夏楠 趙宏偉 呂艷超 趙振東 鄒德堂 劉化龍 王敬國 賈琰
(東北農(nóng)業(yè)大學 農(nóng)學院/水稻研究所, 哈爾濱150030;*通訊聯(lián)系人, E-mail:hongweizhao@163.com)
?
灌漿結實期冷水脅迫對寒地粳稻籽粒淀粉積累及相關酶活性的影響
夏楠趙宏偉*呂艷超趙振東鄒德堂劉化龍王敬國賈琰
(東北農(nóng)業(yè)大學 農(nóng)學院/水稻研究所, 哈爾濱150030;*通訊聯(lián)系人, E-mail:hongweizhao@163.com)
夏楠,趙宏偉,呂艷超,等. 灌漿結實期冷水脅迫對寒地粳稻籽粒淀粉積累及相關酶活性的影響. 中國水稻科學, 2016, 30(1): 62-74.
摘要:采用寒地粳稻田間試驗,研究灌漿結實期冷水脅迫(17℃,持續(xù)3,6,9,12,15 d)對三個不同寒地粳稻品種(東農(nóng)428、松粳10、龍稻7號)籽粒淀粉合成與積累、產(chǎn)量構成因素的影響,并探討冷水脅迫下淀粉合成關鍵酶活性變化與淀粉組分及其含量的關系。結果表明,與對照相比,灌漿結實期17℃冷水脅迫下,不同寒地粳稻品種灌漿結實期可溶性淀粉合成酶(SSS)活性、淀粉分支酶(SBE)活性降低,籽??偟矸酆俊⒅ф湹矸酆匡@著下降,直鏈淀粉含量顯著上升。相關分析表明,SSS活性、SBE活性與淀粉及其淀粉組分密切相關,對淀粉及淀粉組分含量變化均有同等重要的作用。同時,冷水脅迫下,灌漿結實期不同寒地粳稻品種的每穗實粒數(shù)、千粒重及結實率均顯著降低,隨著冷水脅迫時間的延長,不同寒地粳稻品種各指標的變化幅度逐漸加大。寒地粳稻產(chǎn)量構成因素各相關指標是不同耐冷性品種響應冷水脅迫的差異產(chǎn)物, 可用于耐冷性鑒定。從不同寒地粳稻品種對冷水脅迫的反應指數(shù)看,松粳10受影響最大,東農(nóng)428受影響最小,龍稻7號介于二者之間。
關鍵詞:粳稻; 灌漿結實期; 冷水脅迫; 淀粉合成關鍵酶; 淀粉
淀粉一般占糙米重的90%以上,籽粒的充實過程主要是淀粉合成積累的過程[1]。水稻籽粒淀粉的積累及含量主要受品種遺傳特性的影響,但環(huán)境條件對其也有很大作用[2]。在諸多環(huán)境生態(tài)因子中,溫度特別是灌漿結實期的溫度是影響稻米品質(zhì)的首要環(huán)境因子[3-4]。近年來,全國范圍內(nèi)低溫冷害時有發(fā)生,據(jù)統(tǒng)計,平均每3~5年就發(fā)生一次較大規(guī)模的冷害,每年因低溫冷害損失的稻谷達30億~50億kg[5],造成嚴重的產(chǎn)量及經(jīng)濟損失。黑龍江省作為主要寒地稻作區(qū),低溫冷害頻繁發(fā)生,已成為限制黑龍江省水稻生產(chǎn)發(fā)展的主要因素之一[6]。
淀粉合成過程中,可溶性淀粉合成酶(SSS)和淀粉分支酶(SBE)均起著重要作用[7-9]。SSS是催化淀粉合成積累的一個關鍵酶,它通常是以游離態(tài)存在于胚乳淀粉體中,催化腺苷二磷酸葡萄糖與淀粉引物(葡聚糖)反應,將一個葡萄糖分子轉移到淀粉引物上,使淀粉鏈延長[10]。籽粒中SSS活性越強,催化合成淀粉能力就越強[11],并對籽粒中直鏈淀粉與支鏈淀粉比率也有影響[12]。SBE不僅參與形成α-1,6糖苷支鏈合成支鏈淀粉,而且通過產(chǎn)生新的非還原末端產(chǎn)物作為α-葡聚糖受體,有利于淀粉合成酶的催化反應,提高淀粉的生物合成速率[13-15],是影響水稻籽粒中淀粉組成與結構的關鍵酶。
溫度對籽粒淀粉形成關鍵酶活性及稻米蒸煮食味品質(zhì)的影響國內(nèi)外已有很多報道,但多為高溫對水稻淀粉形成關鍵酶活性及稻米品質(zhì)的影響[16-19]。金正勛等[16]認為高溫提高了可溶性淀粉合成酶活性,使稻米蒸煮食味品質(zhì)變劣;呂艷梅等[19]研究表明齊穗后高溫明顯降低籽??偟矸酆椭ф湹矸酆浚岣咧辨湹矸酆?,對成熟期籽粒淀粉的組成比例造成一定影響。而前人對水稻低溫冷害的研究主要集中在不同生育期低溫對稻米品質(zhì)的影響。武琦發(fā)現(xiàn)不同時期低溫脅迫對水稻淀粉結構產(chǎn)生不同程度的影響,灌漿期影響最為嚴重,水稻灌漿受阻,灌漿速率放緩,灌漿相關酶活性降低[20]。而宋廣樹等[21]認為品種是決定稻米營養(yǎng)品質(zhì)的關鍵因素,不同時期低溫處理下籽粒蛋白質(zhì)、脂肪和直鏈淀粉含量均降低,降幅均表現(xiàn)出品種間差異大于處理時期間差異。盡管前人對低溫冷害有一些報道,但對灌漿結實期低溫脅迫下籽粒淀粉形成關鍵酶活性變化與淀粉合成之間的關系缺乏系統(tǒng)的研究,并且通過人工氣候箱進行控溫,與實際大田生產(chǎn)有一定差距。因此,本研究以黑龍江省不同粳稻品種東農(nóng)428、松粳10、龍稻7號為試驗材料,在大田條件下采用冷水灌溉的方式模擬自然低溫,研究灌漿結實期低溫脅迫對籽粒淀粉合成關鍵酶活性及淀粉組分含量的影響,明確淀粉合成關鍵酶的調(diào)控效應,以期豐富寒地粳稻耐冷研究的生理基礎,為黑龍江省寒地粳稻高產(chǎn)優(yōu)質(zhì)生產(chǎn)及預防低溫冷害提供理論依據(jù)。
1材料與方法
1.1試驗地點與條件
試驗于2014年在東北農(nóng)業(yè)大學香坊試驗實習基地進行。于2014年4月20日播種,5月25日移栽。供試土壤為黑土,基礎肥力如下:土壤有機質(zhì)22.3 g/kg,全氮 1.2 g/kg,全磷0.4 g/kg,緩效鉀706.5 mg/kg,堿解氮129.8 mg/kg,速效磷 18.7 mg/kg,速效鉀 99.1 mg/kg,土壤pH 值6.8。
1.2試驗材料與設計
選用黑龍江省第二積溫帶粳稻品種東農(nóng)428、松粳10和龍稻7號為供試材料。東農(nóng)428是由東北農(nóng)業(yè)大學農(nóng)學院水稻研究所2009年以東農(nóng)423為父本,以五優(yōu)稻1號為母本經(jīng)系譜法選育而成,生育期138 d左右,需活動積溫2520℃左右。松粳10是由黑龍江省農(nóng)業(yè)科學院第二水稻研究所2005年以合江20為父本,以遼粳5號為母本經(jīng)系譜法選育而成,生育期137 d,需活動積溫2450~2500℃左右。龍稻7號是由黑龍江省農(nóng)業(yè)科學院耕作栽培研究所于2006年以父母本均為五優(yōu)稻1號經(jīng)系譜法選育而成,生育期137 d,需活動積溫2500℃左右。
試驗采用裂區(qū)設計,以不同天數(shù)冷水處理為主區(qū),粳稻品種為副區(qū)。在灌漿結實期(水稻植株平均抽穗80%左右)進行冷水灌溉,處理溫度為(17±1)℃[22](接近寒地粳稻灌漿結實期低溫冷害溫度),主區(qū)設6個處理,即連續(xù)冷水灌溉0(正常灌溉)、3、6、9、12、15 d,分別記為D0、D3、D6、D9、D12、D15,主區(qū)四周壘筑土埂并留有通水口,將各主區(qū)隔開。每主區(qū)3次重復。副區(qū)設12行區(qū)(附帶保護行),行長 5 m,行距 30 cm,穴距 13.3 cm,每穴3株。17℃冷水為地下深井水(8℃~9℃)與曬水池中水(22℃~24℃)混合后形成。冷水灌溉時間為每天8:00-18:30。每隔30 min測各小區(qū)平均水溫,并通過調(diào)節(jié)冷水灌入量及水流速度,使冷水處理各小區(qū)水溫維持在17℃左右(冷水處理期間每天6:00和20:00測量各冷水處理區(qū)水溫均維持在16℃~18℃)。正常灌溉為曬水池中水。用Pt100溫度計測量水溫,冠層分析儀測量冠層溫度,田間氣候自動測量儀測量大田氣溫、光照輻射量。冷水脅迫處理期間田間試驗條件見表1。其他管理同一般大田生產(chǎn)。
表1灌漿結實期冷水脅迫處理期間田間試驗條件
Table 1. Field experiment conditions under cold-water stress during grain-filling stage.
試驗處理Treatment水溫Tn/℃空氣溫度Ta/℃冠層溫度Tc/℃上層Upper中層Middle下層Lower熱量Rd/(MJ·m-2·d-1)對照Control23.9±1.524.3±1.625.7±0.425.4±0.624.9±0.515.1±7.0冷水脅迫Cold-waterstress17.2±0.424.1±1.525.2±0.824.8±0.517.6±0.515.0±6.7
1.3試驗方法
1.3.1取樣方法
在齊穗期,各小區(qū)選取生長整齊一致的植株200株掛牌標記。自各處理結束后第2天開始取樣,每隔3d取樣一次,待全部處理結束后,每隔5d取樣一次。晴天上午 9:30-10:30取樣,各小區(qū)選掛牌標記植株3穴,每穴選3穗,取穗中部籽粒用于測定籽粒SSS和SBE活性。每處理3次重復。在上述各小區(qū)同時選取掛牌標記植株3穴,每穴選3穗,取穗中部籽粒,于105℃下殺青 30 min,然后在 80℃恒溫條件下烘干至恒重。粉碎后,過100目篩,存放在干燥器內(nèi),用于籽粒中直鏈淀粉、支鏈淀粉及總淀粉含量的測定。每處理3次重復。同時,在成熟期,每處理取10穴,3次重復。進行室內(nèi)考種,測定并計算每穗實粒數(shù)、千粒重、結實率。
1.3.2測定方法
1.3.2.1籽粒淀粉合成關鍵酶活性測定
1)取籽粒樣品1 g,去殼。在預凍的研缽中研磨,提取介質(zhì)為10 mL緩沖液[100 mmol/LHepes-NaOH (pH 7.6),5 mmol/L MgCl2,5 mmol/L DTT,2% PVP],研磨液在10 000×g、 4℃下離心10 min,上清液即為粗酶液。參照 Douglas等[23]、程方民等[24]方法測定SSS活性。酶活性測定重復3次。
2)稱 2 g左右籽粒用 0.05 mol/L檸檬酸緩沖液(pH7.0)在冰浴中研磨成勻漿(1mL緩沖液研磨,5 mL洗研缽兩次)然后在 12 000×g、 4℃下冷凍離心 20 min,上清液即為酶液。參照李太貴等[25]的方法測定SBE的活性。酶活性測定重復3次。
1.3.2.2籽粒淀粉及其組分含量測定
稱取上述干燥器中過篩籽粒樣品5 g,用乙醇脫脂,從中稱取脫脂樣品0.1 g用于淀粉含量測定,重復3次。參照《糧油籽粒品質(zhì)及其分析技術》[26],采用雙波長法以UV-2450型紫外分光光度計測定籽粒淀粉含量,測定支鏈淀粉的主波長是550 nm,參比波長730 nm;測定直鏈淀粉的主波長是620 nm,參比波長430 nm。
1.3.3計算方法
低溫冷水脅迫下的水稻籽粒淀粉合成關鍵酶活性峰值變化、成熟期籽粒淀粉及其組分含量變化、穗部性狀及產(chǎn)量構成因素相關指標變化用冷水反應指數(shù)(CRI)[27]說明,計算公式如下:
冷水反應指數(shù)(CRI)=冷水處理區(qū)性狀表型值/對照區(qū)性狀表型值×100%。
1.4數(shù)據(jù)分析
均采用 Microsoft Excel 2003 和SPSS 19.0 統(tǒng)計分析數(shù)據(jù)。
2結果與分析
2.1灌漿結實期冷水脅迫對寒地粳稻籽粒淀粉合成關鍵酶活性的影響
2.1.1對可溶性淀粉合成酶(SSS)活性的影響
由圖1可見,灌漿結實期籽粒SSS活性隨著齊穗后天數(shù)的增加呈單峰曲線變化,峰值均出現(xiàn)在齊穗后16d。灌漿結實期冷水脅迫對籽粒SSS活性影響較為明顯,各冷水處理在到達峰值之前SSS活性上升速率低于對照,峰值活性也低于對照,峰值過后酶活性先緩慢下降,后迅速下降。由表2可見,隨著冷水脅迫天數(shù)的增加,峰值酶活性與對照相比降幅增大, 其中D12、D15表現(xiàn)最為明顯,SSS活性峰值冷水反應指數(shù)(CRI)均在85.50%以下。不同品種SSS活性對冷水脅迫的應激能力不同,松粳10各冷水處理下SSS活性峰值下降幅度最大,CRI為72.20%~91.20%,受影響最大;其次為龍稻7號,CRI為75.81%~92.91%;東農(nóng)428降幅最小,CRI為83.33%~95.09%,受影響最小。
D0、D3、D6、D9、D12、D15分別表示冷水灌溉0、3、6、9、12和15 d。下同。
D0,D3,D6,D9,D12 and D15 refer to successive cold-water treatment for 0,3,6,9,12 and 15 days,respectively. The same as below.
圖1灌漿結實期冷水脅迫下寒地粳稻籽??扇苄缘矸酆铣擅富钚缘淖兓?/p>
Fig. 1. Changes in grain soluble starch synthase ( SSS ) activity of japonica rice under cold-water stress during grain-filling stage in cold-region.
2.1.2對淀粉分支酶(SBE)活性的影響
由圖2可知,灌漿結實期不同品種SBE活性隨著齊穗后天數(shù)的增加呈單峰曲線變化,峰值均出現(xiàn)在齊穗后21 d,冷水脅迫對SBE活性的影響貫穿于整個灌漿時期。冷水脅迫下,各冷水處理SBE活性前期迅速增加,達到峰值后,先快速下降,再緩慢降低。由表3可見,隨著冷水脅迫天數(shù)的增加,SBE峰值酶活性與對照相比降幅增大,其中D12、D15表現(xiàn)最為明顯,SBE活性峰值CRI均在82.07%以下。不同品種SBE活性對冷水脅迫的應激能力不同,松粳10 各冷水處理SBE活性峰值降幅最大,CRI為74.22%~91.89%,受影響最大;其次為龍稻7號,CRI為76.81%~91.85%;東農(nóng)428降幅最小,CRI為79.71%~96.31%,受影響最小。
2.2灌漿結實期冷水脅迫對寒地粳稻籽粒淀粉及其組分形成與積累的影響
2.2.1灌漿結實期冷水脅迫對寒地粳稻籽??偟矸酆康挠绊?/p>
淀粉是水稻籽粒的主要成分,水稻籽粒干物質(zhì)的積累過程主要是淀粉的充實過程[28]。由表4可見,3個供試品種齊穗后總淀粉含量不斷增加,呈“S”型曲線,即隨著灌漿進程的推進,總淀粉含量不斷增加,增加速率先快后慢。與對照相比,灌漿初期各冷水處理總淀粉含量均顯著降低;灌漿中后期,東農(nóng)428 D0與D3、D6差異不顯著,與其他冷水處理差異顯著,且隨著冷水脅迫天數(shù)的增加,總淀粉含量降幅增大。松粳10和龍稻7號灌漿中期D0與其他冷水處理差異顯著,灌漿后期D0與D3差異不顯著,與其他冷水處理差異顯著,并隨著冷水脅迫天數(shù)的增加,總淀粉含量降幅增大。由表5可見,不同品種成熟期總淀粉含量對冷水脅迫的應激能力不同,東農(nóng)428各冷水處理成熟期總淀粉含量降幅最小,CRI為97.87%~99.85%,受影響最??;其次為龍稻7號,CRI為97.02%~99.90%;松粳10降幅最大,CRI為95.56%~99.90%,受影響最大。
表2灌漿結實期冷水脅迫下寒地粳稻籽粒SSS活性峰值變化
Table 2. Changes in peak grain soluble starch synthase ( SSS ) activity of japonica rice under cold-water stress during grain-filling stage in cold-region.
處理Treatment東農(nóng)428Dongnong428峰值酶活性Peakenzymeactivity/(U·g-1min-1)峰值酶活性CRICRIforpeakenzymeactivity/%松粳10Songjing10峰值酶活性Peakenzymeactivity/(U·g-1min-1)峰值酶活性CRICRIforpeakenzymeactivity/%龍稻7號Longdao7峰值酶活性Peakenzymeactivity/(U·g-1min-1)峰值酶活性CRICRIforpeakenzymeactivity/%D018.76±0.16100.0018.83±0.12100.0018.65±0.11100.00D317.84±0.1495.0917.17±0.1291.2017.33±0.1892.91D617.06±0.1290.9316.24±0.1186.2516.31±0.1487.44D916.71±0.1889.0715.05±0.1579.9415.20±0.1381.50D1216.04±0.1085.5014.32±0.1076.0714.42±0.1477.32D1515.63±0.1783.3313.59±0.1272.2014.14±0.1375.81
CRI-冷水反應指數(shù)。下同。
CRI, Cold-response index. The same as below.
圖2灌漿結實期冷水脅迫下寒地粳稻籽粒淀粉分支酶活性的變化
Fig. 2. Changes in grain starch branching enzyme ( SBE ) activity of japonica rice under cold-water stress during grain-filling stage in cold-region.
2.2.2灌漿結實期冷水脅迫對寒地粳稻籽粒支鏈淀粉含量的影響
由表6可見,3個供試品種齊穗后籽粒支鏈淀粉積累速率均呈先快后慢的趨勢,即“S”型曲線。隨著冷水脅迫天數(shù)的增加,各冷水處理支鏈淀粉含量均顯著低于對照,D0、D3處理下東農(nóng)428 在齊穗后21~31 d差異不顯著,其他時期差異顯著;松粳10在 D0、D3在齊穗后36d差異不顯著,其他時期差異顯著;龍稻7號 D0、D3在齊穗后21、26d差異不顯著,其他時期差異顯著。齊穗后7~36 d,3個供試品種籽粒支鏈淀粉含量迅速增加,此后趨于穩(wěn)定,開始平穩(wěn)增長。在整個灌漿過程中,D3、D6支鏈淀粉含量與D0差異較小,一直保持相對較高水平,說明寒地粳稻遭受短時間低溫在恢復正常灌溉后,淀粉合成關鍵酶活性恢復正常,支鏈淀粉積累也逐漸恢復正常;D9、D12、D15支鏈淀粉含量顯著下降,說明灌漿結實期長時間冷水脅迫會影響支鏈淀粉合成,并隨著冷水脅迫天數(shù)的增加,支鏈淀粉含量降幅增大。由表7可見,不同品種成熟期支鏈淀粉含量對冷水脅迫的應激能力不同,東農(nóng)428各冷水處理成熟期支鏈淀粉含量降幅最小,CRI為94.53%~99.72%,受影響最??;松粳10 CRI為90.57%~99.64%,受影響最大;龍稻7號處于二者之間, CRI為93.10%~99.64%。
表3灌漿結實期冷水脅迫下寒地粳稻籽粒SBE活性峰值變化
Table 3. Changes in peak grain starch branching enzyme ( SBE ) activity of japonica rice under cold-water stress during grain-filling stage in cold-region.
處理Treatment東農(nóng)428Dongnong428峰值酶活性Peakenzymeactivity/%峰值酶活性CRICRIforpeakenzymeactivity/%松粳10Songjing10峰值酶活性Peakenzymeactivity/%峰值酶活性CRICRIforpeakenzymeactivity/%龍稻7號Longdao7峰值酶活性Peakenzymeactivity/%峰值酶活性CRICRIforpeakenzymeactivity/%D011.91±0.21100.0011.83±0.19100.0012.03±0.22100.00D311.47±0.1396.3110.87±0.2191.8911.05±0.1691.85D610.78±0.1490.5110.22±0.1886.3710.44±0.2086.78D910.21±0.1985.739.73±0.2182.2410.02±0.1683.27D129.77±0.1582.079.06±0.1376.569.46±0.2678.63D159.49±0.1479.718.78±0.1574.229.24±0.1776.81
表4灌漿結實期冷水脅迫對齊穗后籽??偟矸酆康挠绊?/p>
Table 4. Total starch content in grains of japonica rice at various days after full heading under cold-water stress.
品種與處理Varietyandtreatment齊穗后天數(shù)Daysafterfullheading/d7101316212631364146東農(nóng)428Dongnong428 D022.86±0.11a33.60±0.08a45.68±0.15a51.92±0.18a63.62±0.17a70.22±0.18a74.20±0.17a78.32±0.14a80.73±0.14a81.38±0.14a D321.73±0.25b32.69±0.21b44.62±0.21b50.15±0.32b63.47±0.13a70.12±0.20a74.11±0.37a78.21±0.24a80.69±0.30a81.26±0.53a D620.67±0.11c31.93±0.13c42.52±0.25c49.60±0.19c61.84±0.22b69.74±0.20b74.07±0.19a78.17±0.16a80.57±0.12a81.06±0.17b D931.09±0.15d41.26±0.12d48.78±0.20d59.11±0.13c67.27±0.21c73.81±0.17b77.62±0.16b79.84±0.22b80.73±0.19c D1238.96±0.17e47.49±0.13e58.40±0.19d66.39±0.15d73.46±0.20c77.13±0.15c79.24±0.17c80.01±0.34d D1546.41±0.17f57.17±0.14e65.62±0.16e73.12±0.16d76.54±0.18d79.05±0.24d79.65±0.23e松粳10Songjing10 D023.36±0.25a31.98±0.23a47.03±0.29a53.29±0.25a64.32±0.29a71.62±0.23a74.88±0.28a78.94±0.25a81.08±0.23a81.82±0.25a D321.58±0.24b29.78±0.27b44.23±0.42b50.71±0.32b62.42±0.20b71.27±0.25b74.65±0.33b78.82±0.29b81.03±0.25a81.74±0.31a D620.02±0.35c27.75±0.23c41.24±0.33c48.39±0.23c60.04±0.28c67.70±0.24c73.33±0.21b76.01±0.29c78.24±0.32b79.39±0.29b D925.90±0.17d39.90±0.26d47.17±0.40d59.01±0.12d65.96±0.21d72.00±0.30c75.87±0.13c78.03±0.25c78.82±0.13c D1237.96±0.24e45.59±0.27e57.74±0.27e65.42±0.18e72.12±0.23c75.46±0.22d77.47±0.19d78.31±0.17d D1544.80±0.17f56.48±0.18f65.09±0.27f71.82±0.25d75.22±0.31e77.25±0,21e78.19±0.15d龍稻7號Longdao7 D022.96±0.17a30.84±0.37a46.60±0.22a54.88±0.34a64.15±0.18a70.09±0.15a75.08±0.26a78.60±0.25a80.71±0.17a81.56±0.36a D321.29±0.31b30.00±0.23b44.47±0.31b53.30±0.25b63.95±0.34b69.91±0.23b74.78±0.24b78.53±0.20a80.66±0.23a81.48±0.18a D620.29±0.22c28.19±0.21c42.03±0.25c51.57±0.14c61.10±0.25c69.29±0.24c74.70±0.29b77.47±0.13b79.68±0.30b80.40±0.27b D926.72±0.34d39.72±0.36d48.69±0.22d59.53±0.21d67.65±0.25d74.07±0.23c76.85±0.28c79.22±0.22c79.97±0.28c D1238.92±0.30e47.04±0.24e58.61±0.24e66.76±0.09e73.13±0.10d76.44±0.28d78.92±0.24d79.57±0.09d D1546.25±0.20f57.39±0.32f66.00±0.35f72.96±0.27d76.08±0.23e78.26±0.24e79.13±0.31e
同一列中,數(shù)據(jù)(平均值±標準差)后跟不同小寫字母者表示差異達5%顯著水平(最小顯著差數(shù)法)。下同。
Values (mean±SD) followed by different lowercase letters are significantly different at the 5% level by LSD. The same as in tables below.
表5灌漿結實期冷水脅迫對寒地粳稻成熟期籽??偟矸酆康挠绊?/p>
Table 5.Total starch content in grains of japonica rice in maturity stage under cold-water stress during grain-filling stage in cold-region.
處理Treatment東農(nóng)428Dongnong428總淀粉含量Totalstarchcontent/%總淀粉含量CRICRIfortotalstarchcontent/%松粳10Songjing10總淀粉含量Totalstarchcontent/%總淀粉含量CRICRIfortotalstarchcontent/%龍稻7號Longdao7總淀粉含量Totalstarchcontent/%總淀粉含量CRICRIfortotalstarchcontent/%D081.38±0.14a100.0081.82±0.25a100.0081.56±0.36a100.00D381.26±0.53a99.8581.74±0.31a99.9081.48±0.18a99.90D681.06±0.17b99.6179.39±0.29b97.0380.40±0.27b98.58D980.73±0.19c99.2078.82±0.13c96.3379.97±0.28c98.05D1280.01±0.34d98.3278.31±0.17d95.7179.57±0.09d97.56D1579.65±0.23e97.8778.19±0.15d95.5679.13±0.31e97.02
2.2.3灌漿結實期冷水脅迫對寒地粳稻籽粒直鏈淀粉含量的影響
由表8可以看出,3個供試品種齊穗后籽粒直鏈淀粉含量均不斷增加,但不同冷水處理直鏈淀粉積累速率卻有所不同。D0先迅速增加,后緩慢增加并逐漸趨于穩(wěn)定;各冷水處理前期迅速增加,后緩慢增加,齊穗后26 d又迅速增加并逐漸趨于穩(wěn)定,且在齊穗后31d直鏈淀粉含量高于對照,且冷水脅迫處理的時間越長,直鏈淀粉含量越高。D0、D3處理下,東農(nóng)428 齊穗后21 d、26 d、36 d、41 d、46 d差異不顯著,其他時期差異顯著,整個灌漿過程中D6、D9、D12、D15與D0差異顯著。D0、D3處理下松粳10 齊穗后36 d差異不顯著,其他天數(shù)差異顯著, D12、D15齊穗后41 d差異不顯著;D0、D3 處理下,龍稻7號 齊穗后21、26 d差異不顯著,其他時期差表6灌漿結實期冷水脅迫對齊穗后籽粒支鏈淀粉含量的影響
Table 6. Amylopectin content in grains of japonica rice at various days after full heading under cold-water stress during grain-filling stage.
品種與處理Varietyandtreatment齊穗后天數(shù)Daysafterfullheading/d7101316212631364146東農(nóng)428Dongnong428 D017.61±0.09a26.11±0.29a36.07±0.24a40.65±0.17a49.47±0.13a53.59±0.18a57.08±0.13a60.65±0.17a62.65±0.14a63.27±0.16a D316.59±0.18b25.37±0.17b35.37±0.30b39.11±0.23b49.38±0.44a53.58±0.25a56.91±0.20a60.46±0.16b62.58±0.12a63.09±0.19b D615.80±0.29c24.87±0.27c33.69±0.21c38.86±0.21c47.87±0.18b53.27±0.18b56.73±0.20b60.35±0.07b62.36±0.15b62.81±0.20c D924.31±0.16d32.82±0.22d38.13±0.15d45.89±0.24c52.09±0.21c55.78±0.11c58.86±0.26c60.66±0.20c61.40±0.18d D1230.78±0.19e37.15±0.13e45.45±0.16d51.37±0.18d55.24±0.24d57.84±0.28d59.73±0.21d60.31±0.20e D1536.26±0.19f44.68±0.16e50.69±0.17e54.56±0.32e57.03±0.30e59.32±0.23e59.81±0.21f松粳10Songjing10 D018.04±0.26a24.35±0.23a37.25±0.19a41.88±0.18a50.04±0.21a54.79±0.27a57.43±0.31a61.18±0.15a63.13±0.38a63.75±0.27a D316.68±0.16b22.69±0.21b35.13±0.22b39.62±0.07b48.27±0.33b54.58±0.25b57.07±0.26b61.01±0.26a62.91±0.18b63.52±0.26b D615.45±0.07c21.07±0.16c32.67±0.18c37.58±0.30c46.40±0.31c52.09±0.24c55.06±0.24c57.17±0.22b59.08±0.25c60.15±0.36c D919.78±0.24d31.71±0.30d36.82±0.22d45.86±0.21d50.22±0.56d53.28±0.22d56.42±0.16c58.36±0.25d59.09±0.24d D1230.29±0.21e36.06±0.22e45.13±0.26e49.47±0.24e52.86±0.38e55.74±0.18d57.41±0.12e58.18±0.22e D1535.59±0.09f44.11±0.33f49.20±0.27f52.13±0.10f55.02±0.21e56.92±0.24f57.74±0.23f龍稻7號Longdao7 D017.82±0.19a23.51±0.22a37.05±0.24a43.54±0.17a49.74±0.25a53.86±0.29a57.50±0.31a60.55±0.24a62.51±0.24a63.35±0.13a D316.34±0.16b22.95±0.21b35.41±0.20b42.38±0.23b49.61±0.25a53.73±0.32a57.02±0.19b60.36±0.19b62.31±0.16b63.12±0.20b D615.77±0.16c21.59±0.20c33.29±0.30c41.05±0.21c47.48±0.37b53.24±0.31b56.57±0.19c59.15±0.16c60.44±0.25c61.07±0.06c D920.37±0.15d31.65±0.21d38.52±0.17d46.18±0.13c51.78±0.24c55.63±0.33d57.67±0.22d59.86±0.29d60.48±0.28d D1231.11±0.26e37.27±0.25e45.56±0.30d51.01±0.35d54.28±0.07e56.93±0.19e59.19±0.44e59.67±0.24e D1536.71±0.20f44.46±0.16e50.58±0.09e53.70±0.37f56.25±0.21f58.32±0.24f58.98±0.34f
表7灌漿結實期冷水脅迫對寒地粳稻成熟期支鏈淀粉含量的影響
Table 7. Amylopectin content in grains of japonica rice in maturity stage under cold-water stress in cold-region.
處理Treatment東農(nóng)428Dongnong428支鏈淀粉含量Amylopectincontent/%支鏈淀粉含量CRICRIforamylopectincontent/%松粳10Songjing10支鏈淀粉含量Amylopectincontent/%支鏈淀粉含量CRICRIforamylopectincontent/%龍稻7號Longdao7支鏈淀粉含量Amylopectincontent/%支鏈淀粉含量CRICRIforamylopectincontent/%D063.27±0.16a100.0063.75±0.27a100.0063.35±0.13a100.00D363.09±0.19b99.7263.52±0.26b99.6463.12±0.20b99.64D662.81±0.20c99.2760.15±0.36c94.3561.07±0.06c96.40D961.40±0.18d97.0459.09±0.24d92.6960.48±0.28d95.47D1260.31±0.20e95.3258.18±0.22e91.2659.67±0.24e94.19D1559.81±0.21f94.5357.74±0.23f90.5758.98±0.34f93.10
異顯著,D6、D9、D12、D15與D0差異顯著。由表9可見,不同品種成熟期直鏈淀粉含量對冷水脅迫的應激能力不同,東農(nóng)428各冷水處理成熟期直鏈淀粉含量增幅最小,CRI為100.28%~109.49%,受影響最??;松粳10 增幅最大,CRI為100.83%~113.17%,受影響最大;龍稻7號處于二者之間, CRI為101.32%~110.59%。
2.3灌漿結實期冷水脅迫對寒地粳稻穗部性狀及產(chǎn)量構成因素的影響
由表10可以看出,灌漿結實期冷水脅迫對東農(nóng)428、松粳10和龍稻7號的每穗實粒數(shù)影響均達顯著水平,隨著冷水脅迫天數(shù)的增加,各冷水處理每穗實粒數(shù)與D0相比均有顯著差異,且各冷水處理間差異顯著。東農(nóng)428各冷水處理下每穗實粒數(shù)CRI為85.20%~98.06%;松粳10 CRI為79.49%~93.51%;龍稻7號 CRI為82.71%~95.86%??梢姡酀{結實期冷水脅迫對各品種結實率的影響存在明顯差異,對松粳10影響最大,對東農(nóng)428影響最小,龍稻7號處于兩者之間。
灌漿結實期冷水脅迫對東農(nóng)428、松粳10和龍稻7號的結實率影響顯著,東農(nóng)428 D3處理與D0差異不顯著,其他冷水處理與D0相比差異顯著,除D12、D15處理差異不顯著外,其他冷水處理間差異也達顯著水平;松粳10和龍稻7號隨著冷水脅迫天數(shù)的增加,各冷水處理的結實率均顯著低于對照,除松粳10 D9、D12及龍稻7號 D12、D15間差異不顯著,其他冷水處理間差異顯著。東農(nóng)428各冷水處理結實率CRI為88.85%~98.57%;松粳10 CRI為85.44%~95.40%;龍稻7號 CRI為87.67%~97.38%。可見,灌漿結實期冷水脅迫下各品種間結實率差異也較為明顯,對松粳10影響最大,東農(nóng)428受到影響最小,龍稻7號處于二者之間。這說明3個供試品種對灌漿結實期低溫的耐受能力存在差異,冷水脅迫下松粳10耐冷性最差,東農(nóng)428耐冷性最好,龍稻7號處于二者之間。
表8灌漿結實期冷水脅迫對粳稻籽粒齊穗后直鏈淀粉含量的影響
Table 8. Amylose content in grains of japonica rice at various days after full heading under cold-water stress during grain-filling stage.
品種與處理Varietyandtreatment齊穗后天數(shù)Daysafterfullheading/d7101316212631364146東農(nóng)428Dongnong428 D05.25±0.13a7.49±0.12a9.61±0.13a11.27±0.07a14.15±0.09a16.62±0.09a17.11±0.10f17.67±0.15e18.08±0.08e18.12±0.10d D35.14±0.08b7.33±0.08b9.25±0.12b11.04±0.11b14.09±0.10a16.54±0.11ab17.20±0.09e17.75±0.11de18.11±0.08e18.17±0.10cd D64.87±0.07c7.06±0.06c8.83±0.08c10.74±0.14c13.97±0.21b16.47±0.15b17.34±0.14d17.82±0.12d18.20±0.09d18.25±0.16c D96.78±0.10d8.44±0.18d10.65±0.12d13.22±0.11c15.18±0.10c18.03±0.11c18.76±0.17c19.18±0.12c19.33±0.16b D128.18±0.08e10.33±0.15e12.95±0.12d15.02±0.12d18.22±0.13b19.29±0.09b19.51±0.09b19.70±0.08a D1510.15±0.09f12.49±0.07e14.93±0.13e18.57±0.09a19.51±0.08a19.73±0.11a19.84±0.15a松粳10Songjing10 D05.32±0.06a7.63±0.10a9.78±0.10a11.41±0.15a14.28±0.11a16.83±0.13a17.45±0.07f17.76±0.14e17.95±0.12e18.07±0.08f D34.90±0.10b7.09±0.08b9.10±0.08b11.09±0.08b14.15±0.10b16.69±0.18b17.58±0.11e17.81±0.08e18.12±0.07d18.22±0.11e D64.57±0.09c6.69±0.11c8.57±0.10c10.81±0.11c13.64±0.14c15.61±0.13e18.26±0.10d18.84±0.13d19.16±0.12c19.24±0.15d D96.12±0.08d8.19±0.06d10.36±0.09d13.15±0.09d15.74±0.07f18.72±0.11c19.45±0.11c19.67±0.09b19.73±0.15c D127.67±0.08e9.53±0.11e12.61±0.13e15.95±0.07c19.25±0.11b19.72±0.11b20.06±0.08a20.13±0.08b D159.21±0.10f12.37±0.08f15.88±0.20d19.69±0.09a20.20±0.12a20.33±0.14a20.45±0.12a龍稻7號Longdao7 D05.14±0.06a7.33±0.08a9.55±0.13a11.34±0.11a14.41±0.09a16.23±0.18a17.58±0.11f18.06±0.09f18.20±0.13f18.22±0.13f D34.95±0.10b7.05±0.13b9.06±0.11b10.92±0.14b14.34±0.12a16.18±0.12a17.76±0.28e18.17±0.14e18.35±0.22e18.46±0.24e D64.52±0.12c6.60±0.21c8.74±0.16c10.52±0.24c13.62±0.18b16.05±0.24b18.13±0.24d18.32±0.24d19.24±0.26d19.33±0.11d D96.35±0.15d8.07±0.19d10.17±0.17d13.35±0.22c15.87±0.18c18.44±0.22c19.18±0.17c19.36±0.11c19.49±0.12c D127.81±0.16e9.77±0.14e13.04±0.17d15.75±0.12d18.85±0.11b19.51±0.12b19.72±0.15b19.90±0.11b D159.53±0.09f12.93±0.16e15.42±0.08e19.26±0.09a19.83±0.12a19.94±0.10a20.15±0.13a
表9灌漿結實期冷水脅迫對寒地粳稻成熟期籽粒直鏈淀粉含量的影響
Table 9. Amylose content in grains of japonica rice in maturity stage under cold-water stress in cold-region.
處理Treatment東農(nóng)428Dongnong428直鏈淀粉含量Amylosecontent/%直鏈淀粉含量CRICRIforamylosecontent/%松粳10Songjing10直鏈淀粉含量Amylosecontent/%直鏈淀粉含量CRICRIforamylosecontent/%龍稻7號Longdao7直鏈淀粉含量Amylosecontent/%直鏈淀粉含量CRICRIforamylosecontent/%D018.12±0.10d100.0018.07±0.08f100.0018.22±0.13f100.00D318.17±0.10cd100.2818.22±0.11e100.8318.46±0.24e101.32D618.25±0.16c100.7219.24±0.15d106.4719.33±0.11d106.09D919.33±0.16b106.6819.73±0.15c109.1919.49±0.12c106.97D1219.70±0.08a108.7220.13±0.08b111.4019.90±0.11b109.22D1519.84±0.15a109.4920.45±0.12a113.1720.15±0.13a110.59
灌漿結實期冷水脅迫對東農(nóng)428、松粳10和龍稻7號的千粒重影響最為顯著,東農(nóng)428 D3處理 與D0差異不顯著,其他冷水處理與D0相比差異顯著,除D9、D12處理差異不顯著外,其他冷水處理間差異達顯著水平;松粳10和龍稻7號隨著冷水脅迫程度的增加,千粒重均顯著低于對照,松粳10 D9、D12差異不顯著,與其他冷水處理間差異顯著;龍稻7號 D9與D12差異不顯著,D12與D15差異不顯著,其他冷水處理間差異顯著。東農(nóng)428各冷水處理千粒重CRI為78.80%~98.71%;松粳10 CRI為74.72%~91.43%;龍稻7號 CRI為76.14%~表10灌漿結實期冷水脅迫對寒地粳稻穗部特征及產(chǎn)量構成因素的影響
Table 10. Panicle traits and yield components of japonica rice under cold-water stress during grain-filling stage in cold-region.
品種與處理Varietyandtreatment每穗實粒數(shù)Grainnumberperpanicle每穗實粒數(shù)CRICRIforgrainnumberperpanicle/%結實率Seed-settingpercentage/%結實率CRICRIforseed-settingpercentage/%千粒重1000-grainweight/g千粒重CRICRIfor1000-grainweight/%東農(nóng)428Dongnong428 D0110.01±4.54a100.0092.36±0.41a100.0026.42±0.29a100.00 D3107.88±3.14b98.0691.04±0.34a98.5726.08±0.26a98.71 D6103.39±3.60c93.9888.96±0.61b96.3224.24±0.26b91.75 D998.70±3.00d89.7285.10±0.84c92.1422.51±0.82c85.20 D1295.89±2.21e87.1683.25±0.95d90.1422.06±0.21c83.50 D1593.73±2.35f85.2082.06±1.12d88.8520.82±0.29d78.80松粳10Songjing10 D0107.78±6.09a100.0091.55±0.61a100.0025.44±0.27a100.00 D3100.78±3.06b93.5187.34±0.44b95.4023.26±0.22b91.43 D698.13±3.49c91.0585.91±0.67c93.8421.58±0.35c84.83 D991.93±3.96d85.2981.87±0.56d89.4320.23±0.22d79.52 D1289.22±0.50e82.7880.28±0.44d87.6919.89±0.20d78.18 D1585.67±3.31f79.4978.22±0.46e85.4419.01±0.24e74.72龍稻7號Longdao7 D0103.21±3.79a100.0091.87±0.54a100.0026.11±0.17a100.00 D398.94±2.99b95.8689.46±0.35b97.3824.82±0.32b95.06 D695.00±3.28c92.0587.07±0.94c94.7822.59±0.49c86.52 D990.18±3.70d87.3883.48±0.48d90.8721.21±0.22d81.23 D1286.74±1.53e84.0481.25±0.43e88.4420.63±0.36de79.01 D1585.36±1.91f82.7180.54±0.45e87.6719.88±0.20e76.14
表11可溶性淀粉合成酶(SSS)、淀粉分支酶(SBE)活性與淀粉及其組分含量的相關分析
Table 11. Correlation coefficients of soluble starch synthase (SSS), starch branching enzyme (SBE) activities and starch content in japonica rice in cold-region.
品種與淀粉含量Varietyandstarchcontent齊穗后天數(shù)Daysafterfullheading/d可溶性淀粉合成酶活性SSSactivity4~1314~2627~46淀粉分支酶活性SBEactivity4~1314~2627~46東農(nóng)428Dongnong428 直鏈淀粉Amylosecontent0.183-0.918**-0.897*0.034-0.843*-0.923** 支鏈淀粉Amylopectincontent-0.2460.909*0.897*-0.1010.836*0.951** 總淀粉Totalstarchcontent-0.3160.871*0.870*-0.1780.8020.954**松粳10Songjing10 直鏈淀粉Amylosecontent0.114-0.936**-0.974**-0.384-0.880*-0.973** 支鏈淀粉Amylopectincontent-0.0470.945**0.975**0.4390.897*0.957** 總淀粉Totalstarchcontent-0.0060.945**0.970**0.4690.902*0.943**龍稻7號Longdao7 直鏈淀粉Amylosecontent0.053-0.957**-0.979**-0.084-0.900*-0.964** 支鏈淀粉Amylopectincontent-0.0820.954**0.981**0.0550.892*0.967** 總淀粉Totalstarchcontent-0.1080.948**0.980**0.0290.883*0.967**
*,**分別表示在0.05和0.01水平上顯著相關。
*,**indicate significant correlation at the 0.05 and 0.01 levels,respectively.
95.06%。可見,灌漿結實期冷水脅迫下各品種間千粒重差異也較為明顯,冷水脅迫對松粳10影響最大,東農(nóng)428受到影響最小,龍稻7號處于二者之間。這說明3個供試品種對灌漿結實期低溫的耐受能力存在差異,冷水脅迫下松粳10耐冷性最差,東農(nóng)428耐冷性最好,龍稻7號處于二者之間。
2.4淀粉合成關鍵酶活性與成熟期淀粉及其組分含量的相關分析
由表11可知,東農(nóng)428成熟期直鏈淀粉含量與灌漿前期籽粒SSS活性正相關,與灌漿中后期籽粒SSS活性呈顯著或極顯著負相關;成熟期支鏈淀粉、總淀粉含量與灌漿前期籽粒SSS活性呈負相關,與灌漿中、后期籽粒SSS活性呈顯著正相關。松粳10、龍稻7號成熟期直鏈淀粉含量與灌漿前期籽粒SSS活性與呈正相關,與灌漿中后期籽粒SSS活性呈極顯著負相關;成熟期支鏈淀粉、總淀粉含量與灌漿前期籽粒SSS活性與呈負相關,與灌漿中后期籽粒SSS活性呈極顯著正相關。
通過表11還可以看出,東農(nóng)428成熟期直鏈淀粉含量與灌漿前期籽粒SBE活性呈正相關,與灌漿中后期籽粒SBE活性呈顯著或極顯著負相關;成熟期支鏈淀粉、總淀粉含量與灌漿前期籽粒SBE活性呈負相關,與灌漿中期籽粒SBE活性呈正相關或顯著正相關,與灌漿后期籽粒SBE活性呈極顯著正相關。松粳10、龍稻7號成熟期直鏈淀粉含量與灌漿前期籽粒SBE活性呈負相關,與灌漿中后期籽粒SBE活性呈顯著或極顯著負相關;成熟期支鏈淀粉、總淀粉含量與灌漿前期籽粒SBE活性呈正相關,與灌漿中后期籽粒SBE活性呈顯著或極顯著正相關。
3討論
溫度是影響水稻籽粒淀粉合成積累的主要因素之一[16-21]。許多研究證實,無論是高等植物的光合還是非光合器官,SSS和SBE在淀粉合成過程中均起重要作用[7]。水稻在低溫條件下灌漿結實,導致淀粉合成關鍵酶活性呈不同程度的下降,對淀粉初期的合成及后期的積累影響顯著[11]。本研究發(fā)現(xiàn),灌漿結實期冷水脅迫下東農(nóng)428籽粒中SSS和SBE活性普遍高于龍稻7號,龍稻7號普遍高于松粳10。受冷水脅迫的影響,3個品種的SSS和SBE活性變化不盡相同,隨著冷水脅迫天數(shù)的增加,峰值酶活性降幅逐漸增大。這可能是因為:一是低溫條件下水稻體內(nèi)代謝平衡被打破,破壞了組織及細胞的微結構,酶發(fā)揮正常功能的內(nèi)部環(huán)境產(chǎn)生變化,導致酶活性下降;二是葉片葉綠素含量降低,葉片早衰,光合產(chǎn)物減少造成灌漿底物減少,從而導致酶活性下降。
水稻籽粒的充實過程,主要是淀粉的合成與積累過程,淀粉的積累又受一系列與淀粉合成代謝有關酶的調(diào)控[29]。灌漿結實期是水稻籽粒淀粉合成積累的關鍵時期,此期遭遇低溫對灌漿系統(tǒng)內(nèi)部結構和功能造成一定的損傷,已有研究表明低溫會引起水稻籽粒淀粉含量的降低,導致籽粒中直鏈淀粉與支鏈淀粉的比例發(fā)生改變[30]。本研究發(fā)現(xiàn),籽粒支鏈淀粉、總淀粉含量與灌漿中、后期籽粒SSS活性、SBE活性呈顯著或極顯著正相關(除灌漿中期東農(nóng)428外),這說明SSS與SBE一起主要作用于籽粒支鏈淀粉的合成。本研究同時發(fā)現(xiàn),隨著灌漿結實期冷水脅迫程度的增加,成熟期支鏈淀粉、總淀粉含量降幅逐漸增大;短時間(3 d)冷水脅迫對總淀粉含量影響不顯著,而長時間(6~15 d)冷水脅迫導致支鏈淀粉及總淀粉含量下降,其降幅與品種對低溫的耐性有關,分析原因可能是灌漿初期遭受短時間低溫,籽粒灌漿啟動晚,前期淀粉積累速度慢,影響灌漿初期淀粉的合成積累,隨著后期恢復正常灌溉,酶活性逐漸得到恢復,進而總淀粉含量升高并接近于對照,而長時間低溫脅迫對水稻生殖器官的內(nèi)含物質(zhì)及生理結構均造成一定損傷,導致源庫關系異常;另一方面受到籽粒本身淀粉轉化機能下降的限制[10],短時間內(nèi)酶活性無法恢復,導致淀粉及其組分積累受阻,總淀粉含量降低。大部分品種的灌漿結實期溫度與直鏈淀粉含量間存在密切聯(lián)系[31,32]。周德翼等研究發(fā)現(xiàn)中、低直鏈淀粉品種在低溫脅迫下灌漿結實會造成籽粒中直鏈淀粉含量過高[30],而宋廣樹等認為不同時期低溫處理下籽粒直鏈淀粉含量降低[21]。本研究表明,灌漿結實期冷水脅迫導致成熟期籽粒直鏈淀粉含量顯著增加,且隨著冷水脅迫程度的加重,直鏈淀粉含量增幅逐漸增大。本研究還發(fā)現(xiàn),灌漿結實期冷水脅迫下成熟期直鏈淀粉含量與灌漿前期SSS活性呈正相關;與灌漿中、后期SSS活性呈顯著或極顯著負相關,這與趙步洪[33]、常二華[34]等的研究結果基本一致。此結果也說明成熟期直鏈淀粉含量與灌漿中、后期SSS活性沒有明顯關系,由此推斷在灌漿中、后期顆粒結合型淀粉合成酶(GBSS)開始發(fā)揮作用。許多研究報道證實,GBSS也是籽粒淀粉合成代謝過程中的一個關鍵酶,它是水稻灌漿過程中影響直鏈淀粉積累量的一個決定性因素[35],由此推斷,籽粒灌漿前期SSS活性、SBE活性逐漸升高,淀粉積累速率逐漸加快,到灌漿中后期GBSS活性急劇上升[36],籽粒中淀粉粒形成一定的晶體結構,GBSS才能開始催化直鏈淀粉大量合成[37],這可能是導致灌漿后期直鏈淀粉含量上升的緣故,但這尚需進一步探討。
以往多數(shù)研究表明水稻在低溫條件下灌漿結實,可引起灌漿速率降低,使水稻籽??瞻T程度加重[20-21,38]。本研究表明,灌漿結實期冷水脅迫下3個不同品種每穗實粒數(shù)、結實率、千粒重顯著降低(東農(nóng)428冷水處理3 d除外);東農(nóng)428影響最小,松粳10受影響程度最大,這是由于冷水脅迫處理下籽粒淀粉合成關鍵酶活性降低,導致籽粒淀粉形成積累受阻,進而造成每穗實粒數(shù)、結實率、千粒重的降低;而不同供試品種耐冷性又存在一定差異,耐冷品種對冷水脅迫的抵抗力強,冷敏感品種抵抗力差所引起的。由此可見,每穗實粒數(shù)、結實率、千粒重是不同耐冷性供試品種響應冷水脅迫的差異產(chǎn)物,可用于耐冷性鑒定。為了預防低溫冷害,選取耐冷型品種是最基本的途徑,同時輔以必要合理的栽培措施,可實現(xiàn)黑龍江省寒地粳稻高產(chǎn)。
參考文獻:
[1]楊建昌,彭少兵,顧世梁,等. 水稻灌漿期籽粒中3個與淀粉合成有關的酶活性變化. 作物學報, 2001,(2):157-164.
Yang J C, Peng S B, Gu S L, et al. Changes in activities of three enzymes associated with starch synthesis in rice grains during grain filling.ActaAgronSin, 2001, 27(2): 157-164. (in Chinese with English abstract)
[2]王賀正,馬均,李旭毅,等. 水分脅迫對水稻籽粒灌漿及淀粉合成有關酶活性的影響. 中國農(nóng)業(yè)科學, 2009,5:1550-1558.
Wang H Z, Ma J, Li X Y. Effects of water stress on grain filling and activities of enzymes involved in starch synthesis in rice.SciAgricSin, 2009, 5:1550-1558. (in Chinese with English abstract)
[3]孟亞利,高如嵩,張嵩午. 影響稻米品質(zhì)的主要氣候因子. 西北農(nóng)業(yè)大學學報,1994,22(1):40-43.
Meng Y L, Gao R S, Zhang S W. Effects of the main climate factor in rice.JXibeiAgricUniv, 1994, 22(1):40-43.(in Chinese with English abstract)
[4]TAIRA Toshio . Relation between mean air temperature during ripening period of rice and amylographic characteristicsor cooking quality.JpnCropSci,1999, 68(1): 45-49.
[5]王連敏. 寒地水稻耐冷基礎的研究:Ⅱ.小孢子階段低溫對水稻結實的影響. 中國農(nóng)業(yè)氣象,1997, 4: 12-14.
Wang L M. Research on cold tolerance rice in cold region: Ⅱ. Effects of seed in low temperature of microspore stage on rice.AgricMeteorol, 1997, 4: 12-14. (in Chinese with English abstract)
[6]武琦,鄒德堂,趙宏偉,等. 不同生育時期低溫脅迫下水稻耐冷指標變化的研究. 作物雜志,2012, 6: 95-101.
Wu Q, Zou D T, Zhao H W, et al. Research on changes of cold tolerance in different growth stage of japonica rice in cold region.Crops, 2012, 06:95-101. (in Chinese with English abstract)
[7]Nakamura Y, Yuki K, Park S Y, et al. Carbohydrate metabolism in the developing endosperm of rice grains.PlantCellPhysiol, 1989, 30: 833-839.
[8]董明輝,趙步洪,吳翔宙,等. 水稻結實期不同粒位籽粒相關內(nèi)源激素含量和關鍵酶活性的差異及其與品質(zhì)的關系. 中國農(nóng)業(yè)科學, 2008, 41(2): 370-380.
Dong M H, Zhao B H, Wu X Z, et al. Difference in hormonal content and activities of key enzymes in the grains at different positions on a rice panicle during grain filling and their correlations with rice qualities.SciAgricSin, 2008, 41(2): 370-380.(in Chinese with English abstract)
[9]Dauvillée D, Mestre V, Colleoni C, et al. The debranching enzyme complex missing in glycogen accumulating mutants ofChlamydomonasreinhardtiidisplays an isoamylase-type specificity.PlantSci, 2000,157(2):145-156.
[10]程方民,鐘連進,孫宗修. 灌漿結實期溫度對早秈水稻籽粒淀粉合成代謝的影響. 中國農(nóng)業(yè)科學,2003,5:492-501.
Cheng F M, Zhong L J, Sun Z X. Effect of temperature at grain-filling stage on starch biosynthetic metabolism in developing rice grains of early-indica.SciAgricSin, 2003,05:492-501. (in Chinese with English abstract)
[11]沈波,莊云杰,樊葉楊,等. 水稻籽粒淀粉分支酶活性的遺傳分析. 植物生理與分子生物學學報, 2005,31(6):631-636.
Shen B, Zhuang Y J, Fan Y Y, et al. Genetic analysis of starch branching enzyme activity in rice grain.JPlantPhysiolMolBio, 2005,31(6):631-636. (in Chinese with English abstract)
[12]Fontaine T, D'Hulst C, Maddelein M L, et al. Toward an understanding of the biogenesis of the starch granule,evidence that chlamydomonas soluble starch synthase II controls the synthesis of intermediate size glucans of amylopectin.JBiolChem,1993, 268(22):16223-16230.
[13]Nakamura Y, Takeichi T, Kawaguchi K, et al. Purification of two forms of starch branching enzyme (Q-enzyme) from developing rice endosperm.PhysiolPlant, 1992, 84: 329-335.
[14]Yamanouchi H, Nakamura Y. Organ specificity of is forms of starch branchig enzyme (Q-enzyme) in rice.PlantCellPhysiol,1992,33(7):985-991.
[15]Smith A M.Major differences in isoforms of starch-branching enzyme between developing embryos of round- and wrinkled-seeded peas (PisumsativumL.).Planta, 1988, 175: 270-279.
[16]金正勛,楊靜,錢春榮,等. 灌漿成熟期溫度對水稻籽粒淀粉合成關鍵酶活性及品質(zhì)的影響. 中國水稻科學,2005,4:377-380.
Jin Z X, Yang J, Qian C R, Effects of temperature during grain filling period on activities of key enzymes for starch synthesis and rice grain quality.ChinJRiceSci, 2005,04:377-380. (in Chinese with English abstract)
[17]金正勛,秋太權,孫艷麗,等. 結實期溫度對稻米理化特性及淀粉譜特性的影響. 中國農(nóng)業(yè)氣象, 2001,22(2):1-5.
Jin Z X, Qiu T Q, Sun Y L. Effects of shading levels on biomass of banana seedlings in winter and spring.AgricMeteorol, 2001,22(2):1-5. (in Chinese with English abstract)
[18]孟亞利,周治國. 結實期溫度與稻米品質(zhì)的關系. 中國水稻科學,1997,11(1):51-54.
Meng Y L, Zhou Z G. Relationship between temperature and quality of rice at grain-filling stage.ChinJRiceSci, 1997,11(1):51-54. (in Chinese with English abstract)
[19]呂艷梅,譚偉平,肖層林,等. 高溫對優(yōu)質(zhì)水稻籽粒淀粉形成及淀粉合成相關酶活性的影響. 華北農(nóng)學報,2014,1:135-139.
Lv Y M, Tan W P, Xiao C L, et al. Effect of high temperature on starch formation of grain and activities of enzymes related to starch synthesis of quality rice varieties.ActaAgricBoreali-Sin, 2014,(29)1:135-139. (in Chinese with English abstract)
[20]武琦. 不同生育時期低溫脅迫下寒地粳稻淀粉積累規(guī)律的研究. 哈爾濱:東北農(nóng)業(yè)大學, 2013.
Wu Q. Research on starch accumulation rule in different growth stage of japonica rice in cold region. Harbin: Northeast Agric Univ, 2013. (in Chinese with English abstract)
[21]宋廣樹,孫忠富,王夏,等. 不同生育時期低溫處理對水稻品質(zhì)的影響. 中國農(nóng)學通報,2011,18:174-179.
Song G S, Sun Z F, Wang X, et al. Effect of low temperature on rice quality in different growth period.ChinAgricSciBull, 2011,18:174-179. (in Chinese with English abstract)
[22]Shimono H, Hasegawa T, Iwama K. Response of growth and grain yield in paddy rice to cool water at different growth stages.FieldCrops,2002,73:67-79.
[23]Douglas C D, Tsung M K, Frederick C F. Enzymes of sucrose and hexose metabolism in developing kernels of two inbreds of maize.PlantPhysiol,1988,86:1013-1019.
[24]程方民,蔣德安,吳平,等. 早秈稻籽粒灌漿過程中淀粉合成酶的變化及溫度效應特征. 作物學報, 2001, 27(2): 201-206.
Cheng F M, Jiang D A, Wu P, et al. The dynamic change of starch synthesis enzymes during the kernel filling stage and effects of temperature upon it.ActaAgronSin, 2001, 27(2): 201-206. (in Chinese with English abstract)
[25]李太貴,沈波,陳能,等. Q酶在水稻籽粒堊白形成中作用的研究. 作物學報,1997,23(3):338-344.
Li T G, Shen B, Chen N, et al. Effect of Q-enzyme on the chalkiness formation of rice grain.ActaAgronSin, 1997, 23(3): 338-344. (in Chinese with English abstract)
[26]何照范. 谷物淀粉組份分離及測試方法評述. 糧食儲藏,1985,6:32-38.
He Z F. Grain Quality and Its Analysis Technology. Beijing: Agriculture Press, 1985: 274-294. (in Chinese with English abstract)
[27]楊志奇,楊春剛,湯翠鳳,等. 中國粳稻地方品種孕穗期耐冷性評價及聚類分析. 植物遺傳資源學報,2008,4:485-491.
Yang Z Q, Yang C G, Tang C F, et al. Evaluation of cold tolerance at booting stage and cluster analysis for japonica rice landraces in China.JPlantGeneRes, 2008, 4:485-491. (in Chinese with English abstract)
[28]梁建生,曹顯祖,徐生,等. 水稻籽粒庫強與其淀粉積累之間關系的研究. 作物學報,1994,6:685-691.
Liang J S, Cao X Z, Xu S, et al. Studies on the relationship between the grain sink strength and it's starch accumulation in rice (O.sativa).ActaAgronSin,1994,20(6): 685-691. (in Chinese with English abstract)
[29]唐國勝. 溫度對水稻灌漿期籽粒淀粉合成代謝的影響. 長沙:湖南農(nóng)業(yè)大學,2009.
Tang G S. Effect of temperature on starch biosynthetic metabolism in developing grain of rice duing grain-filling stage. Changsha: Hunan Agric Univ, 2009 (in Chinese with English abstract)
[30]周德翼, 張嵩午, 高如嵩, 等. 稻米直鏈淀粉含量與結實期溫度間的關系研究. 西北農(nóng)業(yè)大學學報,1994,(2):1-5.
Zhou D Y, Zhang S W, Gao R S, et al. The relationship between amylose content in rice grain and temperature in grain-filling stage.JXibeiAgricUniv, 1994,(2):1-5. (in Chinese with English abstract)
[31]程方民,丁元樹,朱碧巖. 稻米直鏈淀粉含量的形成及其與灌漿結實期溫度的關系. 生態(tài)學報, 2000,4:646-652.
Cheng F M, Ding Y S, Zhu B Y. The formation of amylose content in rice grain and its relation with field temperature.ActaEcoloSin, 2000,4:646-652. (in Chinese with English abstract)
[32]玉置雅彥,江幡守衛(wèi),田代亨,等. 關于稻米品質(zhì)形成的生理生態(tài)學研究:Ⅰ.齊穗時追氮與成熟期氣溫對米質(zhì)的影響. 湖南大學邵陽分校學報,1991,(3):232-235.
Tamaki M, Ebata M, Tashiro T, et al. Physico-ecological studies on quality formation of rice kernel :Ⅰ. Effects of nitrogen top-dressed at full heading time and air temperature during ripening period on quality of rice kernel.JHunanUniveShaoyang, 1991,(3):232-235. (in Chinese with English abstract)
[33]趙步洪,張文杰,常二華,等. 水稻灌漿期籽粒中淀粉合成關鍵酶的活性變化及其與灌漿速率和蒸煮品質(zhì)的關系. 中國農(nóng)業(yè)科學, 2004,8:1123-1129.
Zhao B H, Zhang W J, Chang E H, et al. Changes in activities of the key enzymes related to starch synthesis in rice grains during grain filling and their relation-ships with the filling rate and cooking quality.SciAgricSin, 2004, 8:1123-1129. (in Chinese with English abstract)
[34]常二華,王朋,唐成, 等. 水稻根和籽粒細胞分裂素和脫落酸濃度與籽粒灌漿及蒸煮品質(zhì)的關系. 作物學報,2006,32(4):540-547.
Chang E H, Wang P, Tang C, et al. Concentrationsof cytokinin and abscisic acid in roots and grains and its relationship with grain filling and cooking quality of rice.ActaAgronSin, 2006,32(4):540-547. (in Chinese with English abstract)
[35]郭連安,胡運高,楊國濤,等. 不同直鏈淀粉含量水稻籽粒淀粉積累及其相關酶的活性變化研究. 云南大學學報:自然科學版), 2014, 6: 942-949.
Guo L A, Hu Y G, Yang G T,et al. The research on the accumulation of grain starch and change of related enzymes activity in rice with different amylose contents.JYunnanUniv, 2014,6:942-949. (in Chinese with English abstract)
[36]Umemoto T, Nakamura Y, Ishikura N. Activity of starch synthase and the amylose content in rice endosperm.Phytochemistry,1995,40(6):1613-1616.
[37]鐘連進,程方民. 水稻籽粒灌漿過程直鏈淀粉的積累及其相關酶的品種類型間差異. 作物學報,2003,29(3):452-456.
Zhong L J, Cheng F M. Varietal differences in amylose accumulation and activities of major enzymes associated with starch synthesis during grain filling in rice.ActaAgronSin, 2003, 29(3):452-456. (in Chinese with English abstract)
[38]Maysaya T, RandiC J, Maria, et al. Effects of environmental factors on cereal cereal starch biosynthesis and composition.JCerealSci,2012,56:67-80.
Effect of Cold-water Stress at Grain-filling Stage on Starch Accumulation and Related Enzyme Activities in Grains of japonica Rice in Cold-region
XIA Nan, ZHAO Hong-wei*, LV Yan-chao, ZHAO Zhen-dong, ZOU De-tang, LIU Hua-long, WANG Jing-guo,JIA Yan
(RiceResearchInstitute/CollegeofAgronomy,NortheastAgriculturalUniversity,Harbin150030,China;*Corresponding author,E-mail: hongweizhao@163.com)
XIA Nan, ZHAO Hongwei, LV Yanchao, et al. Effect of cold-water stress at grain-filling stage on starch accumulation and related enzyme activities in grains of japonica rice in cold-region. Chin J Rice Sci, 2016, 30(1): 62-74.
Abstract:A field experiment was conducted to reveal the influence of cold-water stress(17℃,lasting 3,6,9,12,15d) on grain starch synthesis and accumulation, yield components of japonica rice (Dongnong 428, Songjing 10 and Longdao 7) in cold-region during grain-filling stage, as well as the relationships between the changes in key enzymes activities related to starch synthesis and starch composition under cold-water stress. The results showed that compared with the control, soluble starch synthase (SSS) activity and starch branching enzyme (SBE) activity decreased, as well as the total starch contents and amylopectin content, while the amylose content increased under 17℃ cold-water stress during grain-filling stage. According to the correlation analysis,the activities of soluble starch synthase (SSS) and starch branching enzyme (SBE) were significantly correlated with grain starch accumulation, playing an equally important role in the changes of starch and its component contents. Meanwhile,the grain number per panicle, thousand seed weight and seed setting rate were significantly reduced during grain-filling stage. The amplitude of variation for every indicator increased gradually with lengthening cold-water treatment time. The indicators related to the yield components of japonica rice in cold-region varied with cold-water stress duration and can be used for the identification of cold resistance. According to the indexes under the cold-water stress for different japonica rice varieties in cold-region, Songjing 10 was the most susceptible, followed by Longdao 7 and Dongnong 428.
Key words:japonica rice; grain-filling stage; cold-water stress; key enzymes to starch synthesis; starch
文章編號:1001-7216(2016)01-0062-13
中圖分類號:Q945.78;S511.01
文獻標識碼:A
基金項目:國家科技支撐計劃資助項目(2013BAD20B04);國家自然科學基金資助項目(31571609);黑龍江省重大科技招標項目(GA14B102);東北農(nóng)業(yè)大學研究生科技創(chuàng)新一般項目(YJSCX 14050)。
收稿日期:2015-06-15; 修改稿收到日期: 2015-08-18。