• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Parameter identification for SINS coarse alignment based on apparent velocity

    2016-04-19 02:14:12MENGXiangfeiLIXin
    關(guān)鍵詞:對(duì)準(zhǔn)矢量濾波

    MENG Xiang-fei, LI Xin

    (School of Electrical and Automation Engineering, Changshu Institute of Technology, Changshu 215500, China)

    Parameter identification for SINS coarse alignment based on apparent velocity

    MENG Xiang-fei, LI Xin

    (School of Electrical and Automation Engineering, Changshu Institute of Technology, Changshu 215500, China)

    Traditional dual-vector coarse alignment with apparent velocity has the problems of poor alignment precision and slow convergence rate due to the influence of random noises on inertial sensors. To solve this problem, a new dual-vector coarse alignment method is designed, which uses a new adaptive Kalman filter to estimate the parameters in an apparent velocity model without using the accurate covariance of the measurement noises. Meanwhile, a reconstructed algorithm with recognized parameters is adopted for the dual-vector, which can avoid the collinearity of the dual-vector. Analysis and simulation indicate that, by using this method, the random noises in the measured apparent velocity can be effectively eliminated compared with the traditional dual-vector coarse alignment. Simulation and turntable experiments show that, compared with traditional methods, the proposed method for the coarse alignment can acquire more accurate alignment results with the same alignment time, and can improve the convergence rate with the same alignment accuracy. The turntable tests by the new method show that the yaw error is -0.1391° and the standard deviation is 0.012°.

    strapdown inertial navigation system; coarse alignment; adaptive Kalman filter; parameter identification; dual-vector attitude determination

    The initial alignment is a critical technique for the strapdown inertial navigation system (SINS)[1]. The precision of the initial alignment determines the positioning precision of the pure inertial navigation. The traditional initial alignment procedure often consists of two consecutive stages: coarse alignment and fine alignment[2]. The current fine alignment methods based on Kalman filter rely heavily on the coarse alignment stage to provide a roughly known initial attitude, otherwise they cannot guarantee a rapid and accurate alignment result[3-4].

    There are some coarse alignment methods such as analytical method, inertial frame method, gravitational apparent motion method and so on[5-7]. Among these methods, the dual-vector method based on the apparent velocity is an effective method for initial coarse alignment. However, because of the random noises in the apparent velocity, the performance of the coarse alignment precision was reduced, and it needs prolong alignment time to avoid the collinearity of the dual-vector.

    To overcome the flaws of the traditional dual-vector coarse alignment, some methods based on low-pass filter technique are proposed[8], nevertheless, it is difficult to find an available low-pass filter for all environments with complex noise. Then, a method based on recursive least square (RLS) was proposed[9-10], the method analyzed the composition of the truth apparent velocity. With the identified parameters, the new accurate apparent velocity vector was constructed. This method can solve some existent problems in dual-vector coarse alignment. However, it needs the accurate statistical information of the sensor measurements, which can not be obtained easily from the actual system, and the error in the covariance of the measurements noises will reduce the performance of the coarse alignment.

    To solve the aforementioned problems, this paper intends to adopt the new Kalman filter to estimate the parameters in the apparent velocity model[11-12]. It is based on the adaptive filter theory, so it does not need to analyze the measurement noises. And the reconstructed algorithm was used to avoid the collinearity of the dual-vector in this paper. The rest of the paper is organized as follows. The reference frame is presented in Section 1. Mechanism of the alignment method based on dual-vector is described in Section 2. Section 3 gives the adaptive Kalman filter for parameter identification and reconstruction algorithm. At last, the test results and conclusion are discussed in Section 4 and Section 5, respectively.

    1 Reference frame

    The coordinate frames in this paper are defined as:

    1) The local level navigation frame (n): an orthogonal reference frame aligned with east-north-up (ENU) geodetic axes.

    2) The SINS body frame (b): an orthogonal reference frame aligned within the IMU axes.

    3) The earth frame (e): an Earth-centred Earth- fixed (ECEF) orthogonal reference frame.

    4) The initial inertial frame (i0): an orthogonal reference frame non-rotating relative to the inertial frame, which is formed by the earth frame at the start-up in the inertial space.

    5) The initial body frame (b0): an orthogonal reference frame non-rotating relative to the inertial frame, which is formed by the SINS body frame at the start-up in the inertial space.

    2 Mechanism of the alignment method based on dual-vector attitude determination

    Based on the chain-decomposition of the direction cosine matrix (DCM), the initial alignment matrix can be described as:

    where, ωiedenotes the angular rate of the earth, L denotes the latitude of the IMU, and t is the alignment time.

    The rate equation of IMU body frame respect to the initial IMU body frame is:

    Therefore, the initial alignment can be completed with equation (1) to (9). However, there are still two problems in the aforementioned method. One is that the random noises in the apparent velocity, and the other is the collinearity of the dual-vector with the short time intervals, these contaminate the alignment results. To avoid the two problems, the adaptive Kalman filter technique was proposed in the next section.

    3 Adaptive Kalman filter for parameter identifycation and reconstruction algorithm

    To acquire more accurate alignment results compared with the existing methods, a novel method based on the parameter identification is proposed in the next subsection. With the estimated parameters, the new dual-vector can be reconstructed, and the two aforementioned problems can be eliminated effectively.

    3.1 Parameter identification model

    From the dual-vector coarse alignment, the critical step is how to calculate the apparent velocityb0, which can be obtained by integrating the apparent gravity gb0, it is calculated as:

    where, B is the parameter matrix which used to construct the apparent velocity, and it is more accurately over the alignment time.

    3.2 Adaptive Kalman filter

    The RLS method can be used to estimate the parameter matrix, however, it needs the accurate measurement covariance, which cannot be attained easily from the actual system. In this paper, a new Kalman filter is used to estimate the parameters, which is an adaptive filter, so it does not need the accurate statistics of the noises of the measurements. To develop the adaptive Kalman filter, the filter model is constructed, firstly.

    1) Filter model

    The filter model on the z-axis is given as:

    where, Bzdenotes the third line of the parameter matrix,denotes the z-axis element of thewhich can be obtained by equation (5), and σzis the random noise.

    2) Adaptive Kalman filter

    Adopting to the filter model, the adaptive Kalman filter for parameter identification can be described as:

    where, i=x,y,z, ei,kdenotes the i-axis residual error, and Λi,k+1is the i-axis adaptive parameter.

    3.3 Reconstruction algorithm

    With the adaptive Kalman filter, the parameter matrix B can be obtained accurately over the alignment time, then the new apparent velocity can be obtained by equation (11). To avoid the collinearity ofthe dual-vector, the traditional method needs to prolong the alignment time, because the interval of t1and t2is the decisive factor. To overcome the flaws of the traditional method, with the equation (11), the reconstructed dualvector can be obtained as:

    where, t1is always the initial time, so compared with the traditional method where t1is equal to t2/2, the new method has longer interval, and it can avoid the collinear problems effectively.

    4 Test results

    In order to validate the effectiveness of the coarse alignment method presented in this paper. The simulation and the turntable tests were carried out, and the comparative results with the existing method are given in the next subsection.

    4.1 Simulation test

    In order to analyze the real alignment results, we design the swaying alignment test to simulate the static ship. The swaying parameters are listed in Tab.1, the inertial sensors parameters are shown in Tab.2, and the initial values of the adaptive Kalman filter are listed in Tab.3.

    In the simulation test, the update frequency for sensor outputs and alignment solution are both set as 200 Hz, while the statistic frequency for the alignment errors is 2 Hz. After the simulation of 600 s, the apparent velocity errors and the alignment errors are shown in Fig.1 and Fig.2, respectively, and the statistic results are listed in Tab.4.

    Tab.1 Setting of swinging parameters

    Tab.2 Setting of sensor errors

    Tab.3 Initial value of adaptive Kalman filter

    In Fig.1, the random noises of the apparent velocity are smoothed, with the advantages of the adaptive Kalman filter, the apparent velocity can be obtained accurately, which determines the alignment precision by equation (9). In Fig.2, the alignment errors show that the proposed method obtains the more smoothed results, and the random noises still influence the results of the traditional dual-vector coarse alignment, it also can be founded that the RLS method gives the sub-optimal alignment results. As can be seen in Tab.4, the errors of pitch and roll are close by comparing with the three methods. However, the yaw alignment errors are smaller than the existing method, and with the standard deviations, the proposed method is smaller than the others in the same instant time of the whole alignment. This means the proposed method has more effective performance in yaw alignment errors, and the convergence rate is faster.

    Fig.1 Errors of apparent velocities

    Fig.2 Curves of alignment errors

    Tab.4 Statistics of alignment errors (°)

    4.2 Turntable test

    The turntable test is carried out to confirm the proposed methods in the real-time initial alignment. The swaying parameters is set the same as the simulation test (see Tab.1), and the IMU is installed as Fig.3

    Fig.3 Turntable and IMU

    The alignment results and the statistical information of the alignment errors are shown in Fig.4 and Tab.5, respectively.

    In Fig.4, we can find out that there is oscillation in the alignment errors, which matches the real results, and the alignment precision in pitch and roll is close. However, the proposed method has higher performance in yaw.

    As amplified figure in Fig.4 and the statistics in Tab.5, the improved Kalman filter method has more smooth results in alignment errors. During the whole alignment process, the means of pitch and roll errors are very close, while the standard deviations of the improved Kalman filter method are slightly smaller than the traditional dual-vector and RLS method. In addition, the means of yaw of the improved Kalman filter method are approximately close to the RLS method, but the deviations of the proposed method are greatly smaller than the other two methods.

    Fig.4 Alignment errors in turntable test

    Thus, the conclusion can be obtained: the proposed alignment method with parameter identification and reconstruction can increase alignment accuracy without adding alignment time.

    Tab.5 Statistic of alignment errors in turntable test (°)

    5 Conclusion

    In this paper, a new dual-vector coarse alignment method based on the apparent velocity has been proposed, which adopts the adaptive Kalman filter for parameter identification, and use the effective reconstructed dual-vector to eliminate the two problems in the traditional dual-vector coarse alignment.

    Simulation and turntable tests are designed in this thesis, the results indicates that compared with the existing method, the adaptive Kalman filter method has higher performance of the coarse alignment, it mainly shows in alignment accuracy and convergence rate.

    [1] Titterton D, Weston J L. Strapdown inertial navigation technology[M]. United Kingdom: Institution of Electrical Engineers, 2004.

    [2] Wang Xin-long. Initial alignment for strapdown inertial navigation system on moving and static base[M]. Northwestern Polytechnical University Press Ltd, 2013.

    [3] Silson P M G. Coarse alignment of a ship’s strapdown inertial attitude reference system using velocity loci[J]. IEEE Transactions on Instrumentation and Measurement, 2011, 60(6): 1930-1941.

    [4] Li J, Xu J, Chang L, et al. An improved optimal method for initial alignment[J]. Journal of Navigation, 2014, 67(4): 727-736.

    [5] Lian J, Tang Y, Wu M, et al. Study on SINS alignment algorithm with inertial frame for swaying bases[J]. Journal of National University of Defense Technology, 2007, 29(5): 95-99.

    [6] Qin Yong-yuan, Yan Gong-min, Gu Dong-qing, et al. A clever way of SINS coarse alignment despite rocking ship[J]. Journal of Northwestern Polytechnical University, 2005, 23(5): 681-684.

    [7] Li Q, Ben Y, Sun F. A novel algorithm for marine strapdown gyrocompass based on digital filter[J]. Measurement, 2013, 46(1): 563-571.

    [8] He Hong-yang, Xu Jiang-ning, Li Jing-shu, et al. Improved fast backtracking alignment approach for strapdown inertial navigation system[J]. Journal of Chinese Inertial Technology, 2015, 23(2): 179-183.

    [9] Liu X, Zhao Y, Liu X, et al. An improved self-alignment method for strapdown inertial navigation system based on gravitational apparent motion and dual-vector[J]. Review of Scientific Instruments, 2014, 85(12): 125108.1-125108.11.

    [10] Liu X, Zhao Y, Liu Z, et al. A novel self-alignment method for SINS based on parameter recognition and dual-velocity vectors[J]. Proceedings of the Institution of Mechanical Engineers, Part G: Journal of Aerospace Engineering, 2015, 229(12): 0954410014568798.

    [11] Panuska V. A new form of the extended Kalman filter for parameter estimation in linear systems with correlated noise[J]. IEEE Transactions on Automatic Control, 1980, 25(2): 229-235.

    [12] Qin Fang-jun, Li An, Xu Jiang-ning. Improved fast alignment method of strapdown INS using bidirectional processes and denoising[J]. Journal of Chinese Inertial Technology, 2014, 22(4): 453-458.

    基于參數(shù)識(shí)別視速度的雙矢量粗對(duì)準(zhǔn)方法

    孟翔飛,李 鑫
    (常熟理工學(xué)院 電氣與自動(dòng)化工程學(xué)院,常熟 215500)

    針對(duì)傳統(tǒng)基于視速度雙矢量粗對(duì)準(zhǔn)中,由于傳感器隨機(jī)噪聲的影響,存在對(duì)準(zhǔn)精度差,收斂速度慢的缺點(diǎn),提出了一種新型自適應(yīng) Kalman濾波的參數(shù)識(shí)別粗對(duì)準(zhǔn)方法。該方法通過對(duì)視速度運(yùn)動(dòng)進(jìn)行建模,設(shè)計(jì)采用自適應(yīng)Kalman濾波對(duì)模型參數(shù)進(jìn)行參數(shù)識(shí)別,從而有效地消除視運(yùn)動(dòng)中的隨機(jī)噪聲,提高粗對(duì)準(zhǔn)的精度和收斂速度。由于自適應(yīng)濾波的特點(diǎn),新方法不需要對(duì)傳感器誤差進(jìn)行統(tǒng)計(jì),使其在實(shí)際系統(tǒng)中具有更加廣泛的應(yīng)用價(jià)值。針對(duì)雙矢量粗對(duì)準(zhǔn)的計(jì)算特點(diǎn),設(shè)計(jì)了一種矢量重構(gòu)算法,從而盡可能地規(guī)避雙矢量共線性問題,加快了粗對(duì)準(zhǔn)的收斂過程。仿真與轉(zhuǎn)臺(tái)實(shí)驗(yàn)表明,與傳統(tǒng)方法對(duì)比,新方法在相同的對(duì)準(zhǔn)時(shí)間內(nèi)具有更高的對(duì)準(zhǔn)精度,在相同的對(duì)準(zhǔn)精度下,具有更高的收斂速度。轉(zhuǎn)臺(tái)實(shí)驗(yàn)的最終對(duì)準(zhǔn)精度為-0.1391°,標(biāo)準(zhǔn)差為0.012°。

    捷聯(lián)慣導(dǎo)系統(tǒng);粗對(duì)準(zhǔn);改良Kalman濾波;參數(shù)辨識(shí);雙矢量姿態(tài)確定

    U666.1

    :A

    2016-09-02;

    :2016-11-20

    江蘇省產(chǎn)學(xué)研聯(lián)合創(chuàng)新資金(BY2014075);江蘇高校品牌專業(yè)建設(shè)工程資助項(xiàng)目(PPZY2015C215)

    孟翔飛(1977—),男,副教授,博士,從事導(dǎo)航定位研究。E-mail: mxf0316@163.com

    1005-6734(2016)06-0730-06

    10.13695/j.cnki.12-1222/o3.2016.06.006

    猜你喜歡
    對(duì)準(zhǔn)矢量濾波
    矢量三角形法的應(yīng)用
    對(duì)準(zhǔn)提升組織力的聚焦點(diǎn)——陜西以組織振興引領(lǐng)鄉(xiāng)村振興
    一種改進(jìn)的速度加姿態(tài)匹配快速傳遞對(duì)準(zhǔn)算法
    基于矢量最優(yōu)估計(jì)的穩(wěn)健測(cè)向方法
    三角形法則在動(dòng)態(tài)平衡問題中的應(yīng)用
    INS/GPS組合系統(tǒng)初始滾轉(zhuǎn)角空中粗對(duì)準(zhǔn)方法
    RTS平滑濾波在事后姿態(tài)確定中的應(yīng)用
    基于線性正則變換的 LMS 自適應(yīng)濾波
    高階SRC-KF SINS對(duì)準(zhǔn)模型算法
    基于隨機(jī)加權(quán)估計(jì)的Sage自適應(yīng)濾波及其在導(dǎo)航中的應(yīng)用
    国产爽快片一区二区三区| 丰满乱子伦码专区| 亚洲美女黄色视频免费看| 十八禁网站网址无遮挡 | 亚洲国产av新网站| 免费观看在线日韩| 欧美97在线视频| 亚洲精品成人av观看孕妇| av卡一久久| 国产亚洲午夜精品一区二区久久| 国产一区二区在线观看日韩| 国产免费福利视频在线观看| 精品一品国产午夜福利视频| 亚洲国产欧美人成| 亚洲精品日韩av片在线观看| 九九在线视频观看精品| 91精品一卡2卡3卡4卡| 亚洲精品乱码久久久v下载方式| 精品人妻熟女av久视频| 免费观看性生交大片5| 亚洲国产精品专区欧美| 91午夜精品亚洲一区二区三区| 伦理电影大哥的女人| 国产精品一区二区三区四区免费观看| 国产午夜精品一二区理论片| 免费黄网站久久成人精品| 女性被躁到高潮视频| 成人影院久久| 日日撸夜夜添| 日本色播在线视频| 成年美女黄网站色视频大全免费 | 街头女战士在线观看网站| 国产av码专区亚洲av| 国产伦在线观看视频一区| 18+在线观看网站| 秋霞在线观看毛片| 最近中文字幕高清免费大全6| 最黄视频免费看| 寂寞人妻少妇视频99o| 色5月婷婷丁香| av线在线观看网站| 国产精品国产三级国产专区5o| 王馨瑶露胸无遮挡在线观看| 国产高清国产精品国产三级 | 中文乱码字字幕精品一区二区三区| 亚洲经典国产精华液单| av国产免费在线观看| 欧美区成人在线视频| 国产欧美亚洲国产| 亚洲精华国产精华液的使用体验| 少妇精品久久久久久久| 日日啪夜夜爽| 久久精品久久久久久久性| 男人和女人高潮做爰伦理| 久久久久网色| 国产 精品1| 一区二区三区免费毛片| 久久午夜福利片| 在线 av 中文字幕| 啦啦啦视频在线资源免费观看| 国产高清国产精品国产三级 | 五月天丁香电影| 最近2019中文字幕mv第一页| 一级黄片播放器| 内地一区二区视频在线| 亚洲美女搞黄在线观看| 丝瓜视频免费看黄片| 亚洲图色成人| 狠狠精品人妻久久久久久综合| 纯流量卡能插随身wifi吗| 亚洲不卡免费看| 中文字幕亚洲精品专区| 内地一区二区视频在线| 欧美高清性xxxxhd video| 狂野欧美白嫩少妇大欣赏| 一级黄片播放器| 中文字幕亚洲精品专区| 又黄又爽又刺激的免费视频.| 午夜免费观看性视频| 成年女人在线观看亚洲视频| 尾随美女入室| 亚洲色图av天堂| 成人毛片60女人毛片免费| 国产午夜精品久久久久久一区二区三区| 中文欧美无线码| 少妇人妻久久综合中文| 日韩强制内射视频| 少妇猛男粗大的猛烈进出视频| 男男h啪啪无遮挡| 国产欧美日韩一区二区三区在线 | 亚洲丝袜综合中文字幕| 男的添女的下面高潮视频| 欧美国产精品一级二级三级 | 久久久欧美国产精品| 精品人妻偷拍中文字幕| 天堂8中文在线网| 国产无遮挡羞羞视频在线观看| 亚洲欧美成人精品一区二区| 精品久久久久久久久亚洲| 亚洲,一卡二卡三卡| 91精品国产九色| 少妇高潮的动态图| 亚州av有码| 国产精品熟女久久久久浪| 免费少妇av软件| 亚洲av日韩在线播放| 又粗又硬又长又爽又黄的视频| 国产精品一区www在线观看| 国产色婷婷99| 一区二区三区精品91| 国产综合精华液| 美女高潮的动态| 男人爽女人下面视频在线观看| 中文字幕久久专区| 国产精品偷伦视频观看了| 一级毛片久久久久久久久女| 亚洲精品乱码久久久v下载方式| 久久女婷五月综合色啪小说| 日韩av免费高清视频| 欧美精品亚洲一区二区| 日本黄色日本黄色录像| av免费在线看不卡| 久久久久国产精品人妻一区二区| 国产成人freesex在线| 日本色播在线视频| 欧美日韩国产mv在线观看视频 | 狂野欧美激情性xxxx在线观看| 国产精品一二三区在线看| 欧美激情国产日韩精品一区| 国产精品av视频在线免费观看| 王馨瑶露胸无遮挡在线观看| 在线观看免费视频网站a站| 国内少妇人妻偷人精品xxx网站| 激情五月婷婷亚洲| 亚洲人成网站在线播| 国产男女超爽视频在线观看| 国产亚洲午夜精品一区二区久久| 美女视频免费永久观看网站| 免费观看在线日韩| 国产精品精品国产色婷婷| 午夜精品国产一区二区电影| 高清黄色对白视频在线免费看 | 国产精品一二三区在线看| 久久久久国产网址| 亚洲国产欧美在线一区| 国产v大片淫在线免费观看| 国产白丝娇喘喷水9色精品| 国产成人免费观看mmmm| 在线免费观看不下载黄p国产| 国产伦在线观看视频一区| 少妇丰满av| 一级毛片我不卡| 亚洲国产毛片av蜜桃av| av播播在线观看一区| 亚洲aⅴ乱码一区二区在线播放| 亚洲精品一区蜜桃| 亚洲精品自拍成人| 午夜老司机福利剧场| 男人添女人高潮全过程视频| 欧美bdsm另类| 狂野欧美白嫩少妇大欣赏| 不卡视频在线观看欧美| 一边亲一边摸免费视频| 亚洲精品国产av蜜桃| 美女脱内裤让男人舔精品视频| 一边亲一边摸免费视频| 欧美成人午夜免费资源| 亚洲激情五月婷婷啪啪| 最后的刺客免费高清国语| av专区在线播放| 欧美精品一区二区免费开放| 国产老妇伦熟女老妇高清| 亚洲精品一二三| 最新中文字幕久久久久| 亚洲欧美一区二区三区国产| 日韩电影二区| 久久精品国产鲁丝片午夜精品| 亚洲欧美日韩卡通动漫| 午夜视频国产福利| 亚洲精品一区蜜桃| 少妇猛男粗大的猛烈进出视频| 校园人妻丝袜中文字幕| 99久久综合免费| 一本一本综合久久| 中文字幕免费在线视频6| 内射极品少妇av片p| 国产精品偷伦视频观看了| 亚洲国产精品一区三区| 狂野欧美激情性bbbbbb| 中文字幕久久专区| 一级毛片黄色毛片免费观看视频| 国产精品秋霞免费鲁丝片| 啦啦啦视频在线资源免费观看| 晚上一个人看的免费电影| 伦精品一区二区三区| 欧美精品一区二区免费开放| 嫩草影院新地址| 国产精品久久久久久精品古装| 人人妻人人看人人澡| 在线观看一区二区三区| 99热6这里只有精品| 成人免费观看视频高清| 国产国拍精品亚洲av在线观看| 美女视频免费永久观看网站| 亚洲精品日韩在线中文字幕| 日韩亚洲欧美综合| 三级经典国产精品| 偷拍熟女少妇极品色| 观看免费一级毛片| 少妇人妻 视频| 国产 精品1| 国产在线免费精品| 日本vs欧美在线观看视频 | 久久精品熟女亚洲av麻豆精品| 熟女av电影| 亚洲精品视频女| 国产精品女同一区二区软件| 日韩 亚洲 欧美在线| 国产淫语在线视频| 少妇人妻一区二区三区视频| 亚洲欧美中文字幕日韩二区| 亚洲在久久综合| 我的老师免费观看完整版| 联通29元200g的流量卡| 国产精品人妻久久久久久| 91久久精品电影网| 一本色道久久久久久精品综合| av在线播放精品| 老熟女久久久| 黄色日韩在线| 国产黄色免费在线视频| 97超视频在线观看视频| 女人十人毛片免费观看3o分钟| 蜜桃亚洲精品一区二区三区| 亚洲在久久综合| 99热国产这里只有精品6| 国产精品久久久久久av不卡| 国产深夜福利视频在线观看| 国产成人精品福利久久| 免费播放大片免费观看视频在线观看| 91精品国产国语对白视频| 亚洲av不卡在线观看| www.av在线官网国产| 少妇被粗大猛烈的视频| 精品人妻偷拍中文字幕| 国产亚洲午夜精品一区二区久久| 久久精品夜色国产| 赤兔流量卡办理| 天堂中文最新版在线下载| www.色视频.com| 最后的刺客免费高清国语| 伊人久久国产一区二区| 黄色日韩在线| 亚洲国产精品专区欧美| 亚洲色图综合在线观看| 高清在线视频一区二区三区| 熟女电影av网| 精品午夜福利在线看| 亚洲成人手机| 极品教师在线视频| 尾随美女入室| av国产免费在线观看| 啦啦啦中文免费视频观看日本| 精品人妻一区二区三区麻豆| 3wmmmm亚洲av在线观看| 性色av一级| 大话2 男鬼变身卡| 免费观看的影片在线观看| 久久鲁丝午夜福利片| 91久久精品国产一区二区三区| 涩涩av久久男人的天堂| 美女主播在线视频| 少妇人妻精品综合一区二区| 两个人的视频大全免费| 男人和女人高潮做爰伦理| 亚洲av二区三区四区| 国产精品精品国产色婷婷| 男女无遮挡免费网站观看| 一区二区av电影网| 国产精品蜜桃在线观看| 亚洲av中文av极速乱| 我要看黄色一级片免费的| 伊人久久精品亚洲午夜| 日本av手机在线免费观看| 久久毛片免费看一区二区三区| 国产一区亚洲一区在线观看| 涩涩av久久男人的天堂| 色婷婷av一区二区三区视频| 亚洲精品一区蜜桃| 亚洲国产av新网站| 国产亚洲一区二区精品| 这个男人来自地球电影免费观看 | 久久久国产一区二区| av在线app专区| 亚洲成人中文字幕在线播放| 国产精品伦人一区二区| 只有这里有精品99| 麻豆乱淫一区二区| 亚洲精品自拍成人| 免费黄色在线免费观看| 午夜福利高清视频| 乱系列少妇在线播放| 国产有黄有色有爽视频| 国产免费一区二区三区四区乱码| 女人久久www免费人成看片| 欧美日韩视频高清一区二区三区二| av专区在线播放| 亚洲自偷自拍三级| 精品久久久噜噜| 国产成人免费观看mmmm| 国产大屁股一区二区在线视频| 3wmmmm亚洲av在线观看| 亚洲欧美中文字幕日韩二区| 亚洲在久久综合| 国产精品秋霞免费鲁丝片| 亚洲激情五月婷婷啪啪| 亚洲国产欧美在线一区| 下体分泌物呈黄色| 免费看不卡的av| 最黄视频免费看| 日韩欧美精品免费久久| 成人综合一区亚洲| 免费人妻精品一区二区三区视频| 一区二区三区四区激情视频| 亚洲人成网站高清观看| 91午夜精品亚洲一区二区三区| 免费大片18禁| 国产深夜福利视频在线观看| 纵有疾风起免费观看全集完整版| 欧美一区二区亚洲| videos熟女内射| 国产黄色免费在线视频| 99久久综合免费| 人人妻人人看人人澡| 九九久久精品国产亚洲av麻豆| 亚洲av不卡在线观看| 欧美日韩视频精品一区| 免费看日本二区| 欧美日韩在线观看h| 秋霞在线观看毛片| 国产精品福利在线免费观看| 亚洲精品中文字幕在线视频 | 精品人妻偷拍中文字幕| 亚洲欧美中文字幕日韩二区| 久久久亚洲精品成人影院| 色婷婷久久久亚洲欧美| av网站免费在线观看视频| av不卡在线播放| 亚洲电影在线观看av| 成人无遮挡网站| 三级经典国产精品| 97热精品久久久久久| 久久久久久久久久久免费av| 欧美成人一区二区免费高清观看| 国产黄片美女视频| 一级毛片我不卡| 欧美区成人在线视频| 亚洲国产最新在线播放| 99视频精品全部免费 在线| 欧美xxxx黑人xx丫x性爽| .国产精品久久| 一区二区三区免费毛片| 亚洲国产高清在线一区二区三| 插阴视频在线观看视频| 欧美三级亚洲精品| 老司机影院成人| 1000部很黄的大片| 久久精品夜色国产| 街头女战士在线观看网站| 少妇熟女欧美另类| 深夜a级毛片| 国产69精品久久久久777片| 亚洲精品久久久久久婷婷小说| 97精品久久久久久久久久精品| 日韩av在线免费看完整版不卡| 51国产日韩欧美| 久久热精品热| 国产亚洲一区二区精品| 日韩中字成人| 亚洲国产精品国产精品| 最近最新中文字幕免费大全7| 久久久a久久爽久久v久久| 黑人高潮一二区| 国产色婷婷99| 国产视频首页在线观看| 尾随美女入室| 啦啦啦视频在线资源免费观看| 伦理电影大哥的女人| 美女福利国产在线 | 久久久久久久精品精品| 成人亚洲精品一区在线观看 | 国产欧美亚洲国产| 97热精品久久久久久| 全区人妻精品视频| 国产老妇伦熟女老妇高清| 成人毛片a级毛片在线播放| 亚洲人与动物交配视频| 久久99精品国语久久久| 久久久久久久大尺度免费视频| 美女主播在线视频| av黄色大香蕉| 大码成人一级视频| 人妻 亚洲 视频| 我要看日韩黄色一级片| 九草在线视频观看| 18禁裸乳无遮挡免费网站照片| 国产有黄有色有爽视频| 国产人妻一区二区三区在| 亚洲精品自拍成人| 蜜桃亚洲精品一区二区三区| 少妇人妻久久综合中文| 国产色婷婷99| 在线观看国产h片| 国产毛片在线视频| 91精品伊人久久大香线蕉| 夫妻性生交免费视频一级片| 五月天丁香电影| 日韩av不卡免费在线播放| 亚洲精品第二区| 一区二区三区精品91| 特大巨黑吊av在线直播| 少妇人妻久久综合中文| 日韩电影二区| 亚洲av电影在线观看一区二区三区| 欧美激情国产日韩精品一区| 亚洲高清免费不卡视频| av.在线天堂| 国产精品一区www在线观看| 国产精品国产三级专区第一集| 国产精品伦人一区二区| 美女国产视频在线观看| 中文字幕久久专区| 欧美性感艳星| 五月开心婷婷网| 欧美日韩国产mv在线观看视频 | 国产无遮挡羞羞视频在线观看| 最黄视频免费看| 高清在线视频一区二区三区| 亚洲内射少妇av| 尾随美女入室| 嫩草影院入口| 高清午夜精品一区二区三区| 亚洲欧美中文字幕日韩二区| 街头女战士在线观看网站| 少妇熟女欧美另类| 亚洲精品视频女| 少妇人妻精品综合一区二区| 精品久久久久久久久亚洲| 国产无遮挡羞羞视频在线观看| 亚洲av中文av极速乱| 亚洲精品成人av观看孕妇| av免费观看日本| 丝瓜视频免费看黄片| 亚洲自偷自拍三级| 中文资源天堂在线| 久久精品久久精品一区二区三区| 高清午夜精品一区二区三区| 午夜激情福利司机影院| 亚洲国产精品专区欧美| 黄色欧美视频在线观看| 男女国产视频网站| 成人高潮视频无遮挡免费网站| 午夜老司机福利剧场| 男的添女的下面高潮视频| 妹子高潮喷水视频| 日韩制服骚丝袜av| 联通29元200g的流量卡| 精品少妇久久久久久888优播| 看十八女毛片水多多多| av女优亚洲男人天堂| 国产亚洲5aaaaa淫片| 内地一区二区视频在线| 2018国产大陆天天弄谢| 人人妻人人爽人人添夜夜欢视频 | 最近2019中文字幕mv第一页| 3wmmmm亚洲av在线观看| 欧美一级a爱片免费观看看| 狂野欧美激情性xxxx在线观看| 国产成人精品福利久久| 中文乱码字字幕精品一区二区三区| 婷婷色麻豆天堂久久| 国产一级毛片在线| www.色视频.com| 久久这里有精品视频免费| 最近中文字幕高清免费大全6| 国产熟女欧美一区二区| 久久国内精品自在自线图片| 黑丝袜美女国产一区| av国产久精品久网站免费入址| 国产精品.久久久| 欧美性感艳星| 午夜免费观看性视频| 日韩av免费高清视频| 又黄又爽又刺激的免费视频.| 国产成人免费观看mmmm| 蜜桃久久精品国产亚洲av| 日本色播在线视频| 欧美3d第一页| 久久久久久九九精品二区国产| 成年人午夜在线观看视频| 国产高清不卡午夜福利| 啦啦啦视频在线资源免费观看| 看免费成人av毛片| 日本爱情动作片www.在线观看| 欧美人与善性xxx| 久久综合国产亚洲精品| 麻豆成人av视频| 亚洲国产精品一区三区| 伦精品一区二区三区| 久久久久久久精品精品| 伊人久久精品亚洲午夜| 国精品久久久久久国模美| 日本黄色日本黄色录像| 久久 成人 亚洲| h日本视频在线播放| 能在线免费看毛片的网站| 亚洲激情五月婷婷啪啪| 亚洲av在线观看美女高潮| 欧美国产精品一级二级三级 | 一区二区av电影网| 日韩欧美一区视频在线观看 | 蜜桃久久精品国产亚洲av| 日韩av免费高清视频| 看免费成人av毛片| 下体分泌物呈黄色| 日韩精品有码人妻一区| 久久精品熟女亚洲av麻豆精品| 亚洲,一卡二卡三卡| 一级毛片黄色毛片免费观看视频| 日韩亚洲欧美综合| 久久精品人妻少妇| 成年av动漫网址| 亚洲欧洲日产国产| 麻豆成人av视频| 亚洲欧美日韩卡通动漫| 久久久久久久久久人人人人人人| 国产乱来视频区| 十分钟在线观看高清视频www | 美女脱内裤让男人舔精品视频| 秋霞在线观看毛片| av免费在线看不卡| 亚洲久久久国产精品| 春色校园在线视频观看| 亚洲精品日韩av片在线观看| 青春草视频在线免费观看| 亚洲aⅴ乱码一区二区在线播放| av网站免费在线观看视频| 免费黄网站久久成人精品| 日本猛色少妇xxxxx猛交久久| 久久鲁丝午夜福利片| 男人爽女人下面视频在线观看| 少妇被粗大猛烈的视频| 久久久精品免费免费高清| 卡戴珊不雅视频在线播放| 男女啪啪激烈高潮av片| 亚洲不卡免费看| 久久ye,这里只有精品| 精品国产露脸久久av麻豆| 热re99久久精品国产66热6| 中国三级夫妇交换| 亚洲欧美日韩东京热| a 毛片基地| 久久久成人免费电影| 亚洲国产精品999| 2021少妇久久久久久久久久久| 五月伊人婷婷丁香| 成人午夜精彩视频在线观看| 欧美日韩国产mv在线观看视频 | 国产日韩欧美亚洲二区| 国产精品精品国产色婷婷| 永久网站在线| 国产爽快片一区二区三区| 亚洲精品国产色婷婷电影| 在线天堂最新版资源| 91精品国产九色| 多毛熟女@视频| .国产精品久久| 性色av一级| 大片电影免费在线观看免费| 国产在线视频一区二区| 亚洲欧美一区二区三区国产| 亚洲av男天堂| 麻豆成人av视频| 国产精品久久久久久精品电影小说 | 91午夜精品亚洲一区二区三区| av在线app专区| 日本av手机在线免费观看| 久久热精品热| 乱码一卡2卡4卡精品| 91在线精品国自产拍蜜月| 日韩av在线免费看完整版不卡| 在线观看人妻少妇| 国产av国产精品国产| 天天躁夜夜躁狠狠久久av| 精品亚洲成国产av| 亚洲,一卡二卡三卡| freevideosex欧美| 免费少妇av软件| av卡一久久| 欧美亚洲 丝袜 人妻 在线| 黄色欧美视频在线观看| 六月丁香七月| 精品人妻视频免费看| 国产淫语在线视频| 日韩欧美精品免费久久| 五月伊人婷婷丁香| 国产又色又爽无遮挡免| 日本一二三区视频观看| 欧美日韩精品成人综合77777| 久久久欧美国产精品| 热99国产精品久久久久久7| 草草在线视频免费看| 国产精品国产av在线观看| 男人和女人高潮做爰伦理| 久久久成人免费电影|