• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Incorporation of Parameter Uncertainty into Spatial Interpolation Using Bayesian Trans-Gaussian Kriging

    2015-02-24 03:39:51JoonJinSONGSoohyunKWONandGyuWonLEE
    Advances in Atmospheric Sciences 2015年3期

    Joon Jin SONG,Soohyun KWON,and GyuWon LEE?

    1Department of Statistical Science,Baylor University,USA

    2Department of Astronomy and Atmospheric Sciences,Research and Training Team for Future Creative Astrophysicists and Cosmologist,Kyungpook National University,Republic of Korea

    Incorporation of Parameter Uncertainty into Spatial Interpolation Using Bayesian Trans-Gaussian Kriging

    Joon Jin SONG1,Soohyun KWON2,and GyuWon LEE?2

    1Department of Statistical Science,Baylor University,USA

    2Department of Astronomy and Atmospheric Sciences,Research and Training Team for Future Creative Astrophysicists and Cosmologist,Kyungpook National University,Republic of Korea

    Quantitative precipitation estimation(QPE)plays an important role in meteorological and hydrological applications. Ground-based telemetered rain gauges are widely used to collect precipitation measurements.Spatial interpolation methods are commonly employed to estimate precipitation felds covering non-observed locations.Kriging is a simple and popular geostatistical interpolation method,but ithastwo known problems:uncertainty underestimation andviolation of assumptions. This paper tackles these problems and seeks an optimal spatial interpolation for QPE in order to enhance spatial interpolation through appropriately assessing prediction uncertainty and fulflling the required assumptions.To this end,several methods are tested:transformation,detrending,multiple spatial correlation functions,and Bayesian kriging.In particular,we focus on a short-term and time-specifc rather than a long-term and event-specifc analysis.This paper analyzes a stratiform rain event with an embedded convection linked to the passing monsoon front on the 23 August 2012.Data from a total of 100 automatic weather stations are used,and the rainfall intensities are calculated from the difference of 15 minute accumulated rainfall observed every 1 minute.The one-hour average rainfall intensity is then calculated to minimize the measurement random error.Cross-validation is carried out for evaluating the interpolation methods at regional and local levels.As a result, transformation is found to play an important role in improving spatial interpolation and uncertainty assessment,and Bayesian methods generally outperform traditional ones in terms of the criteria.

    precipitation,kriging,transformation,Bayesian kriging,detrend,Korea

    1. Introduction

    Quantitative precipitation estimation(QPE)plays an important role in meteorological and hydrological applications. Rain gaugesare widely used to collect precipitationmeasurements dueto certainadvantages.Forinstance,rain gaugesdirectlymeasurerainfallonthe ground,thusprovidingaccurate ground-level precipitation observations with limited error.

    Precipitation varies signifcantly in time and space. Hence,spatial interpolation methods are commonly employedto estimate precipitationin locationslackingmeasurement equipment.Examples of such interpolationmethodsinclude inverse distance weighting(Franke,1982),local polynomial(Yilmaz,2007),and radial basis function(Carlson and Foley,1991).Spatial interpolation methods are typically classifed into two categories:deterministic and stochastic. The deterministic methods provide no assessment of possible errors,while the stochastic methods offer probabilisticestimates(Dirks et al.,1998;Nalder and Wein,1998;Buytaert et al.,2006;Basistha et al.,2008;Ly et al.,2011).In this paper,we focus on geostatistical stochastic methods,in particular ordinary kriging(OK)and its variants are considered as a spatial interpolation tool.

    Kriging is a simple and popular geostatistical interpolation method.There are several variants,such as simple kriging,ordinary kriging,universal kriging,and indicator kriging(Cressie,1993;Schabenberger and Gotway,2004).This paper tackles two problems that are often neglected in kriging analysis—uncertainty underestimation and violation of assumptions—in a single framework.

    Although kriging is widely used for spatial interpolation, the spatial structure of the underlying process is presumed known,leading to a plug-in or two-stage procedure.Hence, kriging is often performed after estimating the parameters of the spatial structure.In this framework,the uncertainty in spatial interpolation is often underestimated because the procedureignoresuncertaintyintheparameterestimationrelated to spatial structure,as if the parameters were the true values.This is an optimistic assessment of predictive accuracy.To overcome this problem,there are several ways to account for the uncertainty,including bootstrapping(Wang and Wall, 2003)and Bayesian statistics(Diggle et al.,1998;Handcock and Stein,1993).The Bayesian approach allows explicit accounting of uncertainties in the model parameters by treating them as random quantities,rather than as unknown constants as in the classical approach.Within this framework, parameter estimation and prediction can be conducted simultaneously without the separation in the two-stage procedure above.This framework accounts for the uncertainty ignored by model parameterestimation,leading to more realistic spatial prediction,with better uncertainty assessment.In addition,any a priori knowledge about the unknown quantities can be incorporated into the inference.

    The second problem is that spatial data sets in practice often violate the assumptions required for kriging,and it is neglected in spatial analysis.Kriging may be used to fnd the best linear unbiased predictor(BLUP),as it fully complies with the validity of all the required assumptions, such as normality,stationarity,and homoscedasticity(Isaaks and Srivastava,1989).Furthermore,the effect of violating the assumption on spatial prediction would be substantial.This paper will investigate suitable remedies for the violations.

    The main objective of this study is to obtain an optimal spatial interpolation for QPE to assess prediction uncertainty appropriately and fulfll the required assumptions. To this end,we compare several kriging variants:(1)transformation;(2)detrending;(3)spatial correlation function; and(4)Bayesian kriging.Very few studies have explored these issues simultaneously in a single framework.We focus on a short-term and time-specifc analysis rather than longterm and event-specifc ones.The data and methodology are shown in section 2 and the analysis results are discussed in section 3.

    2. Data and method

    2.1.Data and pre-processing

    The rain gauge data are collected by tipping bucket rain gaugesin an AutomaticWeather System(AWS)with 0.5 mm resolution.Thus,0.5 mm h-1is used as the cut-off threshold to reject dry areas experiencing no rain from the analysis.A total of 100 AWS stations are used over the area of(34.33°–37.03°N,126.84°–128.25°E).The rainfall intensities are calculated from the difference between the AWS-observed 15 minute accumulated rainfall amounts every minute.The one hour average rainfall intensity is calculated to minimize the measurement random error.Figure 1 displays the locations of the rain gauges in the study area.The event to be analyzed is a stratiform precipitation event with embedded convection related to the passage of the monsoon front that occurred on 23 August 2012.The convective line developed over the southeast of the domain associated with the monsoon front(Fig.2).Two lines intensifed from 0600–0900 LST,and the systems became weaker and spread widely.The rain band moved southeast to northwest.The total rainfall amounts were recorded up to a maximum of 173 mm in the analysis region.

    The precipitation data are summarized in Table 1.Since only wet stations are used in the analysis,the number of stations considered varies from 33 to 76 over the time steps of thestudyperiod.Therewas intenseprecipitationduringsome time steps,e.g.time steps 4(42 mm h-1),6(59.5 mm h-1), and 13(84.5 mm h-1).Data variation,measured by the standarddeviation(SD),wasnotconstantovertime,rangingfrom 1.402 mm h-1to 10.262 mm h-1.This fnding motivates hourly-specifc spatial analysis rather than aggregated analysis over all time steps in a single event.

    2.2.Transformation

    Some inherent characteristics of precipitation lead to violation of the normality and constant variance(homoscedasticity)conditionsnecessary for OK to be BLUP.For instance, precipitation data are commonly skewed,due to their intermittency;data transformations have been commonly adopted to remedy this.Although square root and logarithmic transformations have been used(e.g.,Schuurmans et al.,2007; Verworn and Haberlandt,2011),they do not always suffciently account for the departure from the assumptions.An alternative option is the family of power transformations, including the Box–Cox transformation,which is the mostwidely used(Box and Cox,1964).This is given by:

    Table 1.Summary of the 24 hour precipitation data.Q1 is quartile 1,Q3 is quartile 3,Max is maximum,and SD is standard deviation.

    whereZis the transformed data,Yis the original data larger than the threshold,andλis the transformation parameter.This transformation is typically applied to positive data,which exclude dry areas in this study.The transformation is data-driven because the transformation parameter is determined according to profle log-likelihoods over the value within some ranges.In this paper,we consider a timespecifc rather than an event-specifc transformation,because the same transformation over time in an event seems to be unreasonable due to variation of the precipitation process.

    2.3.Variogram model

    Kriging requires spatial pattern information.An empirical variogram is frst computed and ftted to a theoretical variogram in order to estimate spatial parameters,such as sill, range,and nugget,via

    whereN(h)is the set of pairs of observationsZ(si)andZ(sj) such that distance between two locationsd(si,sj)is equal to spatiallaghand|N(h)|is thenumberofthepairs.Variogrambased parameter estimation is generally ineffcient because it is based on the smoothed variogram,which is not the original but a summary of the data.Likelihood-based methods are a general means to make use of the data generating process,but this approach requires a distributional assumption, such as normality.In this study,we adopt a maximum likelihood estimation that is widely implemented in statistical inference.Maximum likelihood estimators require a spatial distribution to construct the likelihood function.In this case,letZ=(Z(s1),...,Z(sn))Tdenote the vector of transformed observations,with a multivariate normal distribution withmeanμ nnn,andcovariancematrixΣ(θ),wherennnis an×1 vector of ones,andθis the vector of spatial parameters such as partial sill andrange.Theresultinglog-likelihoodfunction is given by

    The maximumlikelihoodestimators can be obtainedby maximizingthe log-likelihoodfunctionwithrespecttotheparametersμandθ.The resulting estimator has meaningful statistical properties under some mild regularity conditions(Cox and Hinkley,1974).

    Exponential and spherical functions have often been used as spatial correlation functions in variogram modeling and kriging analysis(Chil`es and Delfner,1999).In addition to thesefunctions,thecircularcorrelationfunctionisconsidered in this study,a frst in the study of rain.Table 2 presents the forms of the functions.Surprisingly,as shown in the results below,the new correlation function is the most frequentlyselected as the optimal spatial correlation function over time. For every time step,three correlation models are ftted,and one of them is selected according to a model selection criterion,known as the Bayesian Information Criterion(BIC). Therefore,a different correlation model is ftted to each time step.

    The mean of the function often spatially varies over the region of interest,while one of the required assumptions for BLUP is a constant mean.In this case,detrending can deal with the non-constantmean problem.A trend surface is commonly modeled using spatial coordinates or available covariate information,and the residuals between the observations and the ftted trends delineate the spatial structure.As a result,this detrending,or removal of trends,can reduce the variability of the predictive distribution.We examine the effect of detrending on spatial prediction for spatial coordinates,longitude and latitude.

    2.4.Interpolation method

    OK is a linear interpolation method that is unbiased and minimizes the variance of the observations.The weightings of the linear interpolator are found by solving a system of equations with some constraints in orderto achieve the sound properties.Several variants of OK are considered in this study.Trans-Gaussian OK(TOK)is a variant of kriging with a transformed Gaussian random feld when the transformation is known(Cressie,1993).Application of the Box–Cox transformation is assumed to transform non-normally distributed data into a normal distribution.Bayesian OK(BOK) and Bayesian trans-Gaussian OK(BTOK)perform OK and TOK from a Bayesian perspective.The kriging variants with detrending based on spatial coordinates are also considered.

    Bayesian analysis requires estimation of prior distributions for unknown parameters(θ).Combining the likelihood functionL(θ|Z)with a prior distributionP(θ)leads to an expression for the posterior distributionp(θ|Z)via normalized Bayes’Theorem:

    The posterior distribution provides a probability statement about the parameters and allows for uncertainty in allparameters.Similarly,the Bayesian predictive distributionp(Z(s0)|Z)for an arbitrary and unobserved locations0can be obtained as

    Table 2.The three spatial correlation functions;?is a range parameter that varies for each function,andhis spatial lag.

    In this study,we choose non-informative priors due to a lack of a priori information about the parameters.

    2.5.Validation

    Cross-validationis carriedout to evaluate the infuenceof data transformation,detrending,spatial autocorrelation,and different interpolation methods(i.e.classical and Bayesian) on interpolation performance.LetZ(i,k)and?Z(i,k)denote the observed and predicted values from the leave-one-out cross-validation at theith monitoring station in thekth time step,respectively.The mean absolute error(MAE)is then employed to evaluate the quality of the interpolations,

    wherenkis the number of wet stations in thekth time step.This criterion measures the unbiasedness of the crossvalidation prediction.A correlation coeffcient is used to evaluate the agreement between the observed and predicted values,

    To compare the prediction uncertainty,two measures are employed,the length of the prediction interval and the coverage probability.The prediction intervalLkis formed from the predicted value and its prediction error,and a wider interval represents greater uncertainty.The former is the average length of the cross-validation prediction interval over all wet stations at a given time step,

    whereU(i,k)andL(i,k)are the upper and lower bounds of the prediction intervals at stationiat a given time stepk,respectively.Thecoverageprobabilityis computedbycounting how many times the observed values fall in the prediction intervals, whereIA(x)is the indicator function,which is 1 forx∈A, and 0 otherwise.It is expected that the coverage probability is close to the nominal value(e.g,95%).

    The methods considered in this study are evaluated on two spatial scales,regional and local(Xie et al.,2011).The regional-scale evaluation is performed over the entire study area for each time step,while the local-scale evaluation compares the performance of the different spatial interpolation methods at each station over all time steps.

    3. Results

    3.1.Transformation

    Data transformation is employed to examine the assumptions required for the optimal spatial interpolation methods. Most statistical interpolation methods assume data are normally distributed.Figure 3 describes the distributions of raw and transformed precipitation datasets over 24 time steps using boxplots.The raw precipitation data include outliers in all time steps,but not the transformed data.This highlights the advantage of data transformation because outliers easily lead to non-normal data distributions.Robust distributions are more appropriate for data with outliers,such as thetdistribution.

    Other statistical measures and testing are further used to study the impact of the power transformation on distribution normality(Table 3).Skewness is a measure of the extent of symmetry of a distribution,and kurtosis is a descriptor of the shape of a distribution,measuring the peakedness or fatness of a distribution.Positive kurtosis indicates a peaked distribution,while negative kurtosis corresponds to a fat distribution.The normal distribution has zero skewness and kurtosis by defnition.Table 3 reports that positive skewness and large kurtosis are found in raw data over all time steps,indicating asymmetric and positively skewed distributions.This is expected for rainfall data,which are typically skewed toward heavy rain.After transformation,such data have signifcantly reduced kurtosis.For testing normality quantitatively,the Kolmogorov–Smirnov test is performed,and the results are presented in Table 3,before and after transformation.For raw data,none of the stations’data have a normal distribution,although two stations fulfll that assumption at the 0.05 signifcance level,after applying the transformation.Although the remaining stations havep-values less than 0.05,the symmetry is much enhanced in terms of both skewness andkurtosis.Figure4 presentsnormalquantile–quantile plots of the raw and Box–Cox transformed datasets over two timesteps withtransformationparameterestimates.Itis clear that the transformation improves the normality.A signifcant deviation from normality is found in the tails of the distribution of the raw data,though this is greatly reduced in the transformed data.

    3.2.Variogram ftting

    Table 3.Distribution measures and Kolmogorov–Smirnov normality test metrics of the raw and transformed data.The symbol*indicates statistical non-signifcance at the 0.05 level.

    To optimize ftting of the variogram,we consider two potential factors that can improve spatial prediction.The frst is the spatial correlation function,which models spatial structure,and thereforeleads to poorspatial predictionif specifed incorrectly.This effect is more pronounced for classical estimation,whichassumes thattheselectedfunctionis trueinthe predictionstage.Surprisingly,the spatial correlationfunction variessignifcantlyintime.We fndthattheunder-usedcircular correlationfunctionis most suitable(Table4).Detrending does not signifcantly affect the selection,whereas transformation does.

    The signifcance of the trend(i.e.the variation of the mean in space)is investigated at each time step,and Table 5 summarizes the result.Over 67%of raw and 83%of transformed time steps have a signifcant trend effect.This motivates modeling of the trend surface in order to characterize the spatial structure for spatial interpolation.In particular, latitude is an important factor for the modeling trend in this analysis.Figure 1 illustrates the signifcant latitudinal variation of the total rain amount.

    Table 4.Frequency table for the correlation functions selected for every time step.“Raw”is raw data;“Trans”is transformed data;“Trend”is constant mean;“Detrend”is spatially varying mean.

    Table 5.Frequency table for the signifcant trend effects of raw and transformed data for every time step.“None”indicates no variation of mean,while“Lon”or“Lat”indicates the variation mean in the longitudinal or latitudinal direction.

    3.3.Evaluation

    Thecomparisonofdifferentspatial interpolationmethods is shown in terms of MAE in Fig.5 as a box-plot.The BTOK approach results in the smallest median,whereas the TOKD approach has the largest.In general,the Bayesian methods outperform the traditional methods in terms of MAE.The distributions of the MAE values of BTOK and TOK are narrower than those of the other methods.There are no outlying values(circles in Fig.5)of MAE in BTOK and BTOKD.

    The BTOK has the largest correlation coeffcient and the smallest variation.Detrending does not improve the correlation.Particularly,BOKD and BTOKD have low correlation coeffcient values.Overall,the Bayesian methods perform better than the classical methods,in terms of both criteria. In contrast to detrending,transformation enhances the unbiasedness of the spatial interpolation.

    Local-scale evaluationat each rain gaugeis shown in Fig. 6.Similar to the regional scale,transformation-based methods without detrending have,in general,a smaller MAE on the local scale,and Bayesian methods overall outperform the classical methods.TOK and BTOK perform best in terms of the local MAE.As for correlation coeffcients,TOK and BTOK have larger values than the other methods.Detrending has a negative effect on both MAE and the correlation coeffcient,whereas transformation and the Bayesian methods provide some improvement.

    Two aspects of uncertainty estimation are compared. First,the average coverage probabilities for each time step are comparedfor the classical and Bayesianmethodsforeach kriging variant.Second,prediction intervals are constructed with 95%nominal probability.Hence,a good prediction interval has a coverage probability close to the nominal probability.

    Overall,the Bayesian methods generally have reasonable ranges of coverage probability,while the classical methods have some extreme probabilities(Fig.7).The coverageprobabilities for the Bayesian methods(y-axis)are reasonably spread with some consistency,while those of the classical methods range too widely with extreme values.

    The average lengths of the prediction intervals based on the spatial interpolation methods are shown in Fig.8.As addressed earlier,the width of the intervals represents uncertainty in the prediction.As expected,Bayesian methods have generally longer widths than the classical ones,and this indicates that the Bayesian approach evaluates a more realistic uncertaintyin spatial prediction.There is no systematic effect of transformation and detrending on the length.The scatterplot of prediction intervals(Fig.9)ensures that Bayesian methods have longer intervals.There are some signifcantlengthdifferencesbetweenBTOKandTOK.Overall, the Bayesian approaches have realistic and larger uncertainty estimation.Figure 10 presents the spatial precipitation estimated by BTOK for four time steps.

    4. Summary and discussion

    In this paper,we investigate two problems commonly foundand oftenneglectedin the spatial interpolationof QPE: uncertainty underestimation and violation of assumptions, along with their effects on spatial prediction and uncertainty estimation.The methods addressed are considered to resolve the problems,and implemented in a single framework.The proposed method is illustrated with a rain gauge dataset consisting of 100 AWS stations in South Korea.A stratiform precipitation event is analyzed with one hour average rainfall intensity in order to minimize measurement error.The proposed kriging variants are applied to the dataset and compared with several criteria at regional and local levels.

    Overall,the methods improve spatial interpolation.For instance,we fnd that transformation plays an important role in improving spatial interpolation and is not constant over each time and event.Hence,it is challenging to fnd an appropriate transformation for each time step and event.The same transformation is commonly applied to all time steps in the event.Time-specifc transformation is recommended, even though this may demand slightly more computational resources.In summary,a desirablemethodfor a reliable QPE must be fexible and sophisticated enough to account for dynamicprecipitationprocesses,as opposedtoastaticapproach that assumesthe sametransformationorspatial structureover time in a given event.

    As used in this study,parametric spatial functions typically model spatial structure.However,they are often too restrictive to explain the structure adequately.A fexible spatial structure function is necessary to characterize the spatial structure of precipitation,e.g.by using a nonparametric approach(Yao,1998).As a parametric approach,the Mat′ern class of covariance functions is a reasonable alternative(Handcock and Stein,1993).

    Detrending is used as a means of correcting the nonstationarity of the underlying process.In this study,the trend is modeled using only the spatial coordinates,longitude and latitude.Although detrending appears to infuence the selection of the spatial correlation function,this method barely impactsontheevaluationofspatialinterpolation.However,itis possible that detrending can be a powerful tool if the trend is modeled adequately with the other potential variables.For the sake of convenience,only spatial coordinate variables are considered in this study.Elevation and weather radar data could help to characterize the precipitation feld and supplement spatial variation.

    A Bayesian approach is introduced to assess prediction uncertainty related to the uncertaintyof parameter estimation in variogram analysis.There are some obstacles when conducting Bayesian prediction practically,to the frst of which is eliciting prior information.When there is little a priori information about the parameters,a non-informativeor diffuse prior distribution is often chosen regularly.In this case,the subsequentresult is dominatedby likelihoodor data information when the sample size is suffciently large.Furthermore, although the sample size is large in spatial prediction,the effective sample size is much smaller than the original sample size due to the high correlation between the spatial data.It is clear that prior information enhances not only parameter estimation but also the spatial prediction.The second concern is that the Bayesian approach usually requires intensive computationfor evaluatingthe integralrelated to fndingposterior and predictive distribution.If some convenient prior data are used,a conjugate prior distribution,the evaluationbecomes simple because they can be evaluated analytically. Otherwise,more feasible evaluation strategies are necessary, such as Markov chain Monte Carlo(MCMC)methods.For large sample sizes,the problem becomes more serious due to high dimensionality leading to inversion of the high dimension matrix.

    Temporal processes are often modeled to account for the temporal variation of the precipitation process.It is obvious that temporal processes can enhance the modeling and prediction of the underlying process if the level of temporal variation is signifcant and the corresponding temporal process can take account of the variation appropriately.There are a variety of spatial–temporal processes available for this purpose(Guttorpet al.,1994;Cressie andHuang,1999;Genton,2007;Ma,2008).However,it is necessary to be aware that these do not always improve the spatial prediction because complicated models can worsen it.The complexity of the processes also increases the computation time,which can be an important concern in practical operations.

    In QPE,it is usual to observe outliers in the precipitation dataset.Classical variogram estimation is sensitive to outliers,which can propagate in spatial predictions.TOK-and BTOK-transformeddatasets have no outliers.As such,transformation is helpful to not only comply with the required assumptions,but also to deal with outliers.Transformation can also remedy heteroscedasticity,required in kriging for fulflling second-order stationarity(Erdin and Frei,2012).

    Acknowledgements.This work was funded by the Korea Meteorological Administration Research and Development Program (Grant No.CATER 2013-2040).JJS’s research was supported by the Brain Pool program of the Korean Federation of Science and Technology Societies(KOFST)(Grant No.122S-1-3-0422).

    REFERENCES

    Basistha,A.,D.S.Arya,and N.K.Goel,2008:Spatialdistribution of rainfall in Indian Himalayas—A case study of Uttarakhand Region.Water Resour.Manag.,22,1325–1346.

    Box,G.E.P.,andD.R.Cox,1964:Ananalysisof transformations.Journal of the Royal Statistical Society(B),26,211–252.

    Buytaert,W.,R.Celleri,P.Willems,B.de Bi`evre,and G.Wyseure, 2006:Spatial and temporal rainfall variabilityin mountainous areas:A case study from the south Ecuadorian Andes.J.Hydrol.,329,413–421.

    Carlson,R.E.,and T.A.Foley,1991:The parameter R2in multiquadric interpolation.Computers&Mathematics with Applications,21,29–42.

    Chil`es,J.P.,and P.Delfner,1999:Geostatistics:Modeling Spatial Uncertainty.John Wiley and Sons,New York,731 pp.

    Cox,D.R.,and D.V.Hinkley,1979:Theoretical Statistics.Chapman and Hall,London,528 pp.

    Cressie,N.,1993:Statistics for Spatial Data.Wiley-Interscience, 928 pp.

    Cressie,N.,and H.-C.Huang,1999:Classes of nonseparable, spatio-temporal stationary covariance function.Journal of the American Statistical Association,94,1330–1340.

    Diggle,P.J.,J.A.Tawn,and R.A.Moyeed,1998:Model-based geostatistics(with discussion).Applied Statistics,47,299–350.

    Dirks,K.N.,J.E.Hay,C.D.Stow,and D.Harris,1998:Highresolution of rainfall on Norfolk Island,Part II:Interpolation of rainfall data.J.Hydrol.,208,187–193.

    Erdin,R.,and C.Frei,2012:Data transformation and uncertainty in geostatistical combination of radar and rain gauges.J.Hydrometeor.,13,1332–1346.

    Franke,R.,1982:Scattered data interpolation:Test of some methods.Mathematics of Computations,33,181–200.

    Genton,M.G.,2007:Separable approximations of space-time covariance matrices.Environmetrics,18,681–695.

    Guttorp,P.,W.Meiring,and P.D.Sampson,1994:A space-time analysis of ground-level ozone data.Environmetrics,5,241–254.

    Handcock,M.S.,and M.L.Stein,1993:A Bayesian analysis of kriging.Technometrics,35,403–410.

    Isaaks,E.H.,and R.M.Srivastava,1989:Introduction to Applied Geostatistics.Oxford University Press,Oxford,561 pp.

    Ly,S.,C.Charles,and A.Degr′e,2011:Geostatistical interpolation of daily rainfall at catchment scale:The use of several variogram models in the Ourthe and Ambleve catchments,Belgium.Hydrology and Earth System Sciences,15,2259–2274.

    Ma,C.S.,2008:Recent developments on the construction of spatio-temporal covariance models.Stochastic Environmental Research and Risk Assessment,22,S39–S47.

    Nalder,I.A.,and R.W.Wein,1998:Spatial interpolation of climatic Normals:Test of a new method in the Canadian boreal forest.Agricultural and Forest Meteorology,92,211–225.

    Schabenberger,O.,and C.A.Gotway,2004:Statistical Methods for Spatial Data Analysis.Chapman and Hall,512 pp.

    Schuurmans,J.M.,M.F.P.Bierkens,E.J.Pebesma,and R.Uijlenhoet,2007:Automatic prediction of high-resolution daily rainfall felds for multiple extents:The potential of operational radar.J.Hydrometeor.,8,1204–1224.

    Verworn,A.,and U.Haberlandt,2011:Spatial interpolation of hourly rainfall-effect of additional information,variogram inference and storm properties.Hydrology and Earth System Sciences,15,569–584.

    Wang,F.J.,and M.M.Wall,2003:Incorporating parameter uncertainty into prediction intervals for spatial data modeled via a parametric variogram.Journal of Agricultural,Biological, and Environmental Statistics,8,296–309.

    Xie,H.,X.Zhang,B.Yu,and H.Sharif,2011:Performance evaluation of interpolation methods for incorporating rain gauge measurements intoNEXRADprecipitationdata:Acasestudy in the upper Guadalupe river basin.Hydrological Processes, 25,3711–3720.

    Yao,T.,1998:Automatic modeling of(cross)covariance tablesusing fast Fourier transform.Mathematical Geology,30,589–615.

    Yilmaz,H.M.,2007:The effect of interpolation methods in surfacedefnition:Anexperimental study.EarthSurface Process and Landforms,32,1346–1361.

    :Song,J.J.,S.Kwon,and G.W.Lee,2015:Incorporation of parameter uncertainty into spatial interpolation using Bayesian trans-Gaussian kriging.Adv.Atmos Sci.,32(3),413–423,

    10.1007/s00376-014-4040-4.

    (Received 04 March 2014;revised 17 June 2014;accepted 22 July 2014)

    ?Corresponding author:GyuWon LEE

    Email:gyuwon@knu.ac.kr

    国产高清视频在线播放一区| av网站在线播放免费| 国产精品.久久久| 国产不卡一卡二| 老司机靠b影院| 看黄色毛片网站| 伦理电影免费视频| 性少妇av在线| 超色免费av| av超薄肉色丝袜交足视频| 99国产综合亚洲精品| 精品乱码久久久久久99久播| 一区二区日韩欧美中文字幕| 久久久久久久国产电影| 麻豆成人av在线观看| netflix在线观看网站| www.精华液| 午夜精品在线福利| 天天操日日干夜夜撸| 日韩视频一区二区在线观看| 99国产精品免费福利视频| 热99久久久久精品小说推荐| 999精品在线视频| 欧美不卡视频在线免费观看 | 黄色成人免费大全| 国产日韩一区二区三区精品不卡| 大香蕉久久成人网| 中文字幕人妻丝袜制服| 午夜福利在线免费观看网站| 99国产精品免费福利视频| www.999成人在线观看| 亚洲第一青青草原| 在线观看一区二区三区激情| 丁香欧美五月| 国产xxxxx性猛交| 久久人人97超碰香蕉20202| 丰满饥渴人妻一区二区三| 亚洲精品一卡2卡三卡4卡5卡| 免费在线观看视频国产中文字幕亚洲| 韩国av一区二区三区四区| 看黄色毛片网站| 国产1区2区3区精品| 高清av免费在线| av网站在线播放免费| 久久久国产成人精品二区 | 亚洲av日韩在线播放| 中文字幕人妻丝袜一区二区| 欧美日本中文国产一区发布| 国产精品久久久人人做人人爽| 村上凉子中文字幕在线| 亚洲全国av大片| 亚洲精品中文字幕在线视频| 97人妻天天添夜夜摸| 久久精品国产综合久久久| 人人妻人人添人人爽欧美一区卜| 国产日韩一区二区三区精品不卡| 校园春色视频在线观看| 午夜成年电影在线免费观看| 怎么达到女性高潮| 夜夜夜夜夜久久久久| 亚洲人成电影免费在线| 久久香蕉激情| 黄色片一级片一级黄色片| 国产成人av教育| 波多野结衣一区麻豆| 高清黄色对白视频在线免费看| 少妇裸体淫交视频免费看高清 | 视频区图区小说| 欧美丝袜亚洲另类 | 国产三级黄色录像| 高清视频免费观看一区二区| 免费在线观看完整版高清| 国产高清激情床上av| 国产免费av片在线观看野外av| 国产91精品成人一区二区三区| www.999成人在线观看| 视频区欧美日本亚洲| 国产伦人伦偷精品视频| 久久精品国产清高在天天线| 捣出白浆h1v1| 国产精品九九99| 一个人免费在线观看的高清视频| 亚洲中文av在线| 国产av精品麻豆| 国产av精品麻豆| 中文字幕人妻丝袜一区二区| 黄色女人牲交| 亚洲精品粉嫩美女一区| 国产免费现黄频在线看| 99国产精品免费福利视频| 成在线人永久免费视频| 精品国产一区二区三区久久久樱花| 99国产综合亚洲精品| 成在线人永久免费视频| 亚洲av熟女| 黄片大片在线免费观看| 成人手机av| 欧美日韩成人在线一区二区| 男女下面插进去视频免费观看| 啦啦啦免费观看视频1| 十八禁高潮呻吟视频| 欧美+亚洲+日韩+国产| 天天躁夜夜躁狠狠躁躁| 三上悠亚av全集在线观看| 欧美+亚洲+日韩+国产| 久久精品熟女亚洲av麻豆精品| 国产真人三级小视频在线观看| 一级a爱片免费观看的视频| 亚洲第一av免费看| 精品一品国产午夜福利视频| 人妻 亚洲 视频| 亚洲成av片中文字幕在线观看| 国产精品久久久av美女十八| 亚洲伊人色综图| 一进一出抽搐gif免费好疼 | 女性被躁到高潮视频| 中文字幕精品免费在线观看视频| 看片在线看免费视频| 日日摸夜夜添夜夜添小说| 王馨瑶露胸无遮挡在线观看| 天天躁日日躁夜夜躁夜夜| 亚洲av片天天在线观看| netflix在线观看网站| 99国产精品99久久久久| 91老司机精品| 久久热在线av| 久久久久久久久免费视频了| 久久人人爽av亚洲精品天堂| 久久国产精品人妻蜜桃| 成熟少妇高潮喷水视频| 精品欧美一区二区三区在线| 国产精品免费大片| 成人18禁高潮啪啪吃奶动态图| 亚洲第一欧美日韩一区二区三区| 国产精品久久电影中文字幕 | 亚洲精品av麻豆狂野| 高潮久久久久久久久久久不卡| 国产成人av激情在线播放| √禁漫天堂资源中文www| 国产激情久久老熟女| 久久草成人影院| 免费久久久久久久精品成人欧美视频| 老司机午夜福利在线观看视频| 午夜久久久在线观看| 欧美大码av| 9色porny在线观看| 久久 成人 亚洲| 女性被躁到高潮视频| 激情在线观看视频在线高清 | 国内毛片毛片毛片毛片毛片| 91av网站免费观看| 中亚洲国语对白在线视频| 国产熟女午夜一区二区三区| 欧美成狂野欧美在线观看| 国产成人av教育| 久久精品国产99精品国产亚洲性色 | 国产亚洲精品久久久久5区| av超薄肉色丝袜交足视频| 一区在线观看完整版| 777米奇影视久久| xxx96com| 午夜福利影视在线免费观看| 亚洲精品一卡2卡三卡4卡5卡| 18禁观看日本| 老熟妇仑乱视频hdxx| 国产又爽黄色视频| 欧美精品高潮呻吟av久久| 另类亚洲欧美激情| 久久久久久久午夜电影 | 久久久国产精品麻豆| 美女扒开内裤让男人捅视频| 国产成人影院久久av| 操出白浆在线播放| 夜夜夜夜夜久久久久| 人人澡人人妻人| 欧美精品啪啪一区二区三区| 悠悠久久av| 国产亚洲精品第一综合不卡| 久久精品国产亚洲av香蕉五月 | 老司机午夜福利在线观看视频| 久久热在线av| 日日爽夜夜爽网站| 亚洲午夜精品一区,二区,三区| 亚洲精品在线美女| 欧美 日韩 精品 国产| 国产精品久久久av美女十八| 欧美午夜高清在线| 国产伦人伦偷精品视频| 最近最新免费中文字幕在线| 三级毛片av免费| 国产精品免费大片| 成人精品一区二区免费| 色老头精品视频在线观看| 久久人人97超碰香蕉20202| 精品亚洲成国产av| 国产一区在线观看成人免费| netflix在线观看网站| 在线国产一区二区在线| 激情视频va一区二区三区| 国产欧美日韩一区二区三区在线| 老司机深夜福利视频在线观看| 亚洲精品一二三| 黄网站色视频无遮挡免费观看| 欧美日韩av久久| 色婷婷av一区二区三区视频| 精品午夜福利视频在线观看一区| 成人18禁在线播放| 亚洲精品av麻豆狂野| 亚洲av片天天在线观看| 在线观看免费视频日本深夜| 亚洲第一av免费看| 亚洲熟妇中文字幕五十中出 | 午夜福利免费观看在线| 日韩欧美免费精品| 久久九九热精品免费| 久久久国产成人精品二区 | 欧美黄色淫秽网站| 国产成人啪精品午夜网站| 午夜久久久在线观看| 亚洲av片天天在线观看| 黄网站色视频无遮挡免费观看| 久久久国产欧美日韩av| 亚洲成av片中文字幕在线观看| 久久人妻熟女aⅴ| 99香蕉大伊视频| 老司机福利观看| 人人妻人人添人人爽欧美一区卜| 九色亚洲精品在线播放| 亚洲精品在线美女| 亚洲国产精品sss在线观看 | 亚洲精品在线美女| 91字幕亚洲| 午夜福利,免费看| 黑丝袜美女国产一区| 在线观看免费午夜福利视频| 成熟少妇高潮喷水视频| 韩国av一区二区三区四区| 欧美日韩黄片免| 丰满的人妻完整版| 亚洲欧美一区二区三区黑人| 嫁个100分男人电影在线观看| 国产成人欧美在线观看 | 99re6热这里在线精品视频| 在线观看午夜福利视频| av福利片在线| 久久久久精品国产欧美久久久| 亚洲成人手机| 丝袜在线中文字幕| 精品人妻在线不人妻| 国产精品.久久久| 久久九九热精品免费| 精品久久蜜臀av无| 黄色怎么调成土黄色| 老熟妇乱子伦视频在线观看| 日韩免费av在线播放| 午夜福利欧美成人| 国产精品av久久久久免费| 久久天躁狠狠躁夜夜2o2o| 国产亚洲欧美98| 国产成人精品久久二区二区免费| 精品一区二区三区视频在线观看免费 | 欧美乱妇无乱码| 色尼玛亚洲综合影院| 无限看片的www在线观看| 亚洲欧美日韩另类电影网站| 黑人巨大精品欧美一区二区蜜桃| 午夜福利乱码中文字幕| 大陆偷拍与自拍| 极品人妻少妇av视频| 国精品久久久久久国模美| 在线观看免费视频日本深夜| 国产一区有黄有色的免费视频| 黑丝袜美女国产一区| 久久香蕉激情| xxx96com| 黄色成人免费大全| 韩国精品一区二区三区| 国产在线观看jvid| 99精国产麻豆久久婷婷| 日本一区二区免费在线视频| 久久久久精品国产欧美久久久| 久久久久国产精品人妻aⅴ院 | 黄色片一级片一级黄色片| 久久人人爽av亚洲精品天堂| 午夜激情av网站| 黑人巨大精品欧美一区二区蜜桃| 国产不卡av网站在线观看| 51午夜福利影视在线观看| 后天国语完整版免费观看| 成人影院久久| 亚洲专区国产一区二区| 一a级毛片在线观看| 国产精品久久久久久人妻精品电影| 亚洲综合色网址| 久久 成人 亚洲| 12—13女人毛片做爰片一| 亚洲av美国av| 黄片大片在线免费观看| 丰满迷人的少妇在线观看| 一级黄色大片毛片| 久久精品国产清高在天天线| 中文欧美无线码| 国产99白浆流出| 99国产极品粉嫩在线观看| 成人亚洲精品一区在线观看| 久久久精品国产亚洲av高清涩受| 高清在线国产一区| 国产亚洲av高清不卡| 丁香欧美五月| 国产有黄有色有爽视频| 国产亚洲欧美98| 一本大道久久a久久精品| 久久国产乱子伦精品免费另类| 久久人妻熟女aⅴ| 少妇的丰满在线观看| 真人做人爱边吃奶动态| 免费在线观看影片大全网站| www.999成人在线观看| 欧美乱妇无乱码| 国产精品电影一区二区三区 | 一级,二级,三级黄色视频| 多毛熟女@视频| 精品少妇一区二区三区视频日本电影| av视频免费观看在线观看| 91国产中文字幕| 丰满人妻熟妇乱又伦精品不卡| 在线观看66精品国产| 18禁国产床啪视频网站| 精品免费久久久久久久清纯 | 日韩中文字幕欧美一区二区| 美女高潮喷水抽搐中文字幕| 国产成人影院久久av| 两个人看的免费小视频| 不卡av一区二区三区| 99久久人妻综合| 午夜福利在线免费观看网站| 99精品久久久久人妻精品| 黄色丝袜av网址大全| 亚洲欧美激情在线| 一区二区日韩欧美中文字幕| 免费观看人在逋| 日本vs欧美在线观看视频| 一级毛片精品| 精品人妻1区二区| 久久人妻福利社区极品人妻图片| 操美女的视频在线观看| 一级毛片精品| 极品少妇高潮喷水抽搐| 亚洲一码二码三码区别大吗| 欧美黄色淫秽网站| 亚洲国产精品合色在线| 午夜免费观看网址| 中文字幕人妻熟女乱码| 久久午夜综合久久蜜桃| 在线观看免费视频日本深夜| 成年人免费黄色播放视频| 69精品国产乱码久久久| 看片在线看免费视频| av中文乱码字幕在线| 51午夜福利影视在线观看| 久久草成人影院| 一级a爱视频在线免费观看| 国产主播在线观看一区二区| 啪啪无遮挡十八禁网站| 制服人妻中文乱码| 精品少妇一区二区三区视频日本电影| 人妻一区二区av| 亚洲人成伊人成综合网2020| 亚洲成人手机| 啦啦啦免费观看视频1| a级毛片在线看网站| 亚洲情色 制服丝袜| 老熟妇仑乱视频hdxx| 亚洲黑人精品在线| 91老司机精品| 亚洲精品一卡2卡三卡4卡5卡| 午夜福利,免费看| av福利片在线| 欧美 亚洲 国产 日韩一| 久久久精品免费免费高清| 国产成人影院久久av| 亚洲精品av麻豆狂野| 亚洲 国产 在线| 天堂中文最新版在线下载| 成人18禁在线播放| 妹子高潮喷水视频| 久久精品人人爽人人爽视色| 精品熟女少妇八av免费久了| 亚洲av片天天在线观看| 精品久久久久久,| 在线看a的网站| 高清在线国产一区| 国产一区二区三区视频了| 欧美日韩中文字幕国产精品一区二区三区 | 精品久久久久久久毛片微露脸| 777米奇影视久久| 麻豆成人av在线观看| 19禁男女啪啪无遮挡网站| 1024视频免费在线观看| 亚洲国产中文字幕在线视频| 欧美日韩av久久| 日本精品一区二区三区蜜桃| 热99re8久久精品国产| 黑人操中国人逼视频| 国产在线观看jvid| 大型av网站在线播放| 精品第一国产精品| 久久久久久免费高清国产稀缺| 另类亚洲欧美激情| 制服诱惑二区| 午夜免费鲁丝| av线在线观看网站| 日韩欧美免费精品| 丰满人妻熟妇乱又伦精品不卡| 国产无遮挡羞羞视频在线观看| 成人亚洲精品一区在线观看| 高清av免费在线| 婷婷成人精品国产| 亚洲精品国产精品久久久不卡| 亚洲免费av在线视频| 看片在线看免费视频| 亚洲欧美色中文字幕在线| 亚洲av第一区精品v没综合| 中文字幕最新亚洲高清| 激情视频va一区二区三区| 午夜免费观看网址| 很黄的视频免费| 欧美精品啪啪一区二区三区| 日韩精品免费视频一区二区三区| 十八禁人妻一区二区| 国产激情欧美一区二区| 国产在线一区二区三区精| 国产成人精品无人区| 精品国内亚洲2022精品成人 | 亚洲视频免费观看视频| 国产日韩一区二区三区精品不卡| 精品卡一卡二卡四卡免费| 日韩 欧美 亚洲 中文字幕| a级毛片在线看网站| 丁香六月欧美| www.自偷自拍.com| 亚洲七黄色美女视频| av网站在线播放免费| 亚洲欧美精品综合一区二区三区| 少妇被粗大的猛进出69影院| 桃红色精品国产亚洲av| 男男h啪啪无遮挡| 在线永久观看黄色视频| 精品熟女少妇八av免费久了| 亚洲国产精品合色在线| 亚洲av成人av| 国产精品亚洲av一区麻豆| 国产99久久九九免费精品| 99国产精品99久久久久| 国产淫语在线视频| 91国产中文字幕| 热re99久久国产66热| 巨乳人妻的诱惑在线观看| 十八禁人妻一区二区| 啦啦啦在线免费观看视频4| 免费少妇av软件| 欧美色视频一区免费| 亚洲国产精品合色在线| 天堂√8在线中文| av网站在线播放免费| av免费在线观看网站| 19禁男女啪啪无遮挡网站| 少妇的丰满在线观看| 亚洲熟女毛片儿| 国产成人精品在线电影| 国产精品 欧美亚洲| 黄色 视频免费看| 狠狠狠狠99中文字幕| 成人精品一区二区免费| 亚洲精品久久成人aⅴ小说| 在线观看日韩欧美| 久久久久国产精品人妻aⅴ院 | 久久国产精品人妻蜜桃| 亚洲国产毛片av蜜桃av| 一区二区三区精品91| 欧美日韩瑟瑟在线播放| 国产免费现黄频在线看| 欧美中文综合在线视频| 天天躁夜夜躁狠狠躁躁| a级毛片在线看网站| 久久精品国产综合久久久| 他把我摸到了高潮在线观看| 中文字幕色久视频| 国产亚洲一区二区精品| 中文字幕人妻丝袜制服| 久久青草综合色| 少妇被粗大的猛进出69影院| 久99久视频精品免费| 麻豆乱淫一区二区| 免费人成视频x8x8入口观看| 中文字幕av电影在线播放| 国产精品国产av在线观看| 很黄的视频免费| 欧美日韩亚洲高清精品| 久久天躁狠狠躁夜夜2o2o| 国产精品乱码一区二三区的特点 | 亚洲专区字幕在线| 国产精品自产拍在线观看55亚洲 | 国产精品九九99| 国产成人av激情在线播放| 国产成人系列免费观看| 日韩有码中文字幕| 欧美成人午夜精品| 久久人妻熟女aⅴ| 搡老熟女国产l中国老女人| 亚洲中文av在线| 一级毛片精品| 岛国毛片在线播放| 精品第一国产精品| 一a级毛片在线观看| 色婷婷av一区二区三区视频| 久久人人97超碰香蕉20202| 欧美日韩成人在线一区二区| 欧美不卡视频在线免费观看 | 午夜两性在线视频| 老鸭窝网址在线观看| 天天躁日日躁夜夜躁夜夜| 欧美激情极品国产一区二区三区| 制服人妻中文乱码| 日韩精品免费视频一区二区三区| 国产区一区二久久| av天堂在线播放| 久久久精品国产亚洲av高清涩受| 婷婷成人精品国产| 欧美日韩成人在线一区二区| 水蜜桃什么品种好| 天天操日日干夜夜撸| 在线十欧美十亚洲十日本专区| 90打野战视频偷拍视频| 高潮久久久久久久久久久不卡| 人妻一区二区av| 国产在线精品亚洲第一网站| 欧美黄色片欧美黄色片| 免费av中文字幕在线| 免费少妇av软件| 少妇的丰满在线观看| 悠悠久久av| 狠狠婷婷综合久久久久久88av| 高清黄色对白视频在线免费看| 麻豆国产av国片精品| 一边摸一边抽搐一进一出视频| 国产亚洲欧美在线一区二区| 国产成人啪精品午夜网站| 黑人巨大精品欧美一区二区mp4| 叶爱在线成人免费视频播放| 国产高清国产精品国产三级| 在线视频色国产色| 国产麻豆69| 国产精品国产高清国产av | 久99久视频精品免费| 亚洲成人免费电影在线观看| 国产亚洲精品久久久久5区| 久久 成人 亚洲| 亚洲av成人av| 国产亚洲欧美精品永久| 婷婷精品国产亚洲av在线 | 日韩免费高清中文字幕av| 捣出白浆h1v1| 中文字幕色久视频| 精品一区二区三区视频在线观看免费 | 麻豆国产av国片精品| www日本在线高清视频| 黄片小视频在线播放| 日本撒尿小便嘘嘘汇集6| 一区二区日韩欧美中文字幕| 午夜福利在线观看吧| 免费日韩欧美在线观看| 国产一区二区激情短视频| 久久ye,这里只有精品| av欧美777| 免费av中文字幕在线| 三上悠亚av全集在线观看| 久久精品91无色码中文字幕| 亚洲欧美精品综合一区二区三区| 国产三级黄色录像| 丰满迷人的少妇在线观看| 国产av一区二区精品久久| 中文字幕色久视频| 激情视频va一区二区三区| 黑丝袜美女国产一区| 99国产精品99久久久久| 亚洲av美国av| 亚洲欧洲精品一区二区精品久久久| 国产av一区二区精品久久| 久久久久国产一级毛片高清牌| 新久久久久国产一级毛片| 免费在线观看黄色视频的| 九色亚洲精品在线播放| 美女高潮到喷水免费观看| 美女扒开内裤让男人捅视频| 黑人巨大精品欧美一区二区蜜桃| 19禁男女啪啪无遮挡网站| 色尼玛亚洲综合影院| 欧美日韩亚洲高清精品| 一区二区三区精品91| 亚洲熟女毛片儿| 国产伦人伦偷精品视频| 久久 成人 亚洲| 久久久久久久午夜电影 | 国产亚洲欧美在线一区二区| 日日摸夜夜添夜夜添小说| 欧美黄色片欧美黄色片| 伦理电影免费视频| 精品一品国产午夜福利视频| 欧美国产精品一级二级三级| 新久久久久国产一级毛片| 18在线观看网站| 亚洲欧美日韩另类电影网站| 国产精品久久视频播放| 国产视频一区二区在线看|