馬 進(jìn),鄭 鋼,裴翠明,張振亞(浙江農(nóng)林大學(xué)風(fēng)景園林與建筑學(xué)院,浙江臨安311300)
?
南方型紫花苜蓿根系鹽脅迫應(yīng)答轉(zhuǎn)錄因子鑒定與分析
馬進(jìn),鄭鋼,裴翠明,張振亞
(浙江農(nóng)林大學(xué)風(fēng)景園林與建筑學(xué)院,浙江臨安311300)
摘要:轉(zhuǎn)錄因子可以調(diào)節(jié)眾多下游基因的表達(dá),在植物抗逆境中起重要的調(diào)節(jié)作用。為了解析轉(zhuǎn)錄因子在南方型紫花苜蓿適應(yīng)鹽脅迫環(huán)境的分子機(jī)制,以南方型紫花苜蓿Medicago sativa‘Millennium’為材料,以正常培養(yǎng)(WT_ck1)和氯化鈉(鹽)脅迫(WT_N1)條件下的2個(gè)樣品根系進(jìn)行轉(zhuǎn)錄組分析,鑒定紫花苜蓿根系鹽脅迫應(yīng)答轉(zhuǎn)錄因子基因。同時(shí),隨機(jī)挑選4個(gè)轉(zhuǎn)錄因子差異表達(dá)基因進(jìn)行實(shí)時(shí)熒光定量qRT-PCR(3次重復(fù)),驗(yàn)證轉(zhuǎn)錄組測(cè)序技術(shù)(RNA-Seq)結(jié)果的可靠性。結(jié)果表明:紫花苜蓿根系在250 mmol·L(-1)氯化鈉脅迫下72 h,共檢測(cè)到31 907個(gè)基因表達(dá)量發(fā)生了改變,表達(dá)量差異達(dá)到2倍以上的基因共2 758個(gè)。其中,隸屬于38個(gè)轉(zhuǎn)錄因子家族199個(gè)轉(zhuǎn)錄因子在鹽脅迫下差異表達(dá),上調(diào)表達(dá)104個(gè),下調(diào)表達(dá)95個(gè)。在各轉(zhuǎn)錄因子家族中,鹽脅迫應(yīng)答基因數(shù)量最多的是MYB基因家族,其后分別是AP2-EREBP,bHLH,WRKY,NAC和GRAS基因家族,這暗示了紫花苜蓿根系對(duì)鹽脅迫響應(yīng)可能是多種轉(zhuǎn)錄因子家族共同參與的應(yīng)答過(guò)程。qRT-PCR分析表明:4個(gè)隨機(jī)選擇的基因在脅迫前后的表達(dá)特點(diǎn)與表達(dá)譜測(cè)序結(jié)果一致。此外,MsERF-2b,MsbHLH,MsbZIP,MsGRAS,MsNAC,MsMGT-3a和MsWRKY等轉(zhuǎn)錄因子被選為與鹽脅迫應(yīng)答相關(guān)的候選轉(zhuǎn)錄因子。該研究結(jié)果為闡明植物對(duì)鹽脅迫的應(yīng)答機(jī)制提供了新的線(xiàn)索。圖3表3參36
關(guān)鍵詞:植物育種學(xué);南方型紫花苜蓿;轉(zhuǎn)錄因子;根轉(zhuǎn)錄;鹽脅迫
Key words: plant breeding; southern type alfalfa; transcription factor; root transcriptome; salt stress
土壤鹽化是全球面臨的最嚴(yán)峻的環(huán)境問(wèn)題之一[1]。植物鹽脅迫實(shí)際上是一種綜合脅迫,包括生理性干旱脅迫、滲透脅迫以及離子毒害脅迫,涉及到信號(hào)傳遞、多基因協(xié)同控制、蛋白質(zhì)翻譯與表達(dá)等一系列復(fù)雜的分子調(diào)控網(wǎng)絡(luò)。發(fā)掘和鑒定與植物鹽耐性相關(guān)重要基因,有助于了解植物鹽分子機(jī)制,為培育耐鹽植物新品種提供理論依據(jù)。紫花苜蓿Medicago sativa主要分布在溫帶地區(qū),除了作為牧草外,也是一種很好的水土保持綠化植物。近年來(lái),國(guó)外高秋眠級(jí)紫花苜蓿品種引進(jìn),率先解決了在南方的種植難題,但紫花苜蓿耐鹽能力有限,限制了在南方鹽堿地大面積種植。因此,發(fā)掘參與其鹽逆境響應(yīng)中耐鹽功能基因,并分析其耐鹽分子機(jī)制,有助于利用基因工程技術(shù)創(chuàng)制適合南方鹽堿地種植紫花苜蓿新品種。植物受鹽脅迫后,許多基因的表達(dá)量會(huì)發(fā)生明顯的變化,其中部分差異表達(dá)基因在耐鹽應(yīng)激調(diào)控過(guò)程中發(fā)揮著重要作用。LUO等[2]利用逆轉(zhuǎn)錄聚合酶鏈?zhǔn)椒磻?yīng)(RT-PCR)方法,從紫花苜蓿中分離到受脅迫誘導(dǎo)表達(dá)的解旋酶基因MH1,該基因可提高植物活性氧(ROS)的清除及滲透調(diào)節(jié)能力。MA等[3]從紫花苜蓿鹽脅迫中成功克隆1個(gè)MsGME基因,該基因?qū)箟难岷铣善鹬匾淖饔?。郭鵬等[4]從紫花苜蓿鹽脅迫中成功克隆出1個(gè)類(lèi)受體蛋白激酶MsSIK1基因,過(guò)量表達(dá)該基因可提高擬南芥Arabidopsis thaliana的抗鹽性。李明娜等[5]從紫花苜蓿成功克隆MsHB2基因,該基因可能通過(guò)ABA信號(hào)途徑參與紫花苜蓿鹽脅迫應(yīng)激調(diào)控。蒺藜苜蓿Medicago truncatula作為豆科Leguminosae模式植物,與苜蓿親緣關(guān)系很近,與四倍體苜?;蚪M具有很高的同源性。ZAHAF等[6]對(duì)蒺藜苜蓿鹽脅迫下進(jìn)行全基因組分析,為開(kāi)展紫花苜蓿耐鹽分子機(jī)制研究提供了重要信息,但紫花苜蓿為同源四倍體、異花授粉植物,其基因組非常復(fù)雜,仍然難以揭示紫花苜蓿耐鹽的分子機(jī)制。轉(zhuǎn)錄因子是轉(zhuǎn)錄調(diào)控中的核心功能蛋白。植物脅迫反應(yīng)過(guò)程中,眾多的轉(zhuǎn)錄因子承上啟下,調(diào)控一系列基因的表達(dá),在植物逆境應(yīng)答網(wǎng)絡(luò)過(guò)程中發(fā)揮著不可或缺的關(guān)鍵性作用。鑒于轉(zhuǎn)錄因子在轉(zhuǎn)錄調(diào)控中的重要意義,在逆境脅迫應(yīng)答中,轉(zhuǎn)錄因子及其下游調(diào)控靶基因的識(shí)別,已成為后基因組時(shí)代研究的熱點(diǎn)之一。目前,采用高通量技術(shù)從轉(zhuǎn)錄組水平上鑒定和分析紫花苜蓿鹽脅迫應(yīng)答轉(zhuǎn)錄因子研究較少,本研究利用轉(zhuǎn)錄組測(cè)序技術(shù)(RNA-Seq),對(duì)鹽脅迫處理前后的南方型紫花苜蓿幼苗根系進(jìn)行轉(zhuǎn)錄組測(cè)序,鑒定根系響應(yīng)鹽脅迫應(yīng)答轉(zhuǎn)錄因子及表達(dá)特性,以期更深入地理解南方型紫花苜蓿對(duì)鹽脅迫響應(yīng)的分子機(jī)制,為進(jìn)一步鑒定和克隆其重要的耐鹽基因,提高南方型紫花苜蓿耐鹽性狀奠定基礎(chǔ)。
1.1材料及處理
選擇耐鹽性相對(duì)較強(qiáng)的高秋眠級(jí)南方型紫花苜蓿Medicago sativa‘Millennium’為材料[7],將種子先用體積分?jǐn)?shù)為75%乙醇消毒10 min,然后用滅菌水清洗3次,滅菌水中浸泡2 h于20℃生長(zhǎng)箱內(nèi)發(fā)芽。7 d后,挑選生長(zhǎng)一致小苗轉(zhuǎn)移至塑料盆裝滿(mǎn)基質(zhì)[V(細(xì)沙)∶V(珍珠巖)=3∶1],每天澆霍格蘭營(yíng)養(yǎng)液。30 d后加入250 mmol·L-1氯化鈉至營(yíng)養(yǎng)液中處理,選取脅迫處理0 h和72 h的紫花苜蓿地下部根系組織,混合樣于液氮中保存?zhèn)溆谩?/p>
1.2RNA的提取及檢測(cè)
利用TRNzol Reagent試劑盒分別提取處理與對(duì)照組幼根RNA,提取過(guò)程按試劑盒說(shuō)明進(jìn)行。生物學(xué)重復(fù)3次·處理-1的RNA樣品混合為50 μL。所提取的RNA經(jīng)電泳檢測(cè)合格后送至深圳華大基因科技有限公司進(jìn)一步確認(rèn)質(zhì)量后,將同一樣本所提取的幼根RNA進(jìn)行高通量測(cè)序。
1.3Illumina測(cè)序
將鹽處理組與對(duì)照組總核糖核酸(RNA)由華大基因科技有限公司完成文庫(kù)構(gòu)建與測(cè)序,將構(gòu)建好的文庫(kù)進(jìn)行其質(zhì)量和產(chǎn)量檢測(cè)。對(duì)質(zhì)量檢測(cè)合格后的文庫(kù)采用IlluminaHiSeqTM 2000進(jìn)行測(cè)序。將經(jīng)堿基識(shí)別(base calling)測(cè)序產(chǎn)生的原始圖像轉(zhuǎn)化為原始序列數(shù)據(jù)(raw data),繼而轉(zhuǎn)換為有效數(shù)據(jù)(clean data)。采用短reads比對(duì)軟件SOAPaligner/SOAP2將有效數(shù)據(jù)分別與參考基因組蒺藜苜蓿進(jìn)行比對(duì)。
1.4差異基因的選擇
最后,大學(xué)的教學(xué)模式、課程要求、體系難度都遠(yuǎn)遠(yuǎn)不同于高中生已經(jīng)非常熟悉的狀況。而大學(xué)一年級(jí),可能與學(xué)生在大學(xué)的整個(gè)基調(diào)是息息相關(guān)的。
測(cè)序后使用RPKM(reads per kilo bases per million reads)法計(jì)算基因表達(dá)量,根據(jù)基因表達(dá)量(RP-KM值)計(jì)算其在處理與對(duì)照中的差異表達(dá)倍數(shù)。差異表達(dá)倍數(shù)大于2倍以上(含2倍)的基因認(rèn)定為差異表達(dá)基因。
1.5熒光定量RT-PCR
以分別提取的處理組與對(duì)照組根系RNA為材料,采用TaKaRa公司的PrimeScript RT reagent Kit With cDNA Eraser試劑盒反轉(zhuǎn)錄合成cDNA,作為實(shí)時(shí)熒光聚合酶鏈?zhǔn)椒磻?yīng)(PCR)反應(yīng)的模板。根據(jù)測(cè)序的基因測(cè)序結(jié)果隨機(jī)挑取4個(gè)鹽脅迫轉(zhuǎn)錄因子基因,用Primer Premier 5.0軟件設(shè)計(jì)熒光定量PCR引物(表1)。以苜蓿GAPDH(GenBank登錄號(hào)為MTR_4g131180)為內(nèi)參,引物為5′-GTGGTGCCAAGAAGGTTGTTAT-3′和5′-CTGGGAATGATGTTGAAGGAAG-3′。各處理均做3次重復(fù)計(jì)算基因的相對(duì)表達(dá)量。
表1 驗(yàn)證DGE數(shù)據(jù)準(zhǔn)確性的qRT-PCR引物Table 1 Primers to detect the accuracy of DGE date by qRT-PCR
2.1測(cè)序質(zhì)量分析
對(duì)測(cè)得的reads分析表明:對(duì)照樣本(WT_ck1)和鹽脅迫處理樣本(WT_N1)raw reads去雜后獲得的clean reads比例接近,說(shuō)明cDNA文庫(kù)構(gòu)建和測(cè)序質(zhì)量較高。由于受到遺傳背景的差異和注釋信息量的限制,對(duì)照樣本clean reads中近52.25%可被參考基因組注釋?zhuān)?7.75%的clean reads未能注釋到對(duì)應(yīng)的基因。鹽脅迫處理樣本(WT_N1)樣本的reads注釋情況同對(duì)照樣本基本上相近(表2)。
表2 DGE樣品測(cè)序數(shù)據(jù)統(tǒng)計(jì)結(jié)果Table 2 Statistics of upgraded version of the DEG
2.2紫花苜蓿根系鹽脅迫應(yīng)答轉(zhuǎn)錄因子分析
將鹽處理組與對(duì)照組總RNA,由華大基因科技有限公司完成文庫(kù)構(gòu)建與測(cè)序。以差異檢驗(yàn)發(fā)現(xiàn)錯(cuò)誤率FDR(false discovery rate,F(xiàn)DR)值≤0.001且差異倍數(shù)不低于2倍為差異表達(dá)基因(DEGs, differentially expressed genes)的選擇標(biāo)準(zhǔn),紫花苜蓿根系在250 mmol·L-1氯化鈉脅迫下72 h,共檢測(cè)到31 907個(gè)基因表達(dá)量發(fā)生了改變,對(duì)照樣本(WT_ck1)和鹽脅迫處理樣本(WT_N1)之間有2 758個(gè)基因表現(xiàn)為差異表達(dá),其中1 338個(gè)DEGs在鹽脅迫響應(yīng)中表達(dá)上調(diào),1 420個(gè)DEGs表達(dá)下調(diào)。此外,南方型紫花苜蓿根系鹽響應(yīng)下,共有隸屬于38轉(zhuǎn)錄因子家族199個(gè)轉(zhuǎn)錄因子差異表達(dá),占總差異表達(dá)基因的7.72%,其中上調(diào)表達(dá)104個(gè),下調(diào)表達(dá)95個(gè)。
圖1 紫花苜蓿根響應(yīng)鹽脅迫轉(zhuǎn)錄因子差異基因倍數(shù)變化Figure 1 Fold change of differentially expressed genes of transcription factor in the root of alfalfa under control and salt stress
從圖2可以看出:紫花苜蓿根系響應(yīng)鹽脅迫下有38個(gè)轉(zhuǎn)錄因子家族的差異表達(dá)。MYB轉(zhuǎn)錄因子家族上調(diào)和下調(diào)數(shù)量最多。Alfin-like,C2C2-Dof,C2H2和SBP轉(zhuǎn)錄因子家族基因全部上調(diào),DBP,HB和Tify轉(zhuǎn)錄因子家族基因全部下調(diào)。其他的轉(zhuǎn)錄因子家族基因如AP2-EREBP,bHLH,NAC,MADS,Trihelix 和WRKY等轉(zhuǎn)錄家族成員基因既有轉(zhuǎn)錄水平上調(diào)的,也有轉(zhuǎn)錄水平下調(diào)的,這也表明了轉(zhuǎn)錄家族基因在鹽響應(yīng)中調(diào)控方式的復(fù)雜性。
圖2 紫花苜蓿根響應(yīng)鹽脅迫轉(zhuǎn)錄因子家族分布Figure 2 Distribution of transcription factor family in the root of alfalfa under control and salt stress
2.3紫花苜蓿根系響應(yīng)鹽脅迫誘導(dǎo)表達(dá)重要轉(zhuǎn)錄因子基因
轉(zhuǎn)錄因子在逆境脅迫下,可以激活或抑制下游基因的轉(zhuǎn)錄表達(dá)。目前已經(jīng)證實(shí)bZIP,WRKY,AP2,NAC,bHLH,DERB,MYB和C2H2等轉(zhuǎn)錄因子家族的成員參與了植物對(duì)鹽脅迫的應(yīng)答反應(yīng)。根據(jù)BLASTP結(jié)果對(duì)表達(dá)DEGs進(jìn)行功能注釋?zhuān)l(fā)現(xiàn)多個(gè)鹽脅迫標(biāo)志性轉(zhuǎn)錄因子基因顯著上調(diào)或下調(diào)表達(dá)(表3)。上調(diào)的基因如乙烯響應(yīng)因子MsERF-RAP2(gi|357464931)和MsERF-2b(gi| 357442393),bHLH轉(zhuǎn)錄因子MsbHLH93(gi|357466829),NAC轉(zhuǎn)錄因子MsNAC(gi|657395215,gi| 657400593),WRKY轉(zhuǎn)錄因子MsWRKY(gi|657385964),MYB轉(zhuǎn)錄因子MsMYB(gi|657378081,gi| 357476493)及Trihelix轉(zhuǎn)錄因子MsMGT-3a(gi|657378410)等。下調(diào)的基因如DREB轉(zhuǎn)錄因子(gi| 357481745),bHLH轉(zhuǎn)錄因子MsbHLH(gi|657389916),C3H轉(zhuǎn)錄因子(gi|357446695),GRAS轉(zhuǎn)錄因子MsGRAS(gi|357454173,gi|657390120和gi|657400125),MYB轉(zhuǎn)錄因子MsMYB(gi|657404698,gi| 657387760)及Trihelix轉(zhuǎn)錄因子MsTFIIIB(gi|657378081)。
2.4差異表達(dá)基因的qRT-PCR熒光定量驗(yàn)證
為了驗(yàn)證測(cè)序差異表達(dá)基因數(shù)據(jù)的可靠性,隨機(jī)挑選4個(gè)差異表達(dá)基因,其中2個(gè)上調(diào)基因cds5471和cds21593,2個(gè)下調(diào)基因cds53671和cds12115,以苜蓿GAPDH(GenBank登錄號(hào)為MTR_4g131180)為內(nèi)參,進(jìn)行qRT-PCR驗(yàn)證。結(jié)果表明:雖然4個(gè)基因在鹽脅迫處理后發(fā)生不同程度的表達(dá)(圖3),但脅迫誘導(dǎo)表達(dá)的變化趨勢(shì)基本一致,說(shuō)明Illumina測(cè)序獲得的轉(zhuǎn)錄組數(shù)據(jù)的可靠性。
圖3 DEGs qRT-PCR驗(yàn)證Figure 3 Validation of DEGS data by qRT-PCR
表3 紫花苜蓿根系響應(yīng)鹽脅迫誘導(dǎo)表達(dá)重要轉(zhuǎn)錄因子Table 3 Salt-stress induced key transcription factors in the root of alfalfa
在干旱、鹽堿等逆境脅迫下,植物可通過(guò)改變基因的表達(dá),調(diào)控不同代謝和信號(hào)轉(zhuǎn)導(dǎo)途徑,從轉(zhuǎn)錄和翻譯等不同水平上作出響應(yīng),而轉(zhuǎn)錄因子可在逆境脅迫下,激活或抑制下游基因的轉(zhuǎn)錄表達(dá)。目前,已經(jīng)證實(shí)bZIP,WRKY,AP2/EREBP,C2H2,bHLH,DERB,MYB和NAC等轉(zhuǎn)錄因子家族的成員參與了植物對(duì)鹽脅迫的應(yīng)答反應(yīng)[8]。本研究結(jié)果表明:紫花苜蓿根系在250 mmol·L-1氯化鈉脅迫72 h時(shí)后,檢測(cè)到表達(dá)量差異達(dá)到2倍以上的基因2 758個(gè),在差異表達(dá)基因中,包含著38轉(zhuǎn)錄家族共199個(gè)轉(zhuǎn)錄因子基因差異表達(dá),其中上調(diào)轉(zhuǎn)錄因子104個(gè),下調(diào)轉(zhuǎn)錄因子95個(gè)。這也暗示著紫花苜蓿根系鹽脅迫應(yīng)答各類(lèi)轉(zhuǎn)錄因子調(diào)控方式的復(fù)雜性。
AP2/EREBP是一個(gè)大的轉(zhuǎn)錄因子家族,包含EREBP和AP2等2個(gè)亞族[9]。研究證實(shí),AP2/EREBP轉(zhuǎn)錄家族基因與植物逆境響應(yīng)有關(guān)[10]。本研究發(fā)現(xiàn),轉(zhuǎn)錄因子多數(shù)屬于ERFs轉(zhuǎn)錄因子家族,ERFs類(lèi)轉(zhuǎn)錄因子可激活抗氧化基因的表達(dá),來(lái)減輕鹽脅迫造成的氧化損傷[11]。如過(guò)表達(dá)GmERF7和GmERF6可提高大豆Glycine max抗鹽性和抗旱性。但也有研究報(bào)道:過(guò)表達(dá)SlERF3可降低番茄Solanum lycopersicum對(duì)鹽的耐受性[12]。本研究發(fā)現(xiàn):28個(gè)AP2/EREBP基因參與紫花苜蓿根系響應(yīng)鹽脅迫應(yīng)答過(guò)程,其中15個(gè)表達(dá)上調(diào),13個(gè)表達(dá)下調(diào)。AP2/EREBP基因在鹽脅迫響應(yīng)下呈現(xiàn)上調(diào)和下調(diào)現(xiàn)象,表明其參與鹽脅迫響應(yīng)的調(diào)控方式不同。
NAC轉(zhuǎn)錄家族因子在植物發(fā)育、逆境應(yīng)答和衰老和次生壁合成等眾多的生物學(xué)過(guò)程中發(fā)揮著重要作用[13-14]。研究證實(shí),NAC家族轉(zhuǎn)錄因子在逆境脅迫應(yīng)答中存在著正負(fù)兩種調(diào)控機(jī)制。過(guò)表達(dá)SNAC1能提高水稻Oryza sativa干旱、高鹽的耐受性,且可以同OsPP18的啟動(dòng)子結(jié)合共同調(diào)控其表達(dá)[15];過(guò)表達(dá)AtNAC2可降低擬南芥轉(zhuǎn)基因的耐鹽性[16]。本研究發(fā)現(xiàn),9個(gè)NAC家族轉(zhuǎn)錄因子參與鹽脅迫應(yīng)答過(guò)程,其中8個(gè)表達(dá)上調(diào),1個(gè)表達(dá)下調(diào)。在9個(gè)NAC家族轉(zhuǎn)錄因子成員中,其中g(shù)i|657395215和gi| 657400593上調(diào)10倍以上,這可能是紫花苜蓿根部參與鹽脅迫應(yīng)答重要調(diào)節(jié)因子。
作為植物特有的WRKY家族轉(zhuǎn)錄調(diào)控因子,在植物抗逆過(guò)程中扮演著重要的角色。蒺藜苜蓿中已鑒定出28個(gè)成員[17]?,F(xiàn)已證實(shí)WRKY家族轉(zhuǎn)錄因子在逆境脅迫應(yīng)答中存在著正負(fù)2種調(diào)控機(jī)制。過(guò)表達(dá)GhWRKY17可提高棉花Gossypium hirsutum對(duì)干旱、高鹽的耐受性[18],但過(guò)表達(dá)OsWRKY45-1可降低水稻對(duì)高鹽的耐受性[19]。本研究發(fā)現(xiàn):13個(gè)WRKY轉(zhuǎn)錄因子基因參與紫花苜蓿根系相應(yīng)鹽脅迫應(yīng)答過(guò)程,其中10個(gè)表達(dá)下調(diào),3個(gè)表達(dá)上調(diào),這也暗示著WRKY轉(zhuǎn)錄因子參與植物的鹽脅迫響應(yīng)機(jī)制方式的復(fù)雜性。
堿性亮氨酸拉鏈(basic leucine zipper,bZIP)轉(zhuǎn)錄因子廣泛分布于真核生物中,并參與調(diào)控植物對(duì)干旱及鹽脅迫的抗性?,F(xiàn)已證實(shí)bZIP家族轉(zhuǎn)錄因子在逆境脅迫應(yīng)答中存在著正負(fù)2種調(diào)控機(jī)制。過(guò)表達(dá)OsbZIP23可明顯提高轉(zhuǎn)基因水稻植株對(duì)干旱、高鹽的耐受性[20]。GmbZIP44,GmbZIP62和GmbZIP78可作為負(fù)調(diào)控因子參與大豆調(diào)控對(duì)鹽脅迫響應(yīng)[21]。李燕等[22]成功將紫花苜蓿MsZIP基因轉(zhuǎn)到煙草Nicotiana tabacum中,為后期研究該基因在耐鹽中的作用提供了材料。本研究檢測(cè)到2個(gè)bZIP轉(zhuǎn)錄因子參與紫花苜蓿根系鹽脅迫應(yīng)答過(guò)程,其中1個(gè)bZIP轉(zhuǎn)錄因子基因下調(diào)明顯(gi|657385763,差異倍數(shù)為-13.13),推測(cè)這個(gè)bZIP轉(zhuǎn)錄因子可能作為負(fù)調(diào)控因子參與紫花苜蓿鹽脅迫應(yīng)答過(guò)程。
C2H2型鋅指蛋白植物中最重要的轉(zhuǎn)錄調(diào)節(jié)因子家族之一。如擬南芥有176個(gè)C2H2型鋅指蛋白,水稻有189個(gè)C2H2型鋅指蛋白成員。研究表明:C2H2型轉(zhuǎn)錄家族因子參與植物生長(zhǎng)發(fā)育和非生物脅迫應(yīng)答的多種細(xì)胞生化過(guò)程[23]。CHEN等[24]研究發(fā)現(xiàn)ZPF179在水稻體內(nèi)對(duì)鹽脅迫應(yīng)答中發(fā)揮重要作用。本研究發(fā)現(xiàn),1個(gè)C2H2轉(zhuǎn)錄因子基因上調(diào)(gi|657403499,差異倍數(shù)為2.33),推測(cè)這個(gè)C2H2轉(zhuǎn)錄因子可能參與紫花苜蓿鹽脅迫應(yīng)答過(guò)程。bHLH轉(zhuǎn)錄因子廣泛存在于植物中,在應(yīng)對(duì)非生物脅迫應(yīng)答中起到重要的調(diào)控作用。目前已在蒺藜苜蓿中發(fā)現(xiàn)100多個(gè)bHLH轉(zhuǎn)錄家族成員[25]。研究發(fā)現(xiàn):蒺藜苜蓿對(duì)鹽脅迫逆境同bHLH轉(zhuǎn)錄因子有關(guān)系[26]。過(guò)表達(dá)OrbHLH001和bHLH92分別可增加水稻和擬南芥對(duì)高鹽脅迫的耐受性[27-28]。本研究發(fā)現(xiàn),17個(gè)bHLH轉(zhuǎn)錄因子參與紫花苜蓿根系響應(yīng)鹽脅迫應(yīng)答過(guò)程,其中12個(gè)表達(dá)上調(diào),5個(gè)表達(dá)下調(diào)。在差異表達(dá)bHLH轉(zhuǎn)錄因子中,gi|657395215和gi|657400593上調(diào)達(dá)到11倍以上,推測(cè)這2個(gè)bHLH轉(zhuǎn)錄因子可能是紫花苜蓿鹽脅迫應(yīng)答中重要潛在轉(zhuǎn)錄因子基因。
作為植物特有的GRAS蛋白家族轉(zhuǎn)錄調(diào)控因子,已在擬南芥和水稻基因組中分別發(fā)現(xiàn)GRAS家族的基因成員33個(gè)和57個(gè)[29]。研究表明:GRAS家族的基因成員在植物抗逆性中發(fā)揮了關(guān)鍵作用[30-31]。本研究中,發(fā)現(xiàn)9個(gè)GRAS家族基因成員,其中3個(gè)表達(dá)上調(diào),6個(gè)表達(dá)下調(diào),表明其該類(lèi)基因可能同紫花苜蓿根系的鹽脅迫響應(yīng)逆境調(diào)節(jié)有關(guān)。作為轉(zhuǎn)錄因子家族Trihelix一個(gè)小家族,已經(jīng)在擬南芥發(fā)現(xiàn)30個(gè),水稻有31個(gè)。已有證據(jù)表明,小家族Trihelix轉(zhuǎn)錄因子在逆境脅迫響應(yīng)中起著重要調(diào)控作用[32-34]。本研究也發(fā)現(xiàn)6個(gè)Trihelix轉(zhuǎn)錄因子差異表達(dá)。熱激轉(zhuǎn)錄因子(HSF)對(duì)提高植物逆境耐受力方面起著重要調(diào)控作用[35-36]。本研究發(fā)現(xiàn)4個(gè)HSF轉(zhuǎn)錄因子全部上調(diào)表達(dá),暗示了HSF家族的轉(zhuǎn)錄因子同鹽脅迫應(yīng)答可能有一定的關(guān)聯(lián)性。
在復(fù)雜的植物逆境脅迫應(yīng)答網(wǎng)絡(luò)中,轉(zhuǎn)錄調(diào)控基因可以通過(guò)調(diào)控一系列與逆境相關(guān)的功能基因的表達(dá),從而明顯提高植物對(duì)逆境的抵抗能力。本研究利用RNA-Seq技術(shù)鑒定出199個(gè)轉(zhuǎn)錄因子參與南方型紫花苜蓿根系鹽脅迫應(yīng)答過(guò)程,但大多數(shù)轉(zhuǎn)錄因子在鹽脅迫應(yīng)答中發(fā)揮功能及其控制下游靶基因調(diào)控機(jī)制仍知之甚少,還需要進(jìn)一步深入的研究,從而更深入揭示紫花苜蓿對(duì)鹽脅迫的調(diào)控機(jī)制。
[1]左照江,張汝民,高巖.鹽脅迫下植物細(xì)胞離子流變化的研究進(jìn)展[J].浙江農(nóng)林大學(xué)學(xué)報(bào),2014,31(5):805 - 811.ZUO Zhaojiang,ZHANG Rumin,GAO Yan.Advances in plant cell ion flux with salt stress: a review[J].J ZhejiangA & F Univ, 2014, 31(5): 805 - 811.
[2]LUO Yan, LIU Yubo, DONG Yuxiu, et al.Expression of a putative alfalfa helicase increases tolerance to abiotic stress in Arabidopsis by enhancing the capacities for ROS scavenging and osmotic adjustment[J].J Plant Physiol, 2009, 166(4): 385 - 394.
[3]MA Lichao, WANG Yanrong, LIU Wenxian, et al.Overexpression of an alfalfa GDP-mannose 3, 5-epimerase gene enhances acid, drought and salt tolerance in transgenic Arabidopsis by increasing ascorbate accumulation[J].Biotechnol Let, 2014, 36(11): 2331 - 2341.
[4]郭鵬,邢鑫,張萬(wàn)筠,等.紫花苜蓿鹽誘導(dǎo)類(lèi)受體蛋白激酶基因MsSIK1的克隆及功能分析[J].中國(guó)農(nóng)業(yè)科學(xué),2014,47(23):4573 - 4581.GUO Peng,XING Xing,ZHANG Wanjun,et al.Cloning and function analysis of a salt-stress-induced receptor like protein kinase gene MsSIK1 from alfalfa[J].Sci Agric Sin,2014,47(23): 4573 - 4581.
[5]李明娜,龍瑞才,楊青川,等.紫花苜蓿鹽誘導(dǎo)HD-Zip類(lèi)轉(zhuǎn)錄因子MsHB2的克隆及功能分析[J].中國(guó)農(nóng)業(yè)科學(xué),2014,47(4):622 - 632.LI Mingna,LONG Ruicai,YANG Qingchuan,et al.Cloning and function analysis of a salt-stress-induced HD-Zip transcription factor MsHB2 from alfalfa[J].Sci Agric Sin, 2014,47(4): 622 - 632.
[6]ZAHAF O, BLANCHET S, de ZéLICOURT A, et al.Comparative transcriptomic analysis of salt adaptation in roots of contrasting Medicago truncateula genotypes[J].Mol Plant, 2012,5(5): 1068 - 1081.
[7]馬進(jìn),鄭鋼,蔡建國(guó).南方型紫花苜?;蛐驮诮M織培養(yǎng)條件下對(duì)NaCl的耐性[J].浙江農(nóng)業(yè)學(xué)報(bào),2011,23 (4):782 - 786.MA Jin, ZHENG Gang, CAI Jianguo.NaCl tolerance of different genotypes of southern type of Medicago sativa under tissue culture[J].Acta Agric Zhejiang, 2011,23(4): 782 - 786.
[8]MILLER G A D, SUZUKI N, CIFTCI-YILMAZ S, et al.Reactive oxygen species homeostasis and signalling during drought and salinity stresses[J].Plant Cell Environ, 2010, 33(4): 453 - 467.
[9]王慶靈,劉文鑫,趙嘉平.山海關(guān)楊PdERF-18轉(zhuǎn)錄因子的表達(dá)特征分析[J].浙江農(nóng)林大學(xué)學(xué)報(bào),2014,31 (5):716 - 723.WANG Qingling,LIU Wenxin,ZHAO Jiaping.Expression patterns for a PdERF-18 response to different stresses in Populus deltoides‘Shanhaiguan’[J].J Zhejiang A & F Univ, 2014,31(5): 716 - 723.
[10]HUSSAIN S S,KAYANI M A,AMJAD M.Transcription factors as tools to engineer enhanced drought tolerance in plants[J].Biotechnol Prog, 2011, 27(2): 297 - 306.
[11]ZHANG Zhijin,WANG Juan,ZHANG Rongxue,et al.The ethylene response factor AtERF98 enhances tolerance to salt through the transcriptional activation of ascorbic acid synthesis in Arabidopsis[J].Plant J, 2012, 71: 273 -287.
[12]PAN I C, LI C W, SU R C, et al.Ectopic expression of an EAR motif deletion mutant of SlERF3 enhances tolerance to salt stress and Ralstonia solanacearum in tomato[J].Planta,2010,232(5): 1075 - 1086.
[13]PURANIK S, SAHU P P, SRIVASTAVA P S,et al.NAC proteins: regulation and role in stress tolerance[J].Trends Plant Sci, 2012, 17(6): 369 - 381.
[14]NAKASHIMA K, TAKASAKI H,MIZOI J,et al.NAC transcription factors in plant abiotic stress responses[J].Biochim Biophys Acta, 2012, 1819(2): 97 - 103.
[15]YOU Jun, ZONG Wei, HU Honghong, et al.A stress-responsive nac1-regulated protein phosphatase gene rice protein phosphatase18 modulates drought and oxidative stress tolerance through abscisic acid-independent reactive oxygen species scavenging in rice[J].Plant Physiol,2014,166(4): 2100 - 2114.
[16]BALAZADEH S, SIDDIQUI H, ALLU A D, et al.A gene regulatory network controlled by the NAC transcription factor ANAC092/AtNAC2/ORE1 during salt-promoted senescence[J].Plant J, 2010, 62(2): 250 - 264.
[17]江騰,林勇祥,劉雪,等.苜蓿全基因組WRKY轉(zhuǎn)錄因子基因的分析[J].草業(yè)學(xué)報(bào), 2011, 20(3): 211 - 218.JIANG Teng,LIN Yongxiang,LIU Xue,et al.Genome-wide analysis of the WRKY transcription factor family in Medicago truncatula[J].Acta Pratacultuae Sin, 2011, 20(3): 211 - 218.
[18]YAN Huiru, JIA Haihong, CHEN Xiaobo, et al.The cotton WRKY transcription factor GhWRKY17 functions in drought and salt stress in transgenic Nicotiana benthamiana through ABA signalling and the modulation of reactiveoxygen species production[J].Plant Cell Physiol, 2014,55(12): 2060 - 2076.
[19]TAO Zeng , KOU Yanjun , LIU Hongbo, et al.OsWRKY45 alleles play different roles in abscisic acid signalling and salt stress tolerance but similar roles in drought and cold tolerance in rice[J].J Exp Bot, 2011, 62(14): 4863 - 4874.
[20]XIANG Yong, TANG Ning, DU Hao, et al.Characterization of OsbZIP23 as a key player of the basic leucine zipper transcription factor family for conferring abscisic acid sensitivity and salinity and drought tolerance in rice[J].Plant Physiol, 2008, 148(4): 1938 - 1952.
[21]LIAO Yong, ZOU Hongfeng, WANG Huiwen, et al.Soybean GmMYB76, GmMYB92 and GmMYB177 genes confer stress tolerance in transgenic Arabidopsis plants[J].Cell Res, 2008, 18(10): 1047 - 1060.
[22]李燕,康俊梅,張鐵軍,等.紫花苜蓿MsZIP基因超表達(dá)載體的構(gòu)建及煙草轉(zhuǎn)化[J].草地學(xué)報(bào),2012,20 (4): 735 - 740.LI Yan,KANG Junmei, ZHANG Tiejun, et al.Construction and transformation of super-expressing plasmid of MsZIP gene from Medicago sativa L.[J].Acta Agrest Sin, 2012, 20(4): 735 - 740.
[23]ZHANG Hong, LAN Ni, LIU Yanpei, et al.The C2H2-type zinc finger protein ZFP182 is involved in abscisic acidinduced antioxidant defense in rice[J].J Integr Plant Biol,2012,54(7): 500 - 510.
[24]SUN Shunjing, GUO Shuqiao, YANG Xia, et al.Functional analysis of a novel Cys2/His2-type zinc finger protein involved in salt tolerance in rice[J].J Exp Bot,2010,61(10): 2807 - 2818.
[25]HE Ji, BENEDITO V A, WANG Mingyi, et al.The Medicago truncatula gene expression atlas web server[J].BMC Bioinform, 2009, 10(30): 441 - 449.
[26]ZAHAF O, BLANCHET S, ZéLICOURT A, et al.Comparative transcriptomic analysis of salt adaptation in roots of contrasting Medicago truncatula genotypes[J].Mol Plant, 2012,5(5): 1068 - 1081.
[27]CHEN Yuan, LI Fei, MA Yan, et al.Overexpression of OrbHLH001, a putative helix-loop-helix transcription factor, causes increased expression of AKT1 and maintains ionic balance under salt stress in rice[J].J Plant Physiol,2013, 170(1): 93 - 100.
[28]JIANG Yuanqing, YANG Bo, DEYHOLOS M K.Functional characterization of the Arabidopsis bHLH92 transcription factor in abiotic stress[J].Mol Genet Genom,2009,282(5): 503 - 516.
[29]SIBYLLE H, OLDROYD G E D.GRAS-domain transcription factors that regulate plant development[J].Plant Signal Behav, 2009, 4(8): 698 - 700.
[30]HOU Xingliang, LEE L Y C, XIA Kuaifei, et al.DELLAs modulate jasmonate signaling via competitive binding to JAZs[J].Dev Cell, 2010, 19(6): 884 - 894.
[31]SUN Xiaolin, JONES W T, RIKKERINK E H, et al.GRAS proteins: the versatile roles of intrinsically disordered proteins in plant signaling[J].Biochem J, 2012, 442(1): 1 - 12.
[32]XIE Zongming, ZOU Hongfeng, LEI Gang, et al.Soybean trihelix transcription factors GmGT-2A and GmGT-2B improve plant tolerance to abiotic stresses in transgenic Arabidopsis[J].PLoS One, 2009, 4(9): e6898.
[33]FANG Yujie, XIE Kabin, HOU Xin, et al.Systematic analysis of GT factor family of rice reveals a novel subfamily involved in stress responses[J].Mol Genet Genomics, 2010, 283(2): 157 - 169.
[34]WANG Xiaohong,LI Qingtian,CHEN Haowei,et al.Trihelix transcription factor GT-4 mediates salt tolerance via interaction with TEM2 in Arabidopsis[J].BMC Plant Biol, 2014, 14(1): 1 - 14.
[35]CHARNG Y Y,LIU H C,LIU N Y, et al.A heat-inducible transcription factor, HsfA2, is required for extension of acquired thermotolerance in Arabidopsis[J].Plant Physiol, 2007, 143(1): 251 - 262.
[36]AYAKO N, YUKINORI Y, ERIKO Y, et al.Arabidopsis heat shock transcription factor A2 as a key regulator in response to several types of environmental stress[J].Plant J, 2006, 48(4): 535 - 547.
Identification and characterization of salt-responsive transcription factors in roots of southern type alfalfa
MA Jin, ZHENG Gang, PEI Cuiming, ZHANG Zhenya
(School of Landscape Architecture, Zhejiang A & F University, Lin’an 311300, Zhejiang, China)
Abstract:Transcription factors(TFs), which can regulate downstream gene expression, play an important role in plant stress responses.In order to investigate the molecular mechanism of salt tolerance, the TFs of southern type alfalfa, in this study with 250 mmol·L(-1)NaCl stress, Illumina RNA-sequencing was performed to evaluate the expression spectrum of transcription factors in roots of the southern alfalfa cultivar“Millennium”.Then to verify the expression of four randomly selected genes, Quantitative Reverse-Transcriptase Polymerase Chain Reaction(qRT-PCR)(three repeated)was used.Results showed 31 907 differentially expressed genes, 2 758 of which showed a difference of over two fold.Among these genes, 199 transcription factors belonging to 38 TF families were up-regulated and 95 were down-regulated.Genes from the MYB family were observed most, followed by AP2-EREBP, bHLH, WRKY, NAC, and GRAS.The qRT-PCR assay of four randomly selected genes confirmed the results of RNA-Seq analysis.In addition, candidate genes such as MsERF-2b,MsbHLH, MsbZIP, MsC2H2, MsGRAS, MsNAC, MsMGT-3a, and MsWRKY that may be involved in salt stress responses were identified.This study indicated that multiple TF families were involved in salt stress responses in the root of southern alfalfa types, and it provided new information for further study of the mechanism of a plant’s response to salt stress.[Ch, 3 fig.3 tab.36 ref.]
作者簡(jiǎn)介:馬進(jìn),副教授,博士,從事植物逆境生理研究。E-mail: majinzjl@163.com
基金項(xiàng)目:國(guó)家自然科學(xué)基金資助項(xiàng)目(31272494);浙江省自然科學(xué)基金資助項(xiàng)目(LY16C170003)
收稿日期:2015-04-25;修回日期:2015-07-19
doi:10.11833/j.issn.2095-0756.2016.02.003
中圖分類(lèi)號(hào):S722.3
文獻(xiàn)標(biāo)志碼:A
文章編號(hào):2095-0756(2016)02-0201-08