• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Optimisation of laser welding parameters for welding of P92 material using Taguchi based grey relational analysis

    2016-04-18 10:14:25ShnmugrjnRishhSHRIVASTAVASthiyBuvnshekrn
    Defence Technology 2016年4期

    Shnmugrjn B.*,Rishh SHRIVASTAVA,Sthiy P.,Buvnshekrn G.

    aWelding Research Institute,Bharat Heavy Electricals Ltd.,Tiruchirappalli 620014,Tamil Nadu,India

    bGE India Technology Centre,Bangalore,India

    cDepartment of Production Engineering,NIT,Tiruchirappalli,India

    Optimisation of laser welding parameters for welding of P92 material using Taguchi based grey relational analysis

    Shanmugarajan B.a,*,Rishabh SHRIVASTAVAb,Sathiya P.c,Buvanashekaran G.a

    aWelding Research Institute,Bharat Heavy Electricals Ltd.,Tiruchirappalli 620014,Tamil Nadu,India

    bGE India Technology Centre,Bangalore,India

    cDepartment of Production Engineering,NIT,Tiruchirappalli,India

    Creep strength enhanced ferritic (CSEF)steels are used in advanced power plant systems for high temperature applications.P92 (Cr-W-Mo-V)steel,classif i ed under CSEF steels,is a candidate material for piping,tubing,etc.,in ultra-super critical and advanced ultra-super critical boiler applications.In the present work,laser welding process has been optimised for P92 material by usingTaguchi based grey relational analysis (GRA). Bead on plate (BOP)trials were carried out using a 3.5 kW diffusion cooled slab CO2laser by varying laser power,welding speed and focal position.The optimum parameters have been derived by considering the responses such as depth of penetration,weld width and heat affected zone(HAZ)width.Analysis of variance (ANOVA)has been used to analyse the effect of different parameters on the responses.Based onANOVA,laser power of 3 kW,welding speed of 1 m/min and focal plane at-4 mm have evolved as optimised set of parameters.The responses of the optimised parameters obtained using the GRA have been verif i ed experimentally and found to closely correlate with the predicted value.

    Laser;Welding;Optimisation;Taguchi;P92

    1.Introduction

    The global initiative towards “Go Green”has urged all the manufacturing industries to improve the eff i ciency to reduce the greenhouse gases.In the power sector,it has led to the development of supercritical,ultra super critical and advanced ultrasuper critical boiler technologies,which operate at higher temperatures and pressures compared to conventional sub critical boilers.These developments increase the eff i ciency of operation thereby reducing the polluting emissions and demand the use of materials that can withstand such operating conditions [1].Stainless steels,Cr-Mo steels like P22,23,etc.,have been traditionally used for such applications in components like super heater tubes,panels,etc.To further increase the life of the components without hampering the heat transfer eff i ciency,9-12%Cr steels have been developed,which have better oxidation resistance,high temperature properties,etc. [2].The most commonly used material in this category is the 9Cr-1Mo(P91)steel due to its high thermal conductivity and low coeff i cient of thermal expansion compared to the closely competing austenitic stainless steels.P91 has been in use for applications experiencing temperatures of the order of 600 °C [3].However,the presence of Mo leads to the formation of deleterious phases,which will affect the high temperature performance of the components made of P91 material [4].To reduce the chance of formation of deleterious phases and to further enhance the high temperature performance,P92 steels have been developed by reducing the Mo content to 0.5%and adding 2%W to compensate for the loss in strength due to reduced Mo content.The material is being considered for applications like headers,panels,coils,etc.,in super critical and ultra super critical power plants.P92 materials have oxidation resistance similar to the P91 as the oxidation resistance is inf l uenced by the Cr content and both P91 and P92 materials have similar Cr content.The componentsfabricated with P92 willinvolveextensive welding.Hence,weldability of the material will be an essentialrequirement.P92 is also usually supplied in normalised and tempered conditions and will have fully martensitic microstructure at room temperature and hence,during welding should have issues similar to P91.The weldability issues in the material will include hard and brittle microstructure in weld and HAZ,susceptibility to hydrogen induced cracking (HIC),formation of soft intercritical zone,etc.[5,6].P91/92 material can be welded by almost all fusion welding processes.Laser welding with the capability of carrying out the welding in open atmosphere with just an inert gas shield is gaining attention for welding of such materials.The use of laser welding can offer benef i ts like easy shielding of molten pool to avoid hydrogen induced cracking,reduced chances of formation of soft intercritical zone because of high cooling rates associated with the process,reduced chances of formation of deleterious phase,etc.[7,8].However,there is limited information available in the open literature on laser welding of P92 material.Hence,in the present work,laser welding process has been attempted on P92 plates in bead on plate (BOP)mode.

    In any welding process,to achieve the desired properties,it is necessary to carry out the welding using optimised parameters.To obtain the optimised parameters,the scientif i c method is to use optimisation techniques.In the present work,Taguchi based grey relation analysis method has been used to optimise the parameters.Quite a good number of published literatures have proved the usability of optimisation techniques for both non-fusion and fusion welding including laser welding process of different materials.Ajith et al. [9]have used ANN to optimise friction welding of UNS S32205 duplex stainless steel and Magudeeswaran et al. [10]have optimised ATIG welding parameters using Taguchi followed by ANOVA and Pooled ANOVA to achieve the desired width to depth ratio to avoid hot cracking in the same material.Tamrin et al. [11]have optimised laser lap welding process using grey relational analysis for dissimilar welding of polymer to glass based ceramics to arrive at the optimum joint characteristics like joint strength,etc.and found that welding speed has the maximum inf l uence on the joint characteristics.Zhao et al.[12]optimised laser welding process for welding of thin gauge galvanised steel using response surface methodology (RSM)and they have found that welds made with optimised parameters had good bead geometry values.They could also f i nd out that with optimisation,the process eff i ciency could be enhanced and the average aspect ratio could be increased from 0.62 to 0.83.Reisgen et al.[13]have optimised CW CO2laser welding parameters like laser power,welding speed and focus position using RSM for welding of dissimilar thickness of Advanced High Strength Steels of DP 600 and TRIP steel to achieve good bead geometry parameters, mechanical properties and formability at a reduced cost of fabrication. Olabi et al.[14]have optimised laser welding parameters like laser power,welding speed and focal position using a combined approach withArtif i cial Neural Network (ANN)and Taguchi analysis to achieve optimal bead geometry values like the ratios of penetration to fusion zone width and penetration to HAZ width.They have arrived at an ANN model that will work for all the range of parameters experimented.Ruggiero et al. [15]have optimised CW CO2laser welding parameters using RSM for welding of dissimilar joint involving AISI 316 austenitic stainless steel and low carbon steel to arrive at optimum bead geometry values and welding cost.They have also found welding speed to be the most inf l uencing parameter and the welding cost was found to be greatly reduced based on their devised formula with the optimised parameters.E.M. Anawa and Olabi [16]have used Taguchi approach with ANOVA to arrive at the optimum set of laser welding parameters for achieving good mechanical properties tested by notched tensile specimen for a dissimilar combination of AISI 316 austenitic stainless steel to AISI 1008 low carbon steel. The mechanical properties of welded joints with optimum parameters were found to be better than the base material. They have found laser power to be the most inf l uencing factor in determining the strength of such dissimilar joints.The authors have also optimised the parameters for obtaining good fusion zone properties for the same combination of materials and they have found that with respect to the fusion zone properties,welding speed had the greatest inf l uence [17].The optimisation technique was found to be a very useful tool even for welding of nonmetals like plastics.Kumar et al. [18]have optimised the laser transmission welding parameters like current,standoff distance and clamping for welding of plastics.Pan et al. [19]used Taguchi method to optimise pulsed Nd:YAG laser welding parameters for welding of AZ31B Magnesium alloy to achieve the maximum tensile strength.The optimisation could yield a parametric combination that could increase the tensile strength by 2.5× compared to the original value as set for laser welding. Benyounis et al. [20]analysed the effect of laser power,welding speed and focal position of the laser beam with respect to the workpiece surface using RSM for CW CO2laser welding of medium carbon steel in butt joint conf i gurations. They have concluded that the proposed model could accurately predict the responses like depth of penetration,weld width and HAZ width within the parametric range that have been experimented.All the reported works not only prove the usefulness of the optimisation techniques for optimising the laser welding process for different materials but also prove to be a scientif i c way to reduce the number of experiments to arrive at a parameter to achieve the desired weld quality.

    In the present work,laser welding parameters were optimised usingTaguchi analysis with GRA for welding of P92 material using diffusion cooled slab CO2laser.The welding trials were carried out using Taguchi L9 orthogonal array in bead on plate (BOP)mode by varying laser power,welding speed and focal position.The trials were carried out twice in a random manner to avoid sequential error.The welds were cut in the transverse direction to study the macrostructure and bead geometry characteristics like depth of penetration,top weld width and HAZ width,which were taken as responses.The average of the responses was taken for the analysis.Subsequently,ANOVA was performed and the optimum parameters were derived.The optimum parameters obtained through the analysis were verif i ed experimentally and the results were presented and discussed.

    Table 1Chemistry of P92 base material in wt.%.

    2.Experimental procedure

    2.1.Laser welding experiments

    Laser welding experiments were performed in BOP mode by varying parameters like laser power,welding speed and focal plane position using an L9 orthogonal array on P92 plate material of dimensions 200 × 150 × 8 mm without any preheating. The chemistry of the material is given in Table 1 and the details of the parameters used for the trials are given in Table 2.The welding trials were performed twice in a random manner to avoid the sequential error.The welding trials were carried out using 3.5 kW slab CO2laser using Argon as shielding and plasma purge gas at 30 lpm in trailing mode using a 300 mm focal mirror,which gives a focal spot size of 180 μm in the Gaussian mode.The laser has a depth of focus of+/-3 mm with the present focal arrangement.The welding power was varied in the range of 2.5-3.5 kW,welding speed 1-5 m/min and focal plane position in the range of 0 to-4 mm (inside the material).All welds were cut in the transverse direction,polished and etched using Villella’s reagent to study the macrostructures.Macrostructures were taken using a Leica Stereo microscope.Subsequently,bead geometry measurements like depth of penetration,bead width and HAZ width were taken using the measurement software available in the microscope and the values were used as responses for optimisation.

    2.2.Optimisation of laser welding parameters

    Since multiple output parameters have to be dealt with,GRA basedTaguchi method was used for the analysis.To optimise the parametersusingGRA,theexperimentaldatawerenormalisedby assigningthevaluesbetween0and1.Subsequently,greyrelation coeff i cient was calculated,which shows the interconnection betweenthedesiredandobtainedexperimentaldata.Furthermore,the problem was converted to a single objective function by calculatingthegreyrelationalgrade,whichistheaverageofgrey relation coeff i cient.The combination of parameters with highest valueofgreyrelationalgradewillbetheoptimalsolution.Incase of laser welding,the prime objective will be to increase thepenetrationattheminimalweldandHAZwidth,asitconveysthat all the incident energy is effectively utilised to penetrate the material.Thiswillbeevenmorecriticalinaheatsensitivematerial like P92,where the interface between the HAZ and base metal(BM)will be the weakest zone.

    Table 2L9 Orthogonal array used for laser welding trials.

    Hence,in grey relational generation,the normalised top bead width and HAZ width correspond to the smaller-the-better(SB)criterion that can be expressed by Eq. (1)

    Penetration should follow the larger-the-better (LB)criterion,which can be expressed by Eq.(2)

    where xi(k)is the value after the grey relational generation,min yi(k)is the smallest value of yi(k)for the kth response,and max yi(k)is the largest value of yi(k)for the kth response.Grey relational coeff i cient can be calculated by using the formula given in Eq. (3)

    Suppose ideal sequence isxo( k )for a kth response,then its value will be the maximum value of that particular column which will always be 1 andΔoi=differenceof the absolute value xo(k)and xi(k),which means how much that particular value is deviating from ideal value,so the equation for calculating delta is given below

    ψ is a distinguishing coef fi cient 0 ≤ Ψ ≤1,here ψ =0.25 for all quality characteristics

    Δmin =the smallest value ofΔoi

    Δmax =the largest value ofΔoi

    After averaging the grey relational coeff i cients,the grey relational grade can be calculated as

    where n is the number of process responses.The higher value of grey relational grade corresponds to intense relational degreebetween the reference sequence xo(k)and the given sequence xi(k).

    Fig.1.Macrostructures of laser BOP welds.

    Finally,analysis of variance (ANOVA)was performed to fi nd out the effect of each parameter on the desired weld bead characteristics and to arrive at an optimal set of parameters.

    2.3.Con fi rmation experiments and weld characterisation

    Based on the ANOVA,the optimum welding parameters were found.Since the optimum parameters obtained were out of the set of trials performed,the con fi rmation experiments were carried out by conducting BOP trials on P92 plate using the optimum parameters obtained from the analysis.The welds were characterised for macrostructure and bead geometry values as described before.The welds were subjected to post weld heat treatment (PWHT)at a temperature of 760 °C for 3 hours.After PWHT,the hardness survey was conducted across the weld to check the presence of any soft intercritical zone in the HAZ/BM boundary.Microhardness measurements were taken using an automatic microhardness tester with a load of 200 g and inter indent spacing of 150 μm.Furthermore,microstructuresoftheweldsweretaken using optical microscope at a magnif i cation of 200× and 500× to study the phases and to check for the presence of any undesirable phases.

    3.Results and discussion

    Macrostructures of the weld for all the parameters experimented are given in Fig.1 and the bead geometry responses are given in Table 3.

    Table 3L9orthogonal array with values of responses.

    Table 4Grey relational generation of each performance characteristics.

    3.1.Optimisation of laser welding parameters

    3.1.1.Evaluation of optimal process condition

    In the evaluation process,initially,normalisation is used to convert the parameters with different units into a nondimensional value.This could be done using Eqs. (1)and (2). This has been performed considering “Larger the Better”for depth of penetration and “Smaller the Better”for both top weld width and HAZ width.Normalised values for top bead width,penetration and heat affected zone are given in Table 4.Table 5 shows the Δoivalues.

    The value of grey relational coeff i cient is given in Table 6,which will be used for calculating grey relational grade.In case of laser welding,the maximum depth of penetration achievable in single pass in the most desirable output and the width of the weld bead and HAZ should be kept as minimal as possible. Accordingly,the weightage used for top bead width is 0.2;and for depth of penetration,0.6;and HAZ,0.2.Weightage has been allotted considering the importance of these responses especially,whilst welding heat sensitive P92 materials.With the assigned weightage,the grey relational coeff i cient was calculated and the values are given in Table 6.Table 7 shows the value of grey relational grade which will be used for calculating S/N ratio.

    Table 8 shows the S/N ratio based on the larger the better criterion for overall grey relational grade and Fig.2 shows theS/N curve,which is the graphical representation to f i nd out the optimal sets of parameters.S/N ratio is the signal to noise ratio,so if the ratio is high,the desired effect is maximum with very minimal noise.From Fig.2,where A represents laser power,B represents welding speed and C represents focal plane position,it can be seen that the maximum value of S/N ratio is occurring at power 3 kW,speed 1 m/min and focal position of-4 mm.

    Table 5Evaluation of Δoifor each of the responses.

    Table 6Grey relational coeff i cient of each performance characteristics (βTBW=0.2,βpenetration=0.6,βHAZ=0.2).

    From the response table (Table 9),it can be seen that the range for welding speed is maximum followed by power and focal position,which means welding speed has highest impact on responses.This is in line with the f i ndings observed by other researchers elsewhere [8,12]on other materials during CO2laser welding.Based on the analysis,the optimal set ofparameter will be power 3 kW,speed 1 m/min and focal position of-4 mm.The optimal set of parameter obtained using grey relational grade is not in L9 orthogonal array used for carrying out the trials and hence,conf i rmation test has to be carried out by performing laser welding with the optimal parameters obtained from the analysis.

    Table 7Grey relational grade.

    Table 8 S/N ratio.

    Fig.2.S/N plot.

    3.2.Analysis of variance (ANOVA)

    ANOVA was performed to f i nd out the parameter that is most inf l uencing to the bead geometry values in the desirable manner.For analysing the effect of laser welding process parameters (power,welding speed,focal position)on total variation of response,the mean data of the overall grey relational grade were used.ANOVA results are shown in Table 10. As can be seen from the ANOVA table,all parameters have considerable F value,hence,all parameters are important. However,amongst the parameters,welding speed has the highest effect on the responses followed by laser power and then focal position.In any fusion welding process,the weld bead geometry values are highly dependent on the heat input and the heat input will be highly dependent on the welding speed rather than the power.Hence,in the present case also,the welding speed has the highest effect on the responses,which matches the f i ndings of other researchers for some other materials. However,the penetration capability of the laser will be directlyproportional to the power density,which depends on the given laser power and focal area.Since the laser is having near Gaussian beam quality with very high depth of focus,the focal spot size will not vary much with the focal plane variation.Hence,the variation in focal plane position has the least effect on the responses.Also,since focal spot size is almost constant,the power density is directly proportional to the laser power.Hence,laser power has turned out to be the second most inf l uencing parameter.

    Table 9Response table for grey relational grade.

    Table 10Analysis of variance.

    Fig.3.Macrostructure of the weld.

    3.3.Results of conf i rmation experiments

    Conf i rmation welding experiment was carried out in BOP mode using the optimal set of parameter,i.e.laser power-3 kW,welding speed-1 m/min and focal plane position of -4 mm.The macrostructure of the weld carried out using the optimal parameters is given in Fig.3.The bead geometry values obtained with the optimal parameters are given in Table 11. Macrostructure of the weld is uniform with no defects like cracks,porosities,etc.Grey relational grade is calculated for these sets of parameter and the value is 0.7688,which is the maximum amongst all the other 9 parameters experimented. This conf i rms that for the given set of conditions,the optimisation of parameters arrived at is correct.From the bead geometry analysis,the depth of penetration in this case is maximum.It can also be seen that from the microstructure(Fig.3)that the penetration in this case is maximum.

    The microstructures across different zones of the weld obtained with the optimised set of parameters across different zones are given in Fig.4.

    The microstructure contains tempered lath like martensite structure with carbides decorating the boundaries and also thegrains in all the three regions.The microstructure is found to be uniform with the average grain size in the range of 25 μm in base material,18 μm in the weld and around 15 μm in the HAZ. The microstructure is also found to be free from deleterious phases like δ-ferrite.Power beam welding processes,even though with very high cooling rates,do not form δ-ferrite if welding is carried out with optimum parameters.Since δ-ferrite is stable over a very narrow range of temperature during solidif i cation [21],in power beam welding process like laser welding,the region would have been crossed rapidly,and hence,there is no suff i cient time available for δ-ferrite to form or to grow even if it forms.Hence,this further conf i rms that the parameters are optimum.The microhardness variation across weld taken at top and bottom of the weld is given in Fig.5.

    Table 11Bead geometry values with optimised parameters.

    Fig.4.Microstructures across different zones of the weld.

    Microhardness values were in the range of 270-320 HV0.2in welds and 240-265 HV0.2in HAZ against 220-240 HV0.2in the base metal.Hardness survey has indicated that weld and HAZ are stronger than the base material and have not shown any signif i cant softening in the HAZ-BM boundary,which indicates that with optimum parameters,in laser welding,formation of soft intercritical zone can be avoided.Laser welding due to its cooling rate could suppress the formation of this soft undesirable zone.It could be observed from Fig.5 that the hardness values in the welds are more in the bottom side compared to the top side even after 3 h of soaking at 7600C during post weld heat treatment.Usually,the bottom of the welds will be even narrow and hence,the cooling rates will be much higher in the bottom region compared to the top.This higher cooling rate results in elevated hardness in the bottom portion.This conf i rms two things.First,laser welding with narrow weld and HAZ will be a potential candidate for welding such materials and with optimisation of laser welding parameters,good mechanical and microstructural properties could be obtained. Second,the use of ″Smaller the Better″rule for both weld and HAZ width in such heat sensitive materials is proved to be right.

    Fig.5.Microhardness variation across weld.

    4.Conclusions

    From the study and analyses,the following conclusions could be made:

    1)Taguchi based optimisation of laser welding parameters for autogenous laser welding of P92 material has shown that for the given conditions,3 kW of laser power,1 m/ min welding speed and positioning the focal plane of the laser at 4 mm from the surface of the base material have evolved as the optimal parameters.

    2)From ANOVA,amongst the parameters experimented,welding speed has the most signif i cant contribution with 74.39%followed by laser power with 14.63%and focal length with 10.97%

    3)Microhardness survey across welds with optimised parameter did not indicate any softening in the HAZ/BM boundary and microstructural analysis did not reveal any deleterious phases,which conf i rms that the parameters obtained through optimisation are valid.

    Acknowledgment

    We sincerely thank the management of Bharat Heavy Electricals Ltd.,for funding this research programme.We extend our gratitude to Mr.R.Easwaran,General Manager,WRI&Labs,for guiding us throughout the research work.

    [1]Viswanathan R,Purgert R,Goodstine S,Tanzosh J,Stanko G,Shingledecker JP,et al.U.S.program on materials technology for ultrasupercritical coal-f i red boilers.Advances in materials technology for fossil power plants.In:Proceedings of the 5th international conference. 2008;05226G:1-16.

    [2]Viswanathan R,Purgert R,Rao U.Materials for ultra-supercritical coal-f i red power plant boilers.In:Proceedings of 2nd regional conference on energy technology towards a clean environment;2003.p.1-14.

    [3]Hamada K,Tokuno K,Takeda T.Dispersion hardening effects of Nb-V precipitates in Mod.9Cr-1Mo steels.Nucl Eng Des 1993;139:277-81.

    [4]Naoi H,Ohgami M,Hasegawa Y,Mimura H,F(xiàn)ujita T.Advanced heat resistant steel for power generation.London:The Institute of Materials;1999.p.259-69.

    [5]Onoro J.Martensitic microstructure of 9-12%Cr steel weld metals.J Mat Proc Technol 2006;180:137-42.

    [6]Francis JA,Mazur W,Bhadeshia HKDH.Type IV cracking in ferritic power plant steels.Mat Sci Technol 2006;22:1387-95.

    [7]Lee WH,Shiue RK,Chen C.Mechanical properties of modif i ed 9Cr-1Mo steel welds with notches.Mat Sci Eng A 2003;A356:153-61.

    [8]Shanmugarajan B,Padmanabham G,Kumar H,Albert SK,Bhaduri AK. Autogenous laser welding investigations on modif i ed 9Cr-1Mo (P91)steel.Sci Technol Weld Joining 2011;16:528-34.

    [9]Ajith PM,Barik BK,Sathiya P,Aravindan S.Multiobjective optimization of friction welding of UNSS32205 duplex stainless steel.Def Technol 2015;11:157-65.

    [10]Magudeeswaran G,Nair SR,Sundar L,Harikannan N.Optimisation of process parameters of the activated tungsten inert gas welding for aspect ratio of UNS S32205 duplex stainless steel welds.Def Technol 2014;10: 251.

    [11]Tamrin KF,Nukuman Y,Sheikh NA,Harizam MZ.Determination of optimum parameters using grey relational analysis for multi-performance characteristics in CO2laser joining of dissimilar materials.Opt Lasers Eng 2014;57:40-7.

    [12]Zhao Y,Zhang Y,Hu W,Lai X.Optimization of laser welding thin-gage galvanized steel via response surface methodology.Opt Lasers Eng 2012;50:1267-73.

    [13]Reisgen U,Schleser M,Markov O,Ahmed E.Optimization of laser welding of DP/TRIP steel sheets using statistical approach.Opt Laser Technol 2012;44:255-62.

    [14]Olabi AG,Casalino G,Benyounis KY,Hashmi MSJ.An ANN and Taguchi algorithms integrated approach to the optimization of CO2laser welding.Adv Eng Softw 2006;37:643-8.

    [15]RuggieroA,Tricarico L,Olabi AG,Benyounis KY.Weld-bead prof i le and costs optimization of the CO2dissimilar laser welding process of low carbon steel and austenitic steel AISI316.Opt Laser Technol 2011;43: 82-90.

    [16]Anawa EM,Olabi AG.Optimization of tensile strength of ferritic/ austenitic laser-welded components.Opt Lasers Eng 2008;46:571-7.

    [17]Anawa EM,Olabi AG.UsingTaguchi method to optimize welding pool of dissimilar laser-welded components.Opt Laser Technol 2008;40:379-88.

    [18]Kumar N,Ramesh R,Pal PK.Multi-objective optimization in through laser transmission welding of thermoplastics using grey-based Taguchi method.Proc Mat Sci 2014;5:2178-87.

    [19]Pan LK,Wang CC,Hsiao YC,Ho KC.Optimization of Nd:YAG laser welding onto magnesium alloy via Taguchi analysis.Opt Laser Technol 2004;37:33-42.

    [20]Benyounis KY,Olabi AG,Hashmi MSJ.Effect of laser welding parameters on the heat input and weld-bead prof i le.J Mat Proc Technol 2005;164-165:978-85.

    [21]Jeyaganesh B,Raju S,Rai AK,Mohandas E,Vijayalakshmi M,Rao BS,et al.Differential scanning calorimetry of diffusional and martensitic phase transformations in some 9 wt-%Cr low carbon ferritic steels.Mat Sci Technol 2011;27:500-12.

    Received 3 March 2016;revised 10 April 2016;accepted 11 April 2016 Available online 22 April 2016

    Peer review under responsibility of China Ordnance Society.

    *Corresponding author.Tel.:+91-94890 56100.

    E-mail address:bsrajan@bheltry.co.in (Shanmugarajan B.).

    http://dx.doi.org/10.1016/j.dt.2016.04.001

    2214-9147/? 2016 China Ordnance Society.Production and hosting by Elsevier B.V.All rights reserved.

    ? 2016 China Ordnance Society.Production and hosting by Elsevier B.V.All rights reserved.

    日韩av免费高清视频| 亚洲av不卡在线观看| 国产 一区精品| 免费少妇av软件| 午夜激情福利司机影院| 麻豆久久精品国产亚洲av| 日本黄大片高清| 高清午夜精品一区二区三区| 国产精品麻豆人妻色哟哟久久| 乱系列少妇在线播放| 久久ye,这里只有精品| 日本色播在线视频| 国产男女超爽视频在线观看| 中文字幕人妻熟人妻熟丝袜美| 国产精品嫩草影院av在线观看| 一边亲一边摸免费视频| 国产一区二区三区av在线| 女人久久www免费人成看片| 中国美白少妇内射xxxbb| 一个人观看的视频www高清免费观看| av又黄又爽大尺度在线免费看| 一区二区三区精品91| av专区在线播放| 建设人人有责人人尽责人人享有的 | 午夜免费男女啪啪视频观看| 亚洲欧美清纯卡通| 亚洲精品国产色婷婷电影| 国产一区亚洲一区在线观看| 亚洲一区二区三区欧美精品 | 九草在线视频观看| 午夜福利视频1000在线观看| 亚洲欧美日韩卡通动漫| 大码成人一级视频| 欧美日韩一区二区视频在线观看视频在线 | 视频中文字幕在线观看| 一级毛片 在线播放| 在线观看一区二区三区| 18+在线观看网站| 午夜福利视频1000在线观看| 少妇的逼好多水| 九九久久精品国产亚洲av麻豆| 色5月婷婷丁香| 国产精品久久久久久久久免| 在线免费十八禁| 又粗又硬又长又爽又黄的视频| 欧美bdsm另类| 亚洲电影在线观看av| 高清在线视频一区二区三区| 国产淫片久久久久久久久| av一本久久久久| 91aial.com中文字幕在线观看| 黄色配什么色好看| 赤兔流量卡办理| 免费少妇av软件| 国产亚洲精品久久久com| 成人黄色视频免费在线看| 亚洲成色77777| 精品少妇黑人巨大在线播放| 国产精品人妻久久久久久| 人妻少妇偷人精品九色| 午夜老司机福利剧场| 亚洲婷婷狠狠爱综合网| 日本爱情动作片www.在线观看| 久久久久久国产a免费观看| 久久鲁丝午夜福利片| 成人欧美大片| kizo精华| av黄色大香蕉| 一级黄片播放器| 99久国产av精品国产电影| 噜噜噜噜噜久久久久久91| 久久99精品国语久久久| 内射极品少妇av片p| 欧美高清性xxxxhd video| 六月丁香七月| 丰满人妻一区二区三区视频av| 日韩一本色道免费dvd| 高清视频免费观看一区二区| 亚洲国产成人一精品久久久| 国产 精品1| 美女内射精品一级片tv| 偷拍熟女少妇极品色| 亚洲欧洲日产国产| 久久久成人免费电影| 亚洲真实伦在线观看| 国产日韩欧美在线精品| 久久久久国产精品人妻一区二区| 国产高清国产精品国产三级 | 成人午夜精彩视频在线观看| 极品少妇高潮喷水抽搐| 亚洲精品第二区| 亚洲婷婷狠狠爱综合网| 国产综合精华液| 国产精品三级大全| 少妇人妻久久综合中文| av免费观看日本| 婷婷色麻豆天堂久久| 夜夜看夜夜爽夜夜摸| 国产精品一区二区三区四区免费观看| 可以在线观看毛片的网站| 伊人久久国产一区二区| 如何舔出高潮| 午夜激情福利司机影院| 男男h啪啪无遮挡| 少妇裸体淫交视频免费看高清| 一级a做视频免费观看| 一本—道久久a久久精品蜜桃钙片 精品乱码久久久久久99久播 | 欧美xxⅹ黑人| 不卡视频在线观看欧美| 久久精品熟女亚洲av麻豆精品| 成人二区视频| 久久人人爽人人片av| 99热6这里只有精品| 一本久久精品| 水蜜桃什么品种好| 91精品国产九色| 亚洲精品国产av蜜桃| 免费在线观看成人毛片| 亚洲av免费高清在线观看| 久久久久国产精品人妻一区二区| 超碰97精品在线观看| 国产美女午夜福利| 国产亚洲91精品色在线| 国产男女超爽视频在线观看| 亚洲国产日韩一区二区| 日韩,欧美,国产一区二区三区| 欧美潮喷喷水| 在线亚洲精品国产二区图片欧美 | 国产精品偷伦视频观看了| 在线a可以看的网站| 国产91av在线免费观看| 成人二区视频| 亚洲图色成人| 中文字幕制服av| 在线免费观看不下载黄p国产| 午夜福利视频1000在线观看| 久久国内精品自在自线图片| 一二三四中文在线观看免费高清| 欧美精品国产亚洲| 99热国产这里只有精品6| 蜜臀久久99精品久久宅男| 中文字幕av成人在线电影| 最近中文字幕2019免费版| 看免费成人av毛片| 国产又色又爽无遮挡免| 大又大粗又爽又黄少妇毛片口| 又黄又爽又刺激的免费视频.| av黄色大香蕉| av在线app专区| 别揉我奶头 嗯啊视频| 熟妇人妻不卡中文字幕| 蜜桃亚洲精品一区二区三区| 热re99久久精品国产66热6| 中文字幕亚洲精品专区| 国产人妻一区二区三区在| 国产人妻一区二区三区在| 久久精品久久久久久久性| 亚洲精品一区蜜桃| 亚洲av不卡在线观看| 男人狂女人下面高潮的视频| 麻豆乱淫一区二区| 国产精品久久久久久精品古装| 老师上课跳d突然被开到最大视频| 最近最新中文字幕大全电影3| 亚洲四区av| 亚洲人与动物交配视频| 欧美 日韩 精品 国产| 一本久久精品| 色播亚洲综合网| 亚洲激情五月婷婷啪啪| 亚洲精品亚洲一区二区| 老女人水多毛片| 亚洲va在线va天堂va国产| 欧美xxxx黑人xx丫x性爽| 欧美成人一区二区免费高清观看| 黄色视频在线播放观看不卡| 国产美女午夜福利| 亚洲不卡免费看| 午夜精品国产一区二区电影 | 极品教师在线视频| av黄色大香蕉| 久久这里有精品视频免费| 特级一级黄色大片| 免费黄色在线免费观看| 欧美丝袜亚洲另类| 免费黄网站久久成人精品| 国产在线一区二区三区精| 成年av动漫网址| 久久人人爽人人片av| 简卡轻食公司| 日本黄色片子视频| 麻豆乱淫一区二区| 国产欧美日韩一区二区三区在线 | 欧美zozozo另类| 亚洲精品影视一区二区三区av| 亚洲aⅴ乱码一区二区在线播放| 亚洲精品影视一区二区三区av| 国产在视频线精品| 少妇丰满av| av在线观看视频网站免费| 免费播放大片免费观看视频在线观看| 免费电影在线观看免费观看| 色吧在线观看| 精品熟女少妇av免费看| 麻豆久久精品国产亚洲av| 只有这里有精品99| 大片电影免费在线观看免费| 99九九线精品视频在线观看视频| 午夜激情久久久久久久| 亚洲精品国产色婷婷电影| 欧美日韩国产mv在线观看视频 | 特级一级黄色大片| 美女内射精品一级片tv| 能在线免费看毛片的网站| 国产69精品久久久久777片| 日韩视频在线欧美| 在线亚洲精品国产二区图片欧美 | 日韩免费高清中文字幕av| av女优亚洲男人天堂| 久久久久久久国产电影| 欧美老熟妇乱子伦牲交| 天堂中文最新版在线下载 | 成年女人在线观看亚洲视频 | freevideosex欧美| 国产 一区精品| 精品国产露脸久久av麻豆| 夜夜看夜夜爽夜夜摸| freevideosex欧美| 国产极品天堂在线| 亚洲欧美成人综合另类久久久| 国产精品国产三级国产av玫瑰| 五月玫瑰六月丁香| 久久人人爽av亚洲精品天堂 | 午夜福利在线在线| 免费看a级黄色片| 国产极品天堂在线| 黄片wwwwww| 一级毛片 在线播放| 亚洲综合色惰| 久久久国产一区二区| 深爱激情五月婷婷| 亚洲高清免费不卡视频| 日韩亚洲欧美综合| 成年人午夜在线观看视频| 欧美丝袜亚洲另类| 亚洲图色成人| 老女人水多毛片| 欧美变态另类bdsm刘玥| 精品少妇黑人巨大在线播放| 国产av码专区亚洲av| 午夜日本视频在线| 成人国产麻豆网| 2018国产大陆天天弄谢| 女人十人毛片免费观看3o分钟| 天美传媒精品一区二区| 啦啦啦在线观看免费高清www| 国产成人a∨麻豆精品| 免费看av在线观看网站| 天堂网av新在线| 国产又色又爽无遮挡免| 夜夜看夜夜爽夜夜摸| 日日啪夜夜撸| xxx大片免费视频| 美女内射精品一级片tv| 中文字幕亚洲精品专区| 免费少妇av软件| 成人美女网站在线观看视频| 精品国产一区二区三区久久久樱花 | 国产国拍精品亚洲av在线观看| 亚洲av一区综合| 麻豆成人午夜福利视频| 成人鲁丝片一二三区免费| 国产日韩欧美在线精品| 亚洲,欧美,日韩| 日韩一本色道免费dvd| 中文精品一卡2卡3卡4更新| 亚洲va在线va天堂va国产| 国产一级毛片在线| 中文字幕久久专区| 日本免费在线观看一区| 亚洲欧洲国产日韩| 91久久精品国产一区二区三区| 日韩亚洲欧美综合| 男女那种视频在线观看| 亚洲第一区二区三区不卡| 国产精品一及| 久久97久久精品| 国产视频内射| 亚洲国产成人一精品久久久| 亚洲在线观看片| 天天一区二区日本电影三级| 2022亚洲国产成人精品| 国内少妇人妻偷人精品xxx网站| freevideosex欧美| 国产一区亚洲一区在线观看| 亚洲色图综合在线观看| 麻豆精品久久久久久蜜桃| 成人二区视频| 在线播放无遮挡| 国产女主播在线喷水免费视频网站| 亚洲欧美成人综合另类久久久| 国产精品三级大全| 丰满少妇做爰视频| 久热久热在线精品观看| 国产欧美日韩精品一区二区| 亚洲成色77777| 免费看a级黄色片| 久久久国产一区二区| 最后的刺客免费高清国语| 欧美丝袜亚洲另类| 涩涩av久久男人的天堂| 国产精品99久久久久久久久| 深夜a级毛片| 国产av国产精品国产| 狂野欧美激情性bbbbbb| 久久精品国产鲁丝片午夜精品| a级一级毛片免费在线观看| 国产白丝娇喘喷水9色精品| 亚洲成人中文字幕在线播放| 国精品久久久久久国模美| 午夜精品国产一区二区电影 | 波野结衣二区三区在线| 国内揄拍国产精品人妻在线| 男男h啪啪无遮挡| 久久精品国产鲁丝片午夜精品| 在线天堂最新版资源| 亚洲怡红院男人天堂| 校园人妻丝袜中文字幕| 亚洲最大成人手机在线| 亚洲精品一区蜜桃| 久久久久国产网址| 草草在线视频免费看| 久久久久九九精品影院| 黄色欧美视频在线观看| 亚洲欧美精品自产自拍| 久久久国产一区二区| 国产美女午夜福利| 亚洲国产精品999| 午夜日本视频在线| 少妇人妻 视频| 在线观看免费高清a一片| 国产 一区 欧美 日韩| 日本黄大片高清| 亚洲精品国产色婷婷电影| 欧美3d第一页| 亚洲精品一二三| 插逼视频在线观看| 国产真实伦视频高清在线观看| 七月丁香在线播放| 国精品久久久久久国模美| 国产精品伦人一区二区| 极品少妇高潮喷水抽搐| 日本熟妇午夜| 精华霜和精华液先用哪个| 精品少妇久久久久久888优播| 国产乱来视频区| 午夜视频国产福利| 汤姆久久久久久久影院中文字幕| 一边亲一边摸免费视频| 91精品伊人久久大香线蕉| 成人亚洲精品av一区二区| 内射极品少妇av片p| 亚洲精品久久久久久婷婷小说| 丰满乱子伦码专区| 最近2019中文字幕mv第一页| 一级毛片aaaaaa免费看小| 精品熟女少妇av免费看| 成人国产av品久久久| 中文字幕av成人在线电影| 亚洲精品日韩在线中文字幕| 少妇的逼好多水| 免费观看的影片在线观看| 欧美 日韩 精品 国产| 精品人妻一区二区三区麻豆| 日韩在线高清观看一区二区三区| 亚洲精华国产精华液的使用体验| 久久国产乱子免费精品| 啦啦啦中文免费视频观看日本| 成年av动漫网址| 一本久久精品| 老师上课跳d突然被开到最大视频| av在线蜜桃| 99热网站在线观看| 卡戴珊不雅视频在线播放| 久久99热6这里只有精品| 中文资源天堂在线| 在线观看一区二区三区| 男插女下体视频免费在线播放| 一级毛片aaaaaa免费看小| 亚洲自拍偷在线| 搡老乐熟女国产| 欧美丝袜亚洲另类| 国产精品一区二区三区四区免费观看| 我的女老师完整版在线观看| 亚洲欧美中文字幕日韩二区| 成人午夜精彩视频在线观看| 汤姆久久久久久久影院中文字幕| 国产精品女同一区二区软件| 亚洲精品中文字幕在线视频 | 国产精品不卡视频一区二区| 男女下面进入的视频免费午夜| 毛片女人毛片| 91精品一卡2卡3卡4卡| 日本色播在线视频| 免费观看无遮挡的男女| 国产大屁股一区二区在线视频| 国产精品一区二区性色av| 一级片'在线观看视频| 精品人妻熟女av久视频| 欧美老熟妇乱子伦牲交| 日韩制服骚丝袜av| 国产精品99久久99久久久不卡 | 久久久久久久久大av| 久久国内精品自在自线图片| 日韩一区二区视频免费看| 久久99精品国语久久久| 日本爱情动作片www.在线观看| 特大巨黑吊av在线直播| 波野结衣二区三区在线| 高清日韩中文字幕在线| 久久久久九九精品影院| 国产伦精品一区二区三区四那| 深夜a级毛片| 欧美zozozo另类| 免费黄频网站在线观看国产| 欧美xxⅹ黑人| 美女国产视频在线观看| 99久久精品国产国产毛片| 国产色婷婷99| freevideosex欧美| 亚洲av电影在线观看一区二区三区 | 中文字幕制服av| 欧美区成人在线视频| 大片电影免费在线观看免费| 久久精品国产亚洲网站| 精品少妇黑人巨大在线播放| 精品国产乱码久久久久久小说| videossex国产| 日韩视频在线欧美| 亚洲精品乱码久久久久久按摩| 亚洲av一区综合| 亚洲图色成人| 国内精品美女久久久久久| 国产一区二区亚洲精品在线观看| 少妇熟女欧美另类| 成人高潮视频无遮挡免费网站| 日本wwww免费看| 亚洲最大成人手机在线| 日韩视频在线欧美| 亚洲精品一二三| 久久这里只有精品19| 国产 精品1| 日韩熟女老妇一区二区性免费视频| 狂野欧美激情性xxxx| 国产乱来视频区| 精品国产露脸久久av麻豆| 天美传媒精品一区二区| 91成人精品电影| 久久99精品国语久久久| 国产 精品1| 黄色视频不卡| 国产视频首页在线观看| 国产亚洲精品第一综合不卡| 看十八女毛片水多多多| 国产激情久久老熟女| 丝袜在线中文字幕| 一级毛片黄色毛片免费观看视频| bbb黄色大片| 不卡av一区二区三区| 成年人免费黄色播放视频| 丰满乱子伦码专区| 精品亚洲成a人片在线观看| 看非洲黑人一级黄片| a 毛片基地| 伦理电影大哥的女人| 国产亚洲欧美精品永久| 国产成人欧美| 欧美在线一区亚洲| 人人澡人人妻人| 日日啪夜夜爽| 日韩大码丰满熟妇| 午夜福利影视在线免费观看| 不卡视频在线观看欧美| 欧美中文综合在线视频| av线在线观看网站| 亚洲av中文av极速乱| 中文字幕精品免费在线观看视频| 热99久久久久精品小说推荐| 69精品国产乱码久久久| 2021少妇久久久久久久久久久| 久久久久精品人妻al黑| 成人黄色视频免费在线看| av一本久久久久| 韩国精品一区二区三区| 免费观看av网站的网址| av一本久久久久| 国产日韩欧美亚洲二区| 国产精品成人在线| 亚洲欧美中文字幕日韩二区| 日韩熟女老妇一区二区性免费视频| 多毛熟女@视频| 十八禁高潮呻吟视频| 一区在线观看完整版| 一边摸一边抽搐一进一出视频| 岛国毛片在线播放| 色网站视频免费| 日本猛色少妇xxxxx猛交久久| 精品亚洲乱码少妇综合久久| 大香蕉久久成人网| 9热在线视频观看99| 国产在线视频一区二区| 久久久久国产一级毛片高清牌| 超碰97精品在线观看| 纵有疾风起免费观看全集完整版| 久久午夜综合久久蜜桃| 精品一区二区三卡| 国产精品成人在线| 国产精品嫩草影院av在线观看| 亚洲精品美女久久av网站| 欧美少妇被猛烈插入视频| 高清在线视频一区二区三区| 欧美日韩成人在线一区二区| 热99国产精品久久久久久7| 九草在线视频观看| 欧美少妇被猛烈插入视频| 新久久久久国产一级毛片| 男人操女人黄网站| a 毛片基地| 国产av精品麻豆| 日韩成人av中文字幕在线观看| 久热这里只有精品99| 女人精品久久久久毛片| 啦啦啦啦在线视频资源| 色94色欧美一区二区| 综合色丁香网| 久久久精品免费免费高清| 色吧在线观看| 中文字幕亚洲精品专区| 一区二区三区精品91| 女性被躁到高潮视频| 亚洲成色77777| 人人澡人人妻人| 美女午夜性视频免费| 最新在线观看一区二区三区 | 精品国产乱码久久久久久小说| 久热爱精品视频在线9| 亚洲av日韩在线播放| 男男h啪啪无遮挡| 深夜精品福利| 国产精品一区二区在线不卡| 男人添女人高潮全过程视频| 亚洲免费av在线视频| 在线观看www视频免费| 十八禁人妻一区二区| 国产精品免费视频内射| 亚洲一码二码三码区别大吗| 亚洲成人手机| 国产欧美亚洲国产| 天堂8中文在线网| 亚洲第一青青草原| 多毛熟女@视频| 精品人妻在线不人妻| 大码成人一级视频| 男女午夜视频在线观看| 操出白浆在线播放| 在线观看www视频免费| 日韩av不卡免费在线播放| 亚洲一区中文字幕在线| 欧美xxⅹ黑人| 热99国产精品久久久久久7| 中文字幕人妻丝袜制服| 亚洲精品国产av成人精品| 欧美日韩亚洲综合一区二区三区_| av国产久精品久网站免费入址| 色94色欧美一区二区| 91精品国产国语对白视频| 亚洲中文av在线| 亚洲成人免费av在线播放| 人成视频在线观看免费观看| 欧美 亚洲 国产 日韩一| 黄色一级大片看看| 久久青草综合色| 亚洲国产日韩一区二区| 久久热在线av| 1024香蕉在线观看| 丰满乱子伦码专区| 久久av网站| 中文字幕高清在线视频| www.av在线官网国产| 国产免费视频播放在线视频| 伦理电影大哥的女人| 久久国产亚洲av麻豆专区| 免费女性裸体啪啪无遮挡网站| 黄色怎么调成土黄色| 国产精品二区激情视频| 亚洲国产精品一区三区| 日本黄色日本黄色录像| 久久 成人 亚洲| 90打野战视频偷拍视频| 丝袜美足系列| 亚洲人成77777在线视频| 天天躁日日躁夜夜躁夜夜| 精品国产乱码久久久久久男人| 亚洲四区av| 国产精品久久久久久人妻精品电影 | 久久久久精品久久久久真实原创| 激情视频va一区二区三区| 这个男人来自地球电影免费观看 | 亚洲一码二码三码区别大吗| 国产精品久久久久久精品电影小说| 纵有疾风起免费观看全集完整版| 97人妻天天添夜夜摸| 亚洲av中文av极速乱| 热re99久久精品国产66热6| 亚洲精品,欧美精品|