introduction

    The El Ni?no–Southern Oscillation(ENSO)is the leading mode of interannual variability in the tropical Pacif i c climate system,signif i cantly impacting global weather and climate.In the past several decades,extensive studies have led to substantial progress in understanding,modeling and predicting El Ni?no events(e.g.,McCreary and Anderson,1984;Cane and Zebiak,1985;Zebiak and Cane,1987;Philander,1992;Wang et al.,2011,2013).The delayed oscillator mechanism has been proposed to explain ENSO dynamics and its interannual oscillation within the tropical Pacif i c climate system(Battisti and Hirst,1989).This theory emphasizes equatorial wave processes(Rossby wave and its ref l ection along the low-latitude western boundaryinto a Kelvin wave).Another is the recharge/discharge mechanism(Jin,1997),which focuses on water exchange in the ocean on and off the Equator.As implied by these theories,the ENSO can be a cyclic oscillation between El Ni?no and La Ni?na conditions within the tropical Pacif i c climate system.

    However,as observed,the ENSO also exhibits signif i cant variability from one event instance to another.For example,multi-year cooling events can be seen during ENSO cycles from historical SST data(e.g.,Hu et al.,2014).During 2010–12,the tropical Pacif i c had a persistent La Ni?na condition,with a second-year sea surface cooling that occurred in the fall of 2011.Further,many coupled models have failed to predict the Ni?no 3.4 sea surface temperature(SST)cooling when initialized from early-to mid-2011.Yet,one intermediate coupled model—an integrated climate model(ICM)operated at the Earth System Science Interdisciplinary Center(ESSIC),University of Maryland(UMD),the so-called ESSIC ICM(Zhang et al.,2003,2005)—gave a successful forecast of the 2011 negative SSTAs with a lead time of one year or so(Zhang et al.,2013,2014a).This presents a challenge to the ENSO prediction community and indicates an urgent need to understand processes leading to the secondyear cooling.

    Previously,ICM-based experiments were carried out to examine the roles played by the temperature of subsurface water entrained into the mixed layer,and wind forcing(Zhang et al.,2013,2014①Zhang,R.-H,L.C.Feng,and Z.G.Wang,2014:Role of atmospheric wind forcing in the second-year cooling of the 2010–12 La Ni?na event.Atmos.Sci.Lett.,submitted.).The reappearance of a negative SSTA in the central equatorial Pacif i c in early summer of 2011 was closely related to off-equatorial thermal anomalies in the South Pacif i c.However,the three-dimensional structure and evolution of these have not been illustrated,as theoceanicprocessesresponsibleforthesecond-yearcooling duringthe2010–12LaNi?na eventare still poorlyunderstood.The causes of the occurrence of a multi-year La Ni?na in general,and the 2011–12 La Ni?na event in particular,are not fully understood(Hu et al.,2014).

    In this paper,we examine the oceanic processes responsible for the second-year cooling of the 2010–12 La Ni?na event using reanalysis data,with a focus on the roles played by off-equatorial subsurface anomalies in the South Pacif i c.To better represent pathways,isopycnal analyses were performed using three-dimensional temperature and salinity f i elds(Zhang and Rothstein,2000).Since subsurface temperature anomalies tend to propagate along density surfaces,an isopycnal analysis can better characterize the threedimensional structure and time evolution in a natural and physical way,therefore enabling us to trace pathways consistently throughout the basin.Our major f i nding was that a distinct pathway of off-equatorial temperature anomalies occurred along the South Equatorial Current(SEC),clearly associated with the onset of second-year cooling during the 2010–12 La Ni?na event.Through examining the subsurface temperature evolution on isopycnals,connections were more clearly illustrated between thermal anomalies at the subsurface and surface,and off and on the Equator,leading to an improved understanding of ENSO variability.Additionally,re-evaluating the historical ENSO evolution showed that another multi-year cooling case occurred in the tropical Pacif i c in 2007–09.The similarities and differences of these two events were analyzed to describe the nature of these strikingly different ENSO evolutions associated with various forcings and feedbacks within the Pacif i c climate system.

    The remainder of the paper is organized as follows.We introduce the data and methodologyused in this work in section 2.The results are presented in section 3,followed by a summary and discussion in section 4.

    2.Data and methodology

    Monthly-mean data for currents,sea surface height,temperature and salinity came from the Global Ocean Data Assimilation System(GODAS)(Behringer and Xue,2004),operational at the National Centers for Environmental Prediction(NCEP).GODAS has a horizontal resolution of 1°×1/3°in the zonal and meridional directions;it has 40 levels in the vertical,with a 10 m resolutionin the upper 200 m.We used the GODAS data coveringthe periodfromJanuary1980 throughDecember2012.Additionally,surface winds at 10 m height were from the NCEP–NCAR(National Center for Atmospheric Research)Reanalysis(Kalnay et al.,1996),with a longitudinal and latitudinal resolution of 1.904°×1.875°on a T62 Gaussian grid(192×94).

    Long-term climatological f i elds were formed from the period 1980–2012,including monthly-mean current vectors.Interannualanomaliesfortemperature,windstress andothers werethencalculatedrelativetotheir climatologicalf i elds.Finally,isopycnal surfaces were estimated using monthly temperatureandsalinity data.Thetemperatureanomaliesat level depths were interpolated to constant density surfaces by using a cubic spline.Climatological current vectors on isopycnal surfaces were formed in the same way.In this study,interannual anomaly f i elds on isopycnal surfaces were used to investigate the roles played by anomalous temperature advection in the 2010–12 and 2007–09 La Ni?na events.

    3.Results

    3.1.SST evolution

    Figure 1 illustrates the horizontal distributions of SSTAs and surface wind anomalies for selected time intervals in 2011.In January,there was a La Ni?na state over the tropical Pacif i c.Consequently,negative SSTAs prevailed in the central and eastern tropical Pacif i c with the maxima exceeding ?2°C between 150°and 170°W along the Equator.Surface easterly winds were stronger than normal over the western central equatorial Pacif i c and southeasterly wind anomalies dominated off the Equator in the South Pacif i c(Fig.1a).Thereafter,the cold SSTA diminished and the SSTA became normal in the eastern tropical Pacif i c domain.Simultaneously,the wind stress anomalies weakened in most regions(Fig.1b).This warming process persisted during the following months and peaked in June,when a neutral SST state prevailed throughout the Equator except for a weak negative anomaly along 160°W.At this time,easterly wind anomalies weakened in the central tropical Pacif i c(Fig.1d).In August,negative SSTA strengthened in the central equatorial Pacif i c(Fig.1f),and this cooling tendency persisted during the following months(Figs.1g–h).

    Themechanismofformationofthe coldSSTA in the central eastern equatorial Pacif i c during mid–late 2011 has not been fully explained.Some possible factors,such as wind forcing or a subsurface thermal anomaly,may play an important role.Note that southeasterly wind became stronger in the tropical South Pacif i c(Fig.1e),forcing the cold waters located in the South Pacif i c to move to the equatorial band(Fig.1e)and leadingto the negativeSSTA.However,the cur-rent driven by anomalous wind was not enough to produce strong and persistent negative SSTAs in the central equatorial Pacif i c,especially after the wind anomalies changed direction during September and October(Figs.1g–h).Other processes,such as subsurface effects,are required to fully understand the cause of the second-year cooling.

    3.2.Subsurface temperature anomaly pathway

    The climatological Bernoulli function(B)was calculated on the isopycnal surfaces to study the mean f l ow pattern.According to Cox and Bryan(1984),B can be written as

    whereσ=ρ?1000 is an isopycnal surface,andρis density with units of kg m?3;ρ0is mean density;g is the acceleration due to gravity,andηis dynamic height.B represents geostrophic streamlines that measure the geostrophic fl ow away from the Equator;thus,it can be used to illustrate fl ow paths on isopycnal surfaces.

    Figures 2a and 2c show the mean depth distributions of the 23.4 and 25.2 isopycnal surfaces.These two isopycnal surfaces had similar patterns in the tropical Paci fi c.On the Equator,the thermocline was deep in the west and shallow in the east.The deepest regions on the isopycnal surfaces were located around 15°N and 5°S,respectively,in the western central Paci fi c,with a relatively shallow band between 6°and 10°N.The isopycnal surfaces shoaled eastward along the Equator and reached minima in the far-eastern Paci fi c.The 23.4 isopycnal surface intersected with the sea surface(i.e.,outcropped)in the central and eastern basin on and south of the Equator(Fig.2a).

    Pathways along which off-equatorial waters move onto the Equator have been examined in many studies(e.g.Zhang et al.,1999;Zhang and Busalacchi,1999;Wang et al.,2007).However,mostpreviousanalysesfocusedontheeffectsinthe North Pacif i c,with fewer studies in the South Pacif i c.Chang et al.(2001)pointed out the potential importance of south tropical Pacif i c variability in the decadal modulation of the ENSO.Luoetal.(2003)investigatedtheoriginofthedecadal ENSO-like variation.Luo et al.(2005)carried out 49-year simulations,and found that decadal variability of temperatureandsalinityalongtheEquatororiginatesfromsubsurface spiciness anomalies in the South Pacif i c.

    FromFigs.2b andd,onecan see clear pathways originating from the southeastern tropical Pacif i c:water carried by the South Equator Current(SEC)extending northwestward to south of the equatorial band and then transported by the strong Equator Undercurrent(EUC)onto the Equator.The South Pacif i c water pathways intersect with the surface in the eastern equatorial and Southeast Pacif i c domain(Fig.2b).

    Figure 3 gives subsurface temperature anomalies evaluated on the 25.2 isopycnal surface(see Fig.2c for its depth information)at some selected time periods in 2011;the vertical distribution of temperature anomalies in the upper ocean along the Equator is presented in Fig.4.During the 2010–11 La Ni?na event,there was a buildup of warm waters in the western Pacif i c Ocean due to stronger than normal easterly winds in the central basin,characterizedby positive thermal anomalies in the upper ocean.For example,in January 2011,a large positive anomaly was observed in the western central tropical Pacif i c and a negative anomaly was located in the central eastern tropical Pacif i c regions.These two anomaly bands with opposite signs intersected along 160°W with a sharp temperature front(Figs.3a and 4a).Beginning in early 2011,accompanied by the seasonal strengthening of the EUC,warm waters in the western Pacif i c expanded eastward across the Equator;cold anomalies in the central eastern equatorial Pacif i c diminished and reversed to above normal(Figs.3b and 4b).This warming tendency peaked in April(Fig.3c),when positive temperature anomalies occupied almost the whole equatorial Pacif i c except for near 150°W.Temperature anomalies reached more than 2°C in the far-eastern equatorial Pacif i c.In the meantime,cold waters retreated to northeastern and southeastern regions off the Equator.As seen from the vertical section along the Equa-tor(Fig.4c),cold waters shrank back dramatically,and were conf i ned to a narrow region of the central Pacif i c.

    In May,positive anomalies along the Equator were seen to have two separate western and eastern bands(Fig.3d),with below-normal temperature anomalies amplif i ed in the regions of 140°–160°W(Fig.4d).Subsequently,the neg-ative anomalies dominated over the central Pacif i c in June(Fig.3e),forming a horseshoe-like thermal anomaly pattern connecting large negative thermal anomalies on and off the Equator.Comparing Figs.3e and 3d,the EUC decelerated in the far-eastern equatorial Pacif i c in June(Yu et al.,1997),but the off-equatorialcold anomalies strengthenedin the central South Pacif i c.These changes were in favor of cold water advection to the equatorial regions through the well-def i ned SouthPacif i cwaterpathway(Fig.2d),andthenextendedinto the equatorial region to combine with the negative anomalies located north of the Equator.In July,the EUC weakened further,and was even replaced by the SEC in the eastern Pacif i c on the 25.2 isopycnal surface.At this time,cold anomalies were transported by SEC from the Southeastern Pacif i c,and amplif i ed on and off the central equatorial Pacif i c.This cooling tendency persisted in the following months.Positive anomalies along the Equator disappeared gradually,and cold anomalies dominated over the whole equatorial band(Figs.3g and h).The vertical sections along the Equator displayed the same behavior(Figs.4e–h).

    3.3.Phase relationships between subsurface and surface temperature anomalies

    As analyzed above,the subsurface thermal anomalies at the Equator exhibited similar evolution to the SSTAs,but with a 2 month phase lead time:negative sea temperature anomalies(Fig.3)re-strengthened at subsurface depths in June,while those in Fig.1 re-strengthened at the sea surface in August.This indicates the existence of close links between subsurface temperature anomalies and the SSTAs.During boreal spring,positive SSTAs in the far-eastern equatorial Pacif i c(Figs.1b and c)cannot be explained by surface temperature advection,and they are likely to originate from the outcrop of subsurface warm anomalies(Figs.4b and c).This process can be described as follows.During the previous La Ni?na event,warm waters piled up in the western Pacif i c Ocean due to stronger than normal easterly winds in the central basin.As the EUC became seasonally strengthened,the subsurface warm water was transported from the western Pacif i c to the central and eastern Pacif i c across the Equator(Figs.3b–c).Since the thermocline shoaled eastward(Figs.2a and c),the warm water was exposed to the sea surface in the eastern Pacif i c,acting to generate positive SSTAs(Figs.1b and c;Figs.4b and c).

    As for the sea surface coolingin the fall of 2011,it can be traced to the subsurface anomalies.Beginning in mid-2011,subsurfacecoldanomalieslocatedinthesoutheasterntropical Pacif i cwerecontinuallyadvectednorthwestwardbytheSEC,to the south of the equatorial band,and then transported by the EUC to the Equator,where they were accumulated(Figs.3e–h).But how did the subsurface cold water in the central Pacif i c affect the sea surface?Since there was no systematic surface wind stress curl(f i gures not shown),the related Ekman pumpingwas not a major factor inf l uencingthe outcropping of subsurface cold water,so the upwelling can only be driven by oceanic processes.Figure 5 presents the tempera-ture anomalies,and the horizontal and vertical velocity f i elds on the 23.4 and 25.2 isopycnals.The convergence pattern of the horizontal currents agreed reasonably well with the vertical velocity f i eld.For example,the convergence center was located on the Equator near 110°W,where the EUC met the SEC,giving rise to a strong upwelling(Fig.5b).

    InJune,small coldanomalieswere accompaniedbyweak upwelling in the central equatorial Pacif i c(Fig.5a).With time,both cold anomalies and vertical velocity strengthened in the central equatorial Pacif i c on the 25.2 isopycnal surface(Figs.5b and c).For example,in June the cold anomalies were conf i ned between 130°W and 150°W along the Equator,but it dominated the eastern central Pacif i c in July.These changes were induced by the weakened EUC and strengthened SEC,which favored the accumulation of cold water at the Equator.Figures 5e–h indicate that the vertical current in the upperlayerwas strongerthanthat at the lowerlayer(Figs.5a–d),and the cold anomalies appeared later than that on the subsurface layer,which conf i rmed that the cold water originated from the subsurface.As discussed above,there was a clear pathway along which subsurface cold water was transported to the sea surface.Firstly,the subsurface cold water located in the southeastern tropical Pacif i c was advected by the SEC south of the Equator.Subsequently,the EUC transported it to the equatorial Pacif i c,where the EUC met the SEC and induced upwelling.Finally,under the effects of the EUC and SEC,the cold water spread upward and westward to the sea surface.

    In the fall of 2011(Figs.1g and h),negative SSTAs dominated in the central and eastern equatorial Pacif i c basin.The negative SSTAs in the east affected winds to the west,which in turn affected the thermocline and SST in the east.This essentiallyinvolvedinteractionsamonganomaliesofSST,wind and the thermocline,forming a coupling loop and leading to the second-year cooling during 2010–12.

    3.4.Evolution during the 2012 decay phase

    Figure 6 gives the horizontal distributions of SSTAs and surface wind anomalies at some selected time intervals in 2012.From February onwards,the cold SSTA diminished and the SSTA became normal in the eastern tropical Pacif i c domain(Fig.6a).This warming process persisted during the following months,and the SSTAs in the central and eastern tropical Pacif i c rose above normal(Fig.6d),except in the far-eastern Pacif i c.Figure 7 illustrates the subsurface temperature anomalies evaluated on the 25.2 isopycnal surface at some selected time periods in 2012;the vertical distribution of temperature anomalies in the upper ocean along the Equator is presented in Fig.8.Beginning in early 2012,accompanied by the seasonal strengthening of the EUC,warm waters in the western Pacif i c expanded eastward across the Equator(Figs.7a and 8a).In May,with the seasonal maximum EUC,warm anomalies occupied the whole central eastern equatorial Pacif i c(Figs.7band8b).Negativeanomaliesre-emerged twice(Figs.7c and e;Figs.8c and e)in the central equatorial Pacif i c,since the EUC decelerated from June onwards.However,these coolingprocessesdidnotpersist anddevelop,perhaps because the cold anomalies in the South Pacif i c were too weak to provideenoughcold water(Figs.7d–f;Figs.8d–f).Finally,the SSTAs did not return to the La Ni?na state,as happened during 2011.

    3.5.Evolution during the 2008 La Ni?na event

    Figure 9 gives the horizontal distributions of the SSTAs and surface wind anomalies at some selected time intervals in 2008.In January,a La Ni?na state occupied the tropical Pacif i c:negative SSTAs prevailed in the central and eastern tropical Pacif i c with the maxima exceeding ?2.5°C,located at 170°W along the Equator(Fig.9a).Thereafter,the cold SSTA diminished and the SSTA increased above normal in the far-eastern tropical Pacif i c domain(Fig.9b).This warm-ingprocesspersistedduringthefollowingmonthsandpeaked in August(Fig.9d).In September,the negative SSTA restrengthened in the central equatorial Pacif i c(Fig.9e),and this cooling tendency persisted during the following months(Fig.9f).

    Figure 10 illustrates the subsurface temperature anomalies evaluated on the 25.4 isopycnal surface at some selected time periods in 2008;the vertical distribution of temperature anomalies in the upper ocean along the Equator is presented in Fig.11.Beginning in early 2008,accompanied by the seasonal strengthening of the EUC,warm waters in the western Pacif i c expanded eastward across the Equator(Fig.10b).This warming tendency peaked in mid-2008(Figs.10d and 11d),when positive temperature anomalies occupied almost the whole equatorial Pacif i c.There was a 1–2 month lead time into the SSTAs.Compared with the warming process in 2011(Figs.3c and 4c),it lagged by about 2 months,possibly attributable to stronger negative anomalies in the eastern tropical Pacif i c.Beginning in August,the subsurface cold anomalies located in the southeastern tropical Pacif i c were continually advected northwestward by the SEC to the south of the equatorial band,and then transported by the EUC to the Equator,where they accumulated(Figs.10e–h).The cold anomalies were then transported by a vertical current to the sea surface and induced negative SSTAs.From September,cold water re-strengthened in the central-equatorial Pacif i c(Fig.9e),and this cooling tendency persisted and extendedeastwardduringthefollowingmonths(Figs.9h);consequently,the double-trough La Ni?na developed.

    4.Summary and discussion

    The reanalysis products from GODAS were used to produce isopycnalsurfaces to better illustrate and understandthe processes leading to the second-year cooling of the 2010–12 La Ni?na event.We found anomaly patterns originating at depth from the southeastern tropical Pacif i c that could be responsible for generating and sustaining negative SSTAs in the central equatorial Pacif i c.

    A sequence of events leading to the La Ni?na conditions in the fall of 2011 was described.During the 2010 La Ni?na event,warm waters piled up at subsurface depths in the western tropical Pacif i c.Beginning in early 2011,and accompanied by a strongEUC,subsurfacewarm waters in the western Pacif i c transmitted eastward along the Equator.Positive temperature anomalies occupied the equatorial Pacif i c in April,and cold waters retreated to northeastern and southeastern off-equatorial Pacif i c regions.Since the thermocline shoaled along the Equator and was close to the surface in the eastern Pacif i c,subsurface warm waters were directly exposed to the sea surface in the eastern Pacif i c,and induced a warm SSTA.Normal SST conditions appeared in the central and eastern equatorial Pacif i c in mid-2011.

    In August a negative SSTA reappeared in the central Pacif i c.We hypothesized that this anomaly came from the subsurface cold waters off the Equator through the Southern Pacif i c pathway.Based on the GODAS analyses,the processes were described as follows:Cold anomalies located in southeastern tropical Pacif i c region were advected continually by the SEC northwestward to the south of the equatorial band,and then by the EUC northeastward to the Equator.With time,the EUC weakened and the SEC strengthened in the eastern equatorial Pacif i c,inducing cold waters that accumulated in the central tropical Pacif i c and then tended to spread upwardwith theconvergenceofhorizontalcurrentsandeventually outcropped to the surface.These subsurface-induced SSTAs actedtoinitiatelocalcoupledair–seainteractionsgenerating atmospheric–oceanic anomalies that developed and evolved with the second-year cooling in the fall of 2011.

    Further study of the 2012 processes indicated that the cooling tendency did not develop into another La Ni?na event,since the cold anomalies in the South Pacif i c were not strong enough.An analysis around the 2007–09 La Ni?na event revealed similar evolution processes with around a 2—month phase lag,compared to the 2010–12 La Ni?na event.

    These analyses provide an observational basis for an understanding of the processes involved.The results can be used to explain the ways in which coupled models predict the second-year cooling case,and offer guidance for historical analysesforothermulti-yearcoolingevents.Furthersupporting modeling studies are needed to quantify the role played by off-equatorial subsurface anomalies in triggering La Ni?na events in the tropical Pacif i c.Here,we discussed the effect of interannual variability on the multi-year cooling.The effect of modulation of decadal to interdecadal timescale variability on the multi-year cooling,such as tropical Pacif i c decadal variability(Choi et al.,2013),requires further study.

    Acknowledgements.This work has benef i ted a great deal from Prof.A.J.BUSALACCHI’s support.This research was jointly supported by National Natural Science Foundation of China(Grant No.40906014),the Ocean Public Welfare Scientif i c Research Project(Grant No.201205018-2),the National Key Basic Research Program of China(Grant No.2010CB950302),and the China Scholarship Council(CSC).ZHANG is supported partly by the National Science Foundation(NSF)(Grant No.ATM-0727668),NASA(Grant No.NNX08AI74G),and the National Oceanic and Atmospheric Administration(NOAA)(Grant No.NA08OAR4310885).

    Battisti,D.S.,and A.C.Hirst,1989:Interannual variability in the tropical atmosphere-ocean system:Inf l uence of the basis state,ocean geometry and nonlinearity.J.Atmos.Sci.,46,1687–1712.

    Behringer,D.W.,and Y.Xue,2004:Evaluation of the global ocean data assimilation system at NCEP:The Pacif i c Ocean.Preprints,Eighth Symp.on Integrated Observing and Assimilation Systems for Atmosphere,Oceans,and Land Surface,Seattle,WA,Amer.Meteor.Soc.,2.3.[Available online athttps://ams.confex.com/ams/84Annual/techprogram/paper 70720.htm.]

    Cane,M.A.,and S.E.Zebiak,1985:A theory for El Ni?no and the Southern Oscillation.Science,228,1085–1087.

    Chang,P.,B.S.Giese,L.Ji,H.F.Seidel,and F.Wang,2001:Decadal change in the South Tropical Pacif i c in a global assimilation analysis.Geophys.Res.Lett.,28,3461–3464.

    Choi,J.,S.I.An.,S.W.Yeh,and J.Y.Yu,2013:ENSO-like and ENSO-induced tropical Pacif i c decadal variability in CGCMs.J.Climate,26,1485–1501.

    Cox,M.D.,and K.Bryan,1984:A numerical model of the ventilated thermocline,J.Phys.Oceanogr.,14,674–687.

    Hu,Z.-Z.,A.Kumar,Y.Xue,and B.Jha,2014:Why were some La Ni?na followed by another La Ni?na?Climate Dyn.,42,1029–1042,doi:10.1007/s00382-013-1917-3.

    Jin,F.-F.,1997:An equatorial ocean recharge paradigm for ENSO.Part I:Conceptual model.J.Atmos.Sci.,54,811–829.

    Kalnay,E.,and Coauthors,1996:The NCEP/NCAR 40-year reanalysis project.Bull.Amer.Meteor.Soc.,77(3),437–471.

    Luo,J.-J.,S.Masson,S.K.Behera,P.Delecluse,S.Gualdi,A.Navarra,and T.Yamagata,2003:South Pacif i c Origin of the decadal ENSO-like variation as simulated by a coupled GCM.Geophys.Res.Lett.,30(24),2250,doi:10.1029/2003GL018649.

    Luo,Y.-Y.,L.M.Rothstein,R.-H.Zhang,and A.J.Busalacchi,2005:On the connection between South Pacif i c subtropical spiciness anomalies and decadal equatorial variability in an ocean general circulation model.J.Geophys.Res.,110,C10002,doi:10.1029/2004JC002655.

    McCreary,J.P.Jr.,and D.L.T.Anderson,1984:A simple model of El Ni?no and the Southern Oscillation.Mon.Wea.Rev.,112,934–946.

    Philander,S.G.H,1992:Ocean-atmosphere interactions in the tropics:A review of recent theories and models.J.Appl.Meteoro.,31,938–945.

    Wang,X.,C.Y.Li,and W.Zhou,2007:Interdecadal mode and its propagating characteristics of SSTA in the South Pacif i c.Meteor.Atmos.Phys.,98,115–124,doi:10.1007/s00703-006-0235-2.

    Wang,X.,C.Z.Wang,W.Zhou,D.X.Wang,and J.Song,2011:Teleconnected inf l uence of NorthAtlanticsea surface temperature on the El Ni?no onset.Climate Dyn.,37,663–676,doi:10.1007/s00382-010-0833-z.

    Wang,X.,C.Z.Wang,W.Zhou,L.Liu,and D.X.Wang,2013:Remote inf l uence of North Atlantic SST on the equatorial westerly wind anomalies in the western Pacif i c for initiating an El Ni?no event:An Atmospheric General Circulation Model Study.Atmos.Sci.Lett.,14,107–111.

    Yu,Z.-J.,P.S.Schopf,and J.P.McCreary Jr.,1997:On the annual cycle of upper-ocean circulation in the eastern equatorial Pacif i c.J.Phys.Oceanogr.,27 309–324.

    Zebiak,S.E.,and M.A.Cane,1987:A model El Ni?no-Southern Oscillation.Mon.Wea.Rev.,115,2262–2278.

    Zhang,R.-H.,and A.J.Busalacchi,1999:A possible link between off-equatorial warm anomalies propagating along the NECC path and the onset of the 1997–98 El Ni?no.Geophys.Res.Lett.,26(18),2873–2876.

    Zhang,R.-H.,and L.M.Rothstein,2000:Role of off-equatorial subsurface anomalies in initiating the 1991-1992 El Ni?no as revealed by the National Centers for Environmental Prediction ocean reanalysis data.J.Geophys.Res.,105(C3),6327–6339.

    Zhang,R.-H.,L.M.Rothstein,A.J.Busalacchi,and X.Z.Liang,1999:The onset of the 1991-92 El Ni?no event in the tropical Pacif i c Ocean:The NECC subsurface pathway.Geophys.Res.Lett.,26(7),847–850.

    Zhang,R.-H.,S.E.Zebiak,R.Kleeman,and N.Keenlyside,2003:A new intermediate coupled model for El Ni?no simulation and prediction.Geophys.Res.Lett.,30(19),doi:10.1029/2003GL018010.

    Zhang,R.-H.,S.E.Zebiak,R.Kleeman,and N.Keenlyside,2005:Retrospective El Nino forecast using an improved intermediate coupled model.Mon.Wea.Rev.,133,2777–2802.

    Zhang,R.-H.,F.Zheng,J.Zhu,and Z.G.Wang,2013:A successful real–time forecast of the 2010–11 La Ni?na event.Sci.Rep.,3,1108,doi:10.1038/srep01108.

    国产精品自产拍在线观看55亚洲| ponron亚洲| 久热这里只有精品99| 欧美一级a爱片免费观看看 | 久久午夜亚洲精品久久| 成年版毛片免费区| 亚洲七黄色美女视频| 欧美精品亚洲一区二区| 久久精品国产99精品国产亚洲性色| 久热这里只有精品99| 人妻丰满熟妇av一区二区三区| 在线视频色国产色| 日韩高清综合在线| 此物有八面人人有两片| 欧美最黄视频在线播放免费| 老司机午夜十八禁免费视频| 国产免费av片在线观看野外av| 精华霜和精华液先用哪个| 久99久视频精品免费| 又黄又爽又免费观看的视频| 日本一区二区免费在线视频| 国产午夜精品久久久久久| 99国产精品99久久久久| 免费看十八禁软件| 午夜a级毛片| 51午夜福利影视在线观看| 999久久久精品免费观看国产| 一区二区三区激情视频| 丝袜人妻中文字幕| 村上凉子中文字幕在线| 脱女人内裤的视频| 国产亚洲av嫩草精品影院| 国产高清激情床上av| 中文资源天堂在线| 国产熟女午夜一区二区三区| 欧美午夜高清在线| 老司机深夜福利视频在线观看| 午夜激情福利司机影院| 香蕉av资源在线| 曰老女人黄片| 免费在线观看亚洲国产| 淫秽高清视频在线观看| 国产又黄又爽又无遮挡在线| 亚洲国产精品成人综合色| 男人舔女人下体高潮全视频| www.熟女人妻精品国产| 日本免费a在线| 亚洲精品中文字幕在线视频| 亚洲av成人一区二区三| 国内精品久久久久久久电影| 精华霜和精华液先用哪个| 欧美性长视频在线观看| 男人操女人黄网站| 国产精品一区二区精品视频观看| av片东京热男人的天堂| 亚洲久久久国产精品| 老汉色∧v一级毛片| 非洲黑人性xxxx精品又粗又长| 男人舔女人下体高潮全视频| 热re99久久国产66热| 成人午夜高清在线视频 | 91成年电影在线观看| 性欧美人与动物交配| 国产免费av片在线观看野外av| 亚洲欧美日韩高清在线视频| 两个人视频免费观看高清| 久热这里只有精品99| 高潮久久久久久久久久久不卡| 99国产综合亚洲精品| 亚洲欧美精品综合一区二区三区| 最近最新免费中文字幕在线| 曰老女人黄片| 精品国产一区二区三区四区第35| 99国产精品一区二区三区| 午夜老司机福利片| 99热只有精品国产| 国内精品久久久久精免费| 真人一进一出gif抽搐免费| 18禁国产床啪视频网站| 99国产精品99久久久久| 午夜免费激情av| 国产精品九九99| 波多野结衣巨乳人妻| 欧美在线一区亚洲| 精品国产一区二区三区四区第35| 欧美日韩黄片免| 50天的宝宝边吃奶边哭怎么回事| 国产日本99.免费观看| 一区二区三区激情视频| 精品无人区乱码1区二区| 美女高潮喷水抽搐中文字幕| 在线十欧美十亚洲十日本专区| 国产精品 欧美亚洲| 久久精品91无色码中文字幕| 日韩 欧美 亚洲 中文字幕| 欧美亚洲日本最大视频资源| 久久久久免费精品人妻一区二区 | 波多野结衣巨乳人妻| 久久久久久久精品吃奶| 国产一区二区三区在线臀色熟女| 日韩精品免费视频一区二区三区| 国产精品免费视频内射| 一本一本综合久久| 日韩视频一区二区在线观看| 国产精品综合久久久久久久免费| 99精品在免费线老司机午夜| 久久精品国产99精品国产亚洲性色| 中文字幕另类日韩欧美亚洲嫩草| 亚洲片人在线观看| 日韩免费av在线播放| 久久久久精品国产欧美久久久| 国产精品,欧美在线| 一本大道久久a久久精品| 法律面前人人平等表现在哪些方面| 俄罗斯特黄特色一大片| 91成人精品电影| 侵犯人妻中文字幕一二三四区| 亚洲人成网站高清观看| 午夜老司机福利片| 国产高清有码在线观看视频 | 国产成人精品久久二区二区免费| 99riav亚洲国产免费| 美女免费视频网站| 国产精品亚洲美女久久久| 成人国语在线视频| cao死你这个sao货| 韩国精品一区二区三区| 久久精品亚洲精品国产色婷小说| 亚洲av电影不卡..在线观看| a在线观看视频网站| 亚洲精品国产精品久久久不卡| 日韩免费av在线播放| 亚洲va日本ⅴa欧美va伊人久久| 亚洲国产中文字幕在线视频| 18禁裸乳无遮挡免费网站照片 | 一本一本综合久久| 亚洲人成77777在线视频| 91麻豆精品激情在线观看国产| 97碰自拍视频| 丁香六月欧美| 99在线视频只有这里精品首页| 99国产精品一区二区蜜桃av| 久久久国产精品麻豆| 国产高清videossex| 日日干狠狠操夜夜爽| 久久精品国产清高在天天线| 2021天堂中文幕一二区在线观 | 亚洲一区高清亚洲精品| 日本精品一区二区三区蜜桃| 午夜福利一区二区在线看| 一a级毛片在线观看| 国产av又大| 免费在线观看完整版高清| 999精品在线视频| 欧洲精品卡2卡3卡4卡5卡区| 麻豆av在线久日| 亚洲一区二区三区不卡视频| 美女扒开内裤让男人捅视频| 桃红色精品国产亚洲av| 搡老妇女老女人老熟妇| 午夜福利免费观看在线| 男女做爰动态图高潮gif福利片| 亚洲熟妇熟女久久| 9191精品国产免费久久| 免费观看精品视频网站| 国内精品久久久久精免费| 亚洲国产日韩欧美精品在线观看 | 69av精品久久久久久| 男女视频在线观看网站免费 | 国产私拍福利视频在线观看| 在线观看一区二区三区| 18禁黄网站禁片免费观看直播| 97人妻精品一区二区三区麻豆 | a级毛片a级免费在线| 精品久久久久久久毛片微露脸| 美女高潮到喷水免费观看| 90打野战视频偷拍视频| 国内少妇人妻偷人精品xxx网站 | 男女床上黄色一级片免费看| 国产亚洲av高清不卡| 亚洲国产日韩欧美精品在线观看 | 国产精品一区二区免费欧美| www国产在线视频色| 极品教师在线免费播放| 国产真人三级小视频在线观看| 国产乱人伦免费视频| 91麻豆av在线| 日本在线视频免费播放| 成人国语在线视频| 成人三级做爰电影| cao死你这个sao货| 搡老妇女老女人老熟妇| 听说在线观看完整版免费高清| 天天躁狠狠躁夜夜躁狠狠躁| 欧美 亚洲 国产 日韩一| 国产精品电影一区二区三区| 俺也久久电影网| 一个人观看的视频www高清免费观看 | 淫妇啪啪啪对白视频| 国产精品 欧美亚洲| 亚洲国产中文字幕在线视频| 国产一区二区在线av高清观看| 国产主播在线观看一区二区| 亚洲欧美日韩无卡精品| 好男人电影高清在线观看| 又紧又爽又黄一区二区| 亚洲一区中文字幕在线| 色播在线永久视频| 久久精品国产99精品国产亚洲性色| 中亚洲国语对白在线视频| 美女高潮到喷水免费观看| 巨乳人妻的诱惑在线观看| 妹子高潮喷水视频| 中文字幕精品免费在线观看视频| 午夜久久久久精精品| 欧美色视频一区免费| 18禁美女被吸乳视频| 国产高清激情床上av| av天堂在线播放| 动漫黄色视频在线观看| 国产精品一区二区精品视频观看| 亚洲 欧美一区二区三区| 中文在线观看免费www的网站 | 国产视频一区二区在线看| 国语自产精品视频在线第100页| 啦啦啦韩国在线观看视频| 亚洲第一欧美日韩一区二区三区| 麻豆av在线久日| 青草久久国产| 一本久久中文字幕| 国产高清有码在线观看视频 | 人成视频在线观看免费观看| 午夜福利欧美成人| 国产精品,欧美在线| 亚洲第一av免费看| 亚洲专区国产一区二区| 免费在线观看日本一区| 啦啦啦韩国在线观看视频| 精品久久蜜臀av无| 国产区一区二久久| 国产97色在线日韩免费| 免费看十八禁软件| 久久久久九九精品影院| 嫁个100分男人电影在线观看| 亚洲国产精品成人综合色| 免费人成视频x8x8入口观看| 日本免费a在线| www.999成人在线观看| 亚洲精品粉嫩美女一区| 听说在线观看完整版免费高清| 国产三级黄色录像| 久久天堂一区二区三区四区| 亚洲自拍偷在线| 波多野结衣高清无吗| 日韩 欧美 亚洲 中文字幕| 日本 av在线| 亚洲精品一区av在线观看| 亚洲精品国产区一区二| 又黄又爽又免费观看的视频| 99国产精品99久久久久| 校园春色视频在线观看| 亚洲免费av在线视频| 少妇的丰满在线观看| 欧美另类亚洲清纯唯美| 久久久久国产一级毛片高清牌| 欧美丝袜亚洲另类 | 看免费av毛片| 50天的宝宝边吃奶边哭怎么回事| 香蕉国产在线看| 又大又爽又粗| 在线看三级毛片| 精品第一国产精品| 一本大道久久a久久精品| 国产一级毛片七仙女欲春2 | 国产成人精品无人区| 精品欧美国产一区二区三| 欧美一级毛片孕妇| 日日爽夜夜爽网站| 9191精品国产免费久久| 亚洲中文字幕日韩| 国产又爽黄色视频| 18禁美女被吸乳视频| 亚洲人成伊人成综合网2020| 黄色片一级片一级黄色片| 久久伊人香网站| 黄色毛片三级朝国网站| 在线观看www视频免费| 国产蜜桃级精品一区二区三区| 免费女性裸体啪啪无遮挡网站| 欧美日韩福利视频一区二区| 亚洲第一欧美日韩一区二区三区| 午夜日韩欧美国产| 午夜视频精品福利| 波多野结衣高清作品| 大香蕉久久成人网| 亚洲男人的天堂狠狠| 日韩大尺度精品在线看网址| 亚洲专区字幕在线| 老司机靠b影院| 巨乳人妻的诱惑在线观看| 淫秽高清视频在线观看| 可以在线观看的亚洲视频| 一级毛片精品| 亚洲人成网站在线播放欧美日韩| 12—13女人毛片做爰片一| 国产私拍福利视频在线观看| 黄频高清免费视频| 国产高清有码在线观看视频 | 成人av一区二区三区在线看| 国产一区二区三区视频了| 亚洲,欧美精品.| 桃红色精品国产亚洲av| 精品一区二区三区av网在线观看| 国产一级毛片七仙女欲春2 | 成人国语在线视频| 热re99久久国产66热| 每晚都被弄得嗷嗷叫到高潮| 国产精品久久久人人做人人爽| 亚洲精华国产精华精| 伦理电影免费视频| 中文资源天堂在线| 熟女电影av网| 国产蜜桃级精品一区二区三区| or卡值多少钱| 欧美日韩福利视频一区二区| 欧美一级a爱片免费观看看 | 一级毛片精品| 亚洲欧美精品综合一区二区三区| 巨乳人妻的诱惑在线观看| 人成视频在线观看免费观看| 男人操女人黄网站| 亚洲av成人一区二区三| 少妇粗大呻吟视频| 欧美激情 高清一区二区三区| 男女视频在线观看网站免费 | 可以在线观看的亚洲视频| 亚洲在线自拍视频| 欧美成人午夜精品| 精品高清国产在线一区| 久久久久久免费高清国产稀缺| 黄色女人牲交| 色播亚洲综合网| 99久久综合精品五月天人人| 女人爽到高潮嗷嗷叫在线视频| 18禁观看日本| 国产午夜精品久久久久久| 大香蕉久久成人网| 日韩欧美国产在线观看| 欧美成人午夜精品| 中文字幕人妻丝袜一区二区| 在线观看日韩欧美| 91九色精品人成在线观看| 久久欧美精品欧美久久欧美| 一区福利在线观看| 亚洲中文av在线| 真人一进一出gif抽搐免费| 成人亚洲精品av一区二区| 亚洲av五月六月丁香网| 午夜福利一区二区在线看| 青草久久国产| 中文在线观看免费www的网站 | 可以在线观看毛片的网站| 日本免费一区二区三区高清不卡| 国产又色又爽无遮挡免费看| 啪啪无遮挡十八禁网站| 可以免费在线观看a视频的电影网站| 丁香六月欧美| 日韩免费av在线播放| 亚洲自拍偷在线| 欧美zozozo另类| 99热这里只有精品一区 | 两性午夜刺激爽爽歪歪视频在线观看 | а√天堂www在线а√下载| 亚洲人成伊人成综合网2020| 色综合婷婷激情| 亚洲第一av免费看| 久久中文看片网| 国产成人精品久久二区二区91| 国产成人啪精品午夜网站| 成人国产综合亚洲| 国产精品久久久人人做人人爽| 日韩欧美免费精品| 一区二区三区精品91| 国产激情久久老熟女| 波多野结衣巨乳人妻| 波多野结衣高清无吗| 国产精品av久久久久免费| 美女 人体艺术 gogo| 久久九九热精品免费| 99久久综合精品五月天人人| 国产熟女xx| av天堂在线播放| 露出奶头的视频| 人人妻人人澡人人看| 国产1区2区3区精品| 99久久久亚洲精品蜜臀av| 黄片小视频在线播放| 中国美女看黄片| 老司机福利观看| 亚洲欧美精品综合一区二区三区| 久久婷婷人人爽人人干人人爱| 欧美zozozo另类| 国产精品亚洲av一区麻豆| av电影中文网址| 欧美日本亚洲视频在线播放| 国产精品自产拍在线观看55亚洲| 中文字幕人妻熟女乱码| 久久久久久久久免费视频了| 日本成人三级电影网站| 亚洲片人在线观看| 国产高清有码在线观看视频 | 国产亚洲精品一区二区www| 日韩精品青青久久久久久| 欧美性猛交黑人性爽| 免费看日本二区| 妹子高潮喷水视频| av在线天堂中文字幕| 欧洲精品卡2卡3卡4卡5卡区| 欧美性长视频在线观看| 亚洲精品在线观看二区| 制服丝袜大香蕉在线| 熟女少妇亚洲综合色aaa.| 国产一区二区三区视频了| 亚洲狠狠婷婷综合久久图片| 欧美一级毛片孕妇| 国产成人欧美| 亚洲精品粉嫩美女一区| 三级毛片av免费| 中文字幕精品免费在线观看视频| 在线观看一区二区三区| 老熟妇仑乱视频hdxx| 日本免费a在线| 亚洲欧洲精品一区二区精品久久久| 亚洲一区中文字幕在线| 日本精品一区二区三区蜜桃| 国产97色在线日韩免费| 亚洲精品av麻豆狂野| 亚洲精品粉嫩美女一区| 欧美黑人巨大hd| 日日夜夜操网爽| 国产一区在线观看成人免费| tocl精华| 91在线观看av| 亚洲国产精品sss在线观看| 俺也久久电影网| 女人爽到高潮嗷嗷叫在线视频| 午夜福利一区二区在线看| 日本一区二区免费在线视频| 又黄又爽又免费观看的视频| 亚洲熟妇中文字幕五十中出| 国产成人av教育| 欧美精品啪啪一区二区三区| 亚洲av美国av| 99久久精品国产亚洲精品| 日本成人三级电影网站| 成人免费观看视频高清| 精品久久久久久久久久久久久 | 少妇粗大呻吟视频| 亚洲av第一区精品v没综合| 久久国产精品人妻蜜桃| 男人舔女人的私密视频| 国产成人精品无人区| 国内精品久久久久精免费| 久久欧美精品欧美久久欧美| 欧美zozozo另类| 怎么达到女性高潮| 丁香欧美五月| 制服诱惑二区| 女人爽到高潮嗷嗷叫在线视频| 国产蜜桃级精品一区二区三区| 午夜激情福利司机影院| 国产乱人伦免费视频| 国产三级黄色录像| 亚洲avbb在线观看| 日韩欧美 国产精品| 亚洲一码二码三码区别大吗| 欧美久久黑人一区二区| 国产三级在线视频| a在线观看视频网站| 韩国av一区二区三区四区| 一进一出好大好爽视频| 国产成人av教育| 一级黄色大片毛片| 免费高清在线观看日韩| 日韩欧美国产在线观看| 精品人妻1区二区| 桃红色精品国产亚洲av| 欧美乱色亚洲激情| 中文字幕人妻丝袜一区二区| 少妇的丰满在线观看| 老汉色∧v一级毛片| 亚洲av熟女| 麻豆一二三区av精品| 国产精品久久久人人做人人爽| 免费在线观看亚洲国产| 国产精品一区二区精品视频观看| 久久久水蜜桃国产精品网| 99热这里只有精品一区 | 成人亚洲精品一区在线观看| 中文字幕最新亚洲高清| 男女午夜视频在线观看| 大香蕉久久成人网| 岛国在线观看网站| 淫秽高清视频在线观看| 国产又黄又爽又无遮挡在线| 精品国产一区二区三区四区第35| 国产成人精品久久二区二区91| 一级毛片高清免费大全| 国产一卡二卡三卡精品| 精品欧美一区二区三区在线| 国产精品久久久久久亚洲av鲁大| 亚洲色图 男人天堂 中文字幕| 一级黄色大片毛片| 久久久精品欧美日韩精品| 两个人看的免费小视频| 国产又爽黄色视频| 后天国语完整版免费观看| 精品国内亚洲2022精品成人| 啦啦啦免费观看视频1| 制服诱惑二区| 熟女电影av网| 老鸭窝网址在线观看| 美国免费a级毛片| 亚洲狠狠婷婷综合久久图片| 一级毛片高清免费大全| 91麻豆精品激情在线观看国产| 亚洲第一欧美日韩一区二区三区| 麻豆久久精品国产亚洲av| cao死你这个sao货| 两性午夜刺激爽爽歪歪视频在线观看 | 夜夜躁狠狠躁天天躁| 丰满的人妻完整版| 国产亚洲欧美精品永久| 午夜福利高清视频| 色精品久久人妻99蜜桃| 欧美乱码精品一区二区三区| 久久久国产精品麻豆| 啦啦啦韩国在线观看视频| 99精品欧美一区二区三区四区| 丰满人妻熟妇乱又伦精品不卡| 久久狼人影院| 国产区一区二久久| 韩国精品一区二区三区| 欧美成狂野欧美在线观看| 色综合婷婷激情| 国产精品,欧美在线| 亚洲欧美精品综合久久99| 久久久国产欧美日韩av| 18禁黄网站禁片午夜丰满| 91字幕亚洲| 国产成人一区二区三区免费视频网站| 亚洲一区二区三区色噜噜| 老鸭窝网址在线观看| 欧美激情久久久久久爽电影| 天天添夜夜摸| 亚洲av片天天在线观看| 久久久久久久午夜电影| 99精品在免费线老司机午夜| 国产精品二区激情视频| 欧美久久黑人一区二区| 欧美午夜高清在线| www.熟女人妻精品国产| 久久精品aⅴ一区二区三区四区| 久久久国产成人精品二区| www.自偷自拍.com| 欧美人与性动交α欧美精品济南到| 日本黄色视频三级网站网址| 99riav亚洲国产免费| 成人国产综合亚洲| 极品教师在线免费播放| 热re99久久国产66热| 久久香蕉国产精品| 中文字幕久久专区| 亚洲,欧美精品.| 亚洲精品国产一区二区精华液| 亚洲美女黄片视频| 99久久国产精品久久久| 亚洲专区中文字幕在线| 亚洲色图 男人天堂 中文字幕| 亚洲中文字幕日韩| 精品欧美国产一区二区三| 国产成人欧美| av视频在线观看入口| 欧美不卡视频在线免费观看 | 欧美黄色片欧美黄色片| 九色国产91popny在线| 宅男免费午夜| 国产又黄又爽又无遮挡在线| 国产精品久久久久久精品电影 | 久久国产乱子伦精品免费另类| 欧美色欧美亚洲另类二区| 日本五十路高清| 日本撒尿小便嘘嘘汇集6| 国产精品亚洲美女久久久| 国产精品自产拍在线观看55亚洲| 国产成人精品久久二区二区免费| 国产精品日韩av在线免费观看| 黄色毛片三级朝国网站| 成人免费观看视频高清| 波多野结衣巨乳人妻| 亚洲av电影在线进入| 在线国产一区二区在线| 久久久国产精品麻豆| 久久久久久久久中文| 一个人免费在线观看的高清视频| 搡老熟女国产l中国老女人| 91av网站免费观看| 免费在线观看视频国产中文字幕亚洲| 久久久精品欧美日韩精品| 欧美绝顶高潮抽搐喷水| 免费搜索国产男女视频| 亚洲精品一卡2卡三卡4卡5卡| 国产精华一区二区三区| 久久婷婷成人综合色麻豆| 午夜激情福利司机影院|