• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Grain ref i nement of bronze alloy by equal-channel angular pressing(ECAP)and its effect on corrosion behaviour

    2016-04-18 10:14:22SADAWYGHANEM
    Defence Technology 2016年4期

    M.M.SADAWY*,M.GHANEM

    aMining and Pet.Dept.,F(xiàn)aculty of Engineering,Al-Azhar University,Nasr City 11371,Cairo,Egypt

    bMechanical Dept.,F(xiàn)aculty of Industrial Education,Suez University,Egypt

    Grain ref i nement of bronze alloy by equal-channel angular pressing(ECAP)and its effect on corrosion behaviour

    M.M.SADAWYa,*,M.GHANEMb

    aMining and Pet.Dept.,F(xiàn)aculty of Engineering,Al-Azhar University,Nasr City 11371,Cairo,Egypt

    bMechanical Dept.,F(xiàn)aculty of Industrial Education,Suez University,Egypt

    The corrosion behaviour of bronze alloy prepared by equal channel angular pressing (ECAP)was investigated in 3.5 wt.%NaCl solution. Immersion corrosion tests and different electrochemical techniques were carried out.The results showed that ECAPed bronze samples exhibited higher corrosion resistance compared with the as-cast alloy and the passive current density decreased with increasing number of passes.Moreover,the morphology of alloys indicated that the corrosion damage on the surface of ECAPed bronze was smooth and uniform while the as-cast alloy suffered from selective corrosion.

    Bronze;ECAP;Corrosion resistance;Passive f i lm;Pitting

    1.Introduction

    Great efforts have been devoted for producing ultraf i ne grained and nanostructured materials due to their enhanced physical and mechanical properties [1-5].Several severe plastic deformation (SPD)techniques have been developed and now are available to fabricate bulk ultraf i ne-grained (UFG)and nano-structured materials,including high-pressure torsion,friction stir processing (FSP),accumulative roll bonding (ARB),and equal channel angular pressing (ECAP)[6].

    ECAP is one of the most effective procedures among all SPD techniques to improve the quality of the products [7-11]. In ECAP,the sample is simply pressed through the channel and a shear strain is introduced to the sample when it passes through the bending point of the channel [12].To produce UFG,the samples must subject to multiple passes through the die as the cross-section remains unchanged.It was proved that,ECAP is a good ref i ning technique to improve the material properties ofAl[13],Mg [14],Ti [15],F(xiàn)e [10]and Cu [16]alloys.

    The corrosion resistance of materials processed using SPD could be affected by the applied manufacturing process. However,the literature reports wide scattering results.Someresearchers have reported that grain ref i nement can improve corrosion resistance of different materials [17,18]while others stated that the strain-induced grain ref i nement with more crystalline defects weakens corrosion resistance [19].

    A detailed literature review showed that the corrosion behaviour of the copper and its alloys produced by the SPD methodsgainedonlylimitedattention.Xuetal.[20]revealedthat the corrosion current of UFG copper fabricated by ECAP is higher than that of the coarse-grained copper in Hanks solution. Miyamoto et al.[21]showed that UFG copper exhibited a lower corrosion current in comparison with that in its recrystallized coarse grain (CG).Nikfahm et al.[22]found that ultra-f i ne grain copper fabricated by accumulative roll bonding process (ARB)showed better corrosion resistance compared to as-cast alloy.

    On the other hand,the literature showed that there is a little investigation on the corrosion behaviour of bronze alloy fabricated by the SPD techniques.Therefore,the present work focused on the effect of ECAP number of passes on the corrosion and electrochemical behaviour of the bronze alloy.

    2.Experimental work

    2.1.Material

    The present study was carried out using the bronze alloy.Its chemical composition is shown in Table 1.The ECAP process was carried out up to 5 passes.The ECAP process and the die design were performed and discussed in details by Elshafeyet al.[23].Discs of 10 mm in diameter and 5 mm thick were cut from bars using disc cutter.The discs were mechanically polished using SiC emery paper of grades 180-1200 mesh and alumina emulsion.Specimens were etched using etchant prepared by 2 g K2Cr2O7,8 mL H2SO4,4 mL saturated NaCl solution,and 100 mL H2O.The metallographic study was carried out using Olympus optical microscope.

    Table 1Chemical composition (wt.%)of bronze alloy.

    2.2.XRD

    For determining the different phases and grain sizes of the as-cast and ECAPed bronze,a computer-controlled X-ray diffractometer (XRD,Philips Analytical X-ray B.V.machine)with monochromatic Cu-K radiation (l=0.154 nm)was used.To cover all the possible diffraction lines of bronze,the scanning range was 5-100 (2θ)with a step size of 0.05o (2θ)and counting time of 5 seconds per step.This measurable range was chosen because all probable phases of Cu and Sn lie in that range.Peak f

    i t and data analysis (peak position,integrated intensity and grain size)were accomplished by the WinFit computer program.

    2.3.Immersion tests

    Immersion corrosion tests were carried out at room temperature according to ASTM G1 and G31 [24].Initially,bronze samples were cleaned in HCl acid solution for 2 minutes,degreased with acetone and washed with distilled water and dried.The initial weight of the bronze was taken using an analytical balance for the original weight.After immersion in 3.5 wt. %NaClsolutionfor28days,thespecimensremovedandcleaned with HCl solution for 3 min and dried.After cleaning,all specimens were reweighed and the loss in weight was calculated.

    2.4.Electrochemical techniques

    All electrochemical experiments except the electrochemical impedance spectra werecarried outusing Potentiostat/ Galvanostat (EG&G model 273).M352 corrosion software from EG&G Princeton Applied Research was used.A threeelectrode cell composed of bronze as a working electrode,Pt counter electrode,and Ag/AgCl reference electrode were used for the tests.

    The open-circuit potential(OCP)was recorded after immersion of samples in the test solution for 15 min vs.Ag/AgCl reference electrode.Tafel polarization tests were carried out at a scan rate of 0.5 mV/s.The PAR Calc Tafel Analysis routine statistically f i ts the experimental data to the Stern-Geary model for a corroding system.The cyclic potentiodynamic curves were obtained by scanning the potential in the forward direction from-250 mV Ag/AgCl towards the anodic direction at a scan rate of 1.0 mV/s.The potential scan was reversed in the backward direction when the current density reached a value of 0.10 A/cm2.At least three separate experiments were carried out for each run to ensure reproducibility of results.After cyclic polarization measurements,all specimens were taken out and dried for microscopic analysis.

    Potentiostatic measurements were carried out at+500 mV vs.Ag/AgCl for 5 minutes where the anodic current was recorded as a function of time.

    An electrochemical impedance spectrum (EIS)was performed using Gamry PCI300/4 Potentiostat/Galvanostat/Zra analyzer.The Echem Analyst software (version 5.21)was used for impedance data analysis.Measurements of EIS were performed at the OCP.The amplitude of applied potential was 10 mV and the frequency ranged from 0.01 Hz to 100 kHz.

    All corrosion experiments were carried out in 3.5 wt.%NaCl solution as electrolyte.The solutions were prepared from analytical grade and chemically pure reagents using distilled water.

    2.5.Surface examination study after corrosion tests

    The as-cast and ECAPed bronze specimens were immersed in 3.5 wt.%NaCl solution for a period of 28 days.After that,the specimens were taken out and dried.The morphology of the surface was investigated using X-ray and scanning electron microscope (SEM),model JEOL JSM-6330F at voltage of 20 keV.

    3.Results and discussions

    3.1.Microstructure and XRD

    The optical micrographs of the as-cast bronze and ECAPed samples of 1,3 and 5 passes are shown in Fig.1.The microstructure of the as-cast bronze (Fig.1(a))consists mainly of equiaxed grains with average grain size of 400 μm.After one pass of ECAP,the grains were elongated with a big width along extrusion direction as shown in Fig.1(b).After 3 passes,the grains were elongated with a small width (Fig.1(c)).On the other hand Fig.1(d)indicates that the grains of the bronze alloy after 5 passes became so ref i ned that grains could not be seen by optical microscope.

    X-ray diffraction prof i les of the as-cast and ECAPed bronze is shown in Fig.2.It shows that the as-cast bronze contains α-Cu solid solution with CuSn and Cu6Sn5.After 1st pass the bronze contains α-Cu solid solution with minor CuSn and Cu6Sn5.After the 2nd,3rd 4th and 5th passes,the second phase could not be detected.The crystallite size calculated from X-ray diffraction prof i les is shown in Fig.3.It can be seen that the crystal size decreased from 604 to 232 Angstrom with increasing number of passes to 5 passes.This is attributed to accumulative plastic strain introduced by ECAP.

    3.2.Immersion tests

    Fig.4 shows the time dependence of the corrosion rate of the as-cast and ECAPed bronze samples calculated from the mass loss tests.It can be seen that the corrosion rates of all samples increased as the immersion time increased to 16 days and attained stable values after 20 days.This attributed to the patina f i lm which formed on the surface of the bronze alloy.On the other hand,F(xiàn)ig.4 indicates that ECAPed samples have lower dissolution rate in aqueous NaCl solution than as-cast alloy,andthe dissolution rate decreases with the increase of ECAP passes.The dissolution rate of the 5-passes sample is nearly two times lower than the as-cast bronze during immersion for 28 days.This may be due to more homogenized microstructure and dissolving intermetallic compounds of CuSn and Cu6Sn5 by increasing ECAP number of passes to 5 passes.

    Fig.1.Effect of equal-channel angular pressing on microstructure of bronze alloy.(a)0-pass,(b)1-pass,(c)3-passes and (d)5-passes.

    3.3.Open circuit potential measurements (OCP)

    Fig.2.X-ray diffraction of the as-cast bronze and deformed by ECA.

    The variation of the free corrosion potential with time for the as-cast bronze and ECAPed samples in 3.5%wt.NaCl solution is shown in Fig.5.The results reveal that corrosion potential for all samples tends from the moment of immersion towards more negative values.This behaviour represents the breakdown of the pre-immersion air formed an oxide f i lm and dissolution of bronze.After passing a long time of immersion,the potential stabilizes.This represents the formation of the passive f i lm on the surface,which will enhance the free corrosion potential of samples.Furthermore,F(xiàn)ig.5 indicates that the ECAPed samples need less time to reach the stable OCP values while the as-cast sample seems to need more time to reach the stable OCP value.On the other hand,the results indicate that the corrosion potential shifts to more positive potential with increasing ECAPnumber of passes.This means that increasing number of passes improves the patina f i lm on the surface and consequently the electrochemical reaction decreases.

    Fig.3.Effect of ECAP number of passes on crystallite size of bronze.

    Fig.4.Weight loss-time curves for the corrosion of the as-cast and ECAPed bronze alloys in 3.5 wt.%NaCl solution.

    Fig.5.Potential-time curves of the as-cast bronze and deformed by ECAP in 3.5 wt.%NaCl solution.

    3.4.Tafel polarization

    Tafel polarization curves of the as-cast bronze and deformed by ECAP are shown in Fig.6.All samples were immersed in 3.5 wt.%NaCl solution for about 15 min before polarization tests to achieve their stable OCP values.It is clear that the cathodic and anodic curves of ECAPed samples display close polarization behaviour similar to that of as-cast bronze. However,the anodic polarization curves show that when increasing ECAP number of passes up to 5 passes,the corrosion potential (Ecorr)shifts to more noble potential and the corrosion rate decreased from 7.13 to 3.81 mpy.This behaviour may be attributed to two reasons:f i rst,no second phases exist in the homogenized specimen and the uniform electrochemical property leads to small potential difference as well as small corrosion driving force.Secondly,the decrease in the grain size leads to lower amount of impurities segregated at grain boundaries.It is well-known that dilution of segregated impurities at grain boundaries increases the corrosion resistance[21,25].It was found that when grain size is decreased from 10 to 0.3 μm,segregated impurities is estimated to be diluted by about 1/30 [21].Such drastic decreasing of impurities could increase the corrosion resistance at the grain boundaries.

    Fig.6.Tafel polarization curves of the as-cast bronze and deformed by ECAP in 3.5 wt.%NaCl solution.

    Table 2Electrochemical parameters obtained from potentiodynamic polarization measurements for the as-cast and ECAPed bronze alloy in 3.5 wt.%NaCl solution.

    On the other hand,the electrochemical parameters including corrosion potential (Ecorr),corrosion current density (icorr),corrosion rate (mpy),anodic and cathodic slopes (βaand βc)were calculated from Tafel plots and summarized in Table 2.

    Inspection the data in Table 2 reveals that the corrosion rate obtained from Tafel polarization curves is in a good agreement with the results obtained from weight loss method.Moreover,Table 2 indicates that the anodic and cathodic Tafel slopes changes with increasing ECAP number of passes.This means that ECAP number of passes has an obvious effect on anodic and cathodic reactions.

    3.5.Effect of ECAP on the pitting corrosion resistance

    of bronze

    Fig.7. (a,b).Cyclic polarization curves of the as-cast bronze and deformed by ECAP in 3.5 wt.%NaCl solution.

    Cyclic polarization technique was performed to evaluate the effect of ECAP number of passes on the passive stability and pitting of as-cast and ECAPed bronze alloys in 3.5 wt.%NaCl solution.Fig.7 shows the cyclic polarization curves of investigated samples.It can be seen that all anodic curves are characterized by a broad passive region for about 2.3 V from+0.5 V to +2.8 V over which the current density is constant.This plateau is attributed to the formation of protective oxide f i lm on surfaces of samples.Theextentofthispassivitydidnotchangewithdecreasing grain size.However,the current densities in the passive range decrease with increasing number of passes,indicating more protective patina f i lm on the surface of 5-passes sample.The improved passivity of the ECAP-processed bronze is due to the small grain size promoting the uniform distribution of the elements and facilitating the rapid formation of the passive f i lm[21,26].Moreover,F(xiàn)ig.7 indicates that the reverse anodic curves are shifted to lower currents for as-cast and ECAPed bronze alloys.Therefore,no pitting is expected for all samples in 3.5 wt. %NaCl solution.This behaviour is due to patina which acts as a protective coating against further corrosion.Also,it can be seen that the protective potentials for all samples are similar.

    3.6.Potentiostatic current-time measurements

    Fig.8.Potentiostatic current-time curves for the as-cast and ECAPed bronze alloys after cyclic polarization tests in 3.5 wt.%NaCl solution.

    The time-dependence of the anodic current density of the as-castandECAPedbronzealloysisshowninFig.8.Allsamples were held at+0.5 V vs.(Ag/AgCl)to be in the passive regions.It can be seen from Fig.8 that the overall process can be divided into two stages.In the f i rst stage,the current density rapidly decreases in few seconds and this represents the formation of the patina f i lm on the surface.The second stage represents the formation and stabilizing of the passive f i lm on the surface.On the other hand,F(xiàn)ig.8 indicates that the passive current density decreases with the increase of ECAP the number of passes.This can be ascribed to more compact passive oxide f i lm obtained withdecreasingthegrainsizeanddispersionofimpurities.Itwas foundthatthepassivecurrentdensityisrelatedtothestructureof the passive f i lm.A large number of crystalline defects provided abundant nucleation sites for the passive f i lm,which promoted the formation of the passive f i lm [26].

    3.7.Electrochemical impedance spectroscopy measurements (EIS)

    Fig.9.Nyquist plots for the as-cast and ECAPed bronze in 3.5 wt.%NaCl solution.

    Fig.10.Bode plots for the as-cast and ECAPed bronze in 3.5 wt.%NaCl solution.

    EIS measurements were performed in order to get further information on the protective properties of the patina layer formed on the as-cast and ECAPed bronze alloys in 3.5 wt.% NaCl solution.Fig.9 indicates Nyquist plots of the as-cast and ECAPed bronze alloys in 3.5 wt.%NaCl solution.It can be seen that all samples show a capacitive loop in high frequency and a straight line region in low frequency.The capacitive loop in the high-frequency region can be related to the combination of charge transfer resistance and the double-layer capacitance. The straight line region ref l ects the anodic diffusion process of copper from the surfaces of bronze alloys to the bulk solution and the cathodic diffusion process of dissolved oxygen from the bulk solution to the surfaces of bronze.Moreover,F(xiàn)ig.9 shows that the diameter of the semi-circle increases with increasing ECAP number of passes,indicating that the corrosion reaction at bronze/solution interface decreases with the decrease of grain size.The Bode phase diagrams of the EIS data (Fig.10)for the as-cast and ECAPed bronze alloys in 3.5 wt.%NaCl solution show two phase maxima,which reveals the presence of two-time constants of the corrosion process.

    The equivalent circuit model used to f i t the impedance spectra is shown in Fig.11.This model is based on the following equationwhich characterizes the control of corrosion processes by diffusion of mass in the area of the electrolyte at the metal surface.

    Table 3Equivalent circuit parameters for the as-cast and ECAPed bronze alloys in 3.5 wt.%NaCl solution at 25 °C.

    The calculated equivalent circuit parameters for the as-cast and ECAPed bronze alloys are listed in Table 3.The values of α reveal that alloy surface show some degree of heterogeneity,where α < 1 (α ≈ 0.7).Moreover,Table 3 shows that values of the polarization resistance increases with increasing number of passes which is in agreement with the results of immersion tests and polarization method.

    3.8.Surface examination study after corrosion tests

    In order to understand the nature of patina layer formed on the surface of the bronze,XRD patterns (Fig.12)were obtained from the surface of as-cast and ECAPed bronze samples after immersion in 3.5 wt.%NaCl solution for 28 days.The XRD analysis indicates the presence of diffraction peaks for CuCl2and Cu2O on the surface of the as-cast and ECAPed bronze samples.The absence of Sn product peaks in the XRD pattern indicates that the concentration of Sn may be less in the outer surface layer.According to this data,the formation of patina f i lm in oxygenated chloride solution on the surface of investigated alloy may involve the following electrochemical steps[27-29]

    The model includes four elements:(Rs)resistance of 3.5 wt. %NaCl solution,(Rp)electric charge transfer resistance for phase boundary of bronze/solution,(CPE)constant phase element characterizing the electrical properties of the double layer at the interface,and (Wd)Warbrug diffusion impedance,

    Fig.11.Equivalent circuit model used to f i t the impedance spectra for the as-cast and ECAPed bronze in 3.5 wt.%NaCl solution.

    Fig.12.X-ray diffraction of patina formed on bronze alloys after cyclic polarization tests.

    Fig.13.Surface morphology of the as-cast and ECAPed bronze alloys after cyclic polarization tests in 3.5 wt.%NaCl solution.(a)0-pass,(b)1-pass,(c)2-passes,(d)3-passes (e)4-passes and (f)5-passes.

    The presence of high concentration of CuCl2at the metal surface leads to hydrolysis of CuCl2and the production of CuO2according to

    Fig.13 shows the surface morphology of the as-cast and ECAPed bronze alloys after immersion in 3.5 wt.%NaCl solutionfor28days.Fig.13(a)indicatesthatthepatinaformedonthe surface of the as-cast bronze suffers from selective dissolution. This can be ascribed to the precipitation of (Cu-Sn)phase which acts as cathode or due to the difference of surfaces crystallographic orientation [30].On the other hand,F(xiàn)ig.13(b-f)shows that ECAPed bronze alloys are corroded uniformly when the aggressive ions attack their surfaces.This is due to the potential difference along the surface is very low.Furthermore,F(xiàn)ig.13(f)indicates that patina formed on ECAPed bronze alloys exhibits homogeneously compact and smooth passive layer free of the porous f i lm with increasing number of passes to 5-passes.

    4.Conclusions

    TheeffectofreducingthegrainsizebyECAPonthecorrosion resistance of bronze alloy was investigated in 3.5 wt.%NaCl solution.The following main observations are made from this study:

    1)The increase of ECAP number of passes increases the corrosion resistance of the bronze alloy.

    2)The corrosion potential of bronze shifts to more noble potential with increasing ECAP number of passes.

    3)The time and current density of the passive f i lm decrease with increasing ECAP number of passes.

    4)The increase of ECAP number of passes does not have any effect on the passive zone or the protective potentials of bronze in 3.5 wt.%NaCl solution.

    5)Corrosion behaviour of the as-cast and ECAPed bronze alloys is diffusion controlled mechanism.

    [1]Zhao Y,Guo H,F(xiàn)u MW,Ning Y,Yao Z.Fabrication of bulk ultraf i ne grained titanium alloy via equal channel angular pressing based thermomechanical treatment.Mater Des 2013;46:889-94.

    [2]Zheng ZJ,Gao Y,Gui Y,Zhu M.Corrosion behaviour of nanocrystalline 304 stainless steel prepared by equal channel angular pressing.Corros Sci 2012;54:60-7.

    [3]Reihanian M,Ebrahimi R,Tsuji N,Moshksar MM.Analysis of the mechanical properties and deformation behavior of nanostructured commercially pure Al processed by equal channel angular pressing(ECAP).Mater Sci Eng A 2008;473:189-94.

    [4]Balyanov A,Kutnyakova J,Amirkhanova NA,Stolyarov VV,Valiev RZ,Liao XZ,et al.Corrosion resistance of ultra f i ne-grained Ti.Scr Mater 2004;225-9.

    [5]Afshari V,Dehghanian C.Effects of grain size on the electrochemical corrosion behaviour of electrodeposited nanocrystalline Fe coatings in alkaline solution.Corros Sci 2009;51:1844-9.

    [6]Lin Z,Wang L,Xue X,Lu W,Qin J,Zhang D.Microstructure evolution and mechanical properties of a Ti-35Nb-3Zr-2Ta biomedical alloy processed by equal channel angular pressing (ECAP).Mater Sci Eng C 2013;33:4551-61.

    [7]Dheda SS,Mohamed FA.Effect of initial microstructure on the processing of titanium using equal channel angular pressing.Mater Sci Eng A 2011;528:8179-86.

    [8]Figueiredo RB,Langdon TG.Using severe plastic deformation for theprocessing ofadvanced engineering materials.MaterTrans 2009;50:1613-19.

    [9]Shankar MR,Rao BC,Lee S,Chandrasekar S,King AH,Compton WD. Severe plastic deformation (SPD) oftitanium atnear-ambient temperature.Acta Mater 2006;54:3691-700.

    [10]Umemoto M.Nanocrystallization of Steels by Severe Plastic Deformation.Mater Trans 2003;44:1900-11.

    [11]Abd Elaal MI,Sadawy MM.Inf l uence of ECAP as grain ref i nement technique on microstructure evolution,mechanical properties and corrosion behavior of pure aluminum.Trans Nonferrous Met Soc China 2016;25:3865-76.

    [12]DanS,BinMA,HuaJJ,HuaLP,HuiYD.Corrosionbehaviorofultra-f i ne grained industrial pureAl fabricated by ECAP.Trans Nonferrous Met Soc China 2009;19:1065-70.

    [13]Shaeri MH,Salehi MT,Seyyedein SH,Abutalebi MR,Park JK. Microstructure and mechanical properties of Al-7075 alloy processed by equal channel angular pressing combined with aging treatment.Mater Des 2014;57:250-7.

    [14]Muralidhar A,Narendranath S,Nayaka HS.Effect of equal channel angular pressing on AZ31 wrought magnesium alloys.J Magnesium Alloys 2013;1:336-40.

    [15]Hoseini M,Shahryari A,Omanovic S,Szpunar JA.Comparative effect of grain size and texture on the corrosion behaviour of commercially pure titanium processed by equal channel angular pressing.Corros Sci 2009;51:3064-7.

    [16]Mishra A,Richard V,Gregori F,Asaro RJ,Meyers MA.Microstructural evolution in copper processed by severe plastic deformation.Mater Sci Eng A 2005;410-411:290-8.

    [17]Aghuy AA,Zakeri M,Moayed MH,Mazinani M.Effect of grain size on pitting corrosion of304L austenitic stainlesssteel.CorrosSci 2015;94:368-76.

    [18]Son I,Nakano H,Oue S,Kobayashi S,F(xiàn)ukushima H,Horita Z.Pitting corrosion resistance of ultraf i ne-grained aluminum processed by severe plastic deformation.Mater Trans 2006;47:1163-9.

    [19]Song D,Ma A,Jiang J,Lin P,Yang D,F(xiàn)an J.Corrosion behavior of equal-channel-angular-pressed pure magnesium in NaClaqueous solution.Corros Sci 2010;52:481-90.

    [20]Xu XX,Nie FL,Zhang JX,Zheng W,Zheng YF,Hu C,et al.Corrosion and ion release behavior of ultra-f i ne grained bulk pure copper fabricated by ECAP in Hanks solution as potential biomaterial for contraception. Mater Lett 2010;64:524-7.

    [21]Miyamoto H,Harada K,Mimaki T,Vinogradov A,Hashimoto S. Corrosion of ultra-f i ne grained copper fabricated by equal-channel angular pressing.Corros Sci 2008;50:1215-20.

    [22]Nikfahm A,Danaee I,Ashraf iA,Toroghinejad MR.Effect of grain size changes on corrosion behavior of copper produced by accumulative roll bonding process.Mater Res 2013;16:1379-86.

    [23]Elshafey AG,Ghanem MA,Abd Elhamid M,ElNikhaily AE.Effect of tin content and ECAP passes on the mechanical properties of Cu/Sn alloys. Am J Sci Technol 2014;1:60-8.

    [24]ASTM.ASTM standard G1 and G31.West Conshohocken,PA:ASTM International;1994.

    [25]Mahdy A,Sadawy MM.Effect of grain ref i ner Al-5Ti-1B on the corrosion and electrochemical behavior of Al6061 in 3.5wt.%NaCl solution.Metall-Berlin 2013;67:397-401.

    [26]Zhang L,Ma A,Jiang J,Yang D,Song D,Chen J.Sulphuric acid corrosion of ultraf i ne-grained mild steel processed by equal-channel angular pressing.Corros Sci 2013;75:434-42.

    [27]Kosec T,Milosev I,Pihlar B.Benzotriazole as an inhibitor of brass corrosion in chloride solution.Appl Surf Sci 2007;253:8863-73.

    [28]Sabbaghzadeh B,Parvizi R,Davoodi A,Moayed MH.Corrosion evaluation of multi-pass welded nickel-aluminum bronze alloy in 3.5% sodium chloride solution:a restorative application of gas tungsten arc welding process.Mater Des 2014;58:346-56.

    [29]Ni DR,Xiao BL,Maa ZY,Qiao YX,Zheng YG.Corrosion properties of friction-stir processed cast NiAl bronze.Corros Sci 2010;52:1610-17.

    [30]ZohdyKM, SadawyMM, Ghanem M.Corrosionbehaviorof leaded-bronze alloys in sea water.Mater Chem Phys 2014;147:878-83.

    Received 17 December 2015;revised 31 January 2016;accepted 31 January 2016 Available online 2 March 2016

    Peer review under responsibility of China Ordnance Society.

    *Corresponding author.Tel.:+0201113302663.

    E-mail address:mosaadsadawy@yahoo.com (M.M.SADAWY).

    http://dx.doi.org/10.1016/j.dt.2016.01.013

    2214-9147/? 2016 China Ordnance Society.Production and hosting by Elsevier B.V.All rights reserved.

    ? 2016 China Ordnance Society.Production and hosting by Elsevier B.V.All rights reserved.

    av免费在线看不卡| 三上悠亚av全集在线观看| 午夜福利乱码中文字幕| 美女大奶头黄色视频| 亚洲av.av天堂| 啦啦啦中文免费视频观看日本| av女优亚洲男人天堂| 免费黄频网站在线观看国产| 久久久久久久久久人人人人人人| www.色视频.com| 亚洲色图综合在线观看| 国产爽快片一区二区三区| 久久久精品免费免费高清| 亚洲第一区二区三区不卡| 精品一区二区三区四区五区乱码 | 在线观看免费视频网站a站| 国产精品久久久久久久电影| 日韩三级伦理在线观看| 国产老妇伦熟女老妇高清| 精品亚洲成国产av| 香蕉丝袜av| 亚洲美女视频黄频| 久久精品国产综合久久久 | 亚洲国产欧美在线一区| 下体分泌物呈黄色| 天天影视国产精品| 欧美精品一区二区大全| 亚洲国产欧美在线一区| 最近的中文字幕免费完整| 日韩电影二区| 欧美精品人与动牲交sv欧美| 国产激情久久老熟女| 日本欧美国产在线视频| 亚洲三级黄色毛片| 日韩av不卡免费在线播放| 欧美精品国产亚洲| 中文字幕精品免费在线观看视频 | 久久人人爽人人爽人人片va| 一二三四在线观看免费中文在 | 亚洲综合色惰| 一级毛片我不卡| 韩国精品一区二区三区 | a级毛片黄视频| 国产精品麻豆人妻色哟哟久久| 美女脱内裤让男人舔精品视频| 人人妻人人澡人人看| 黄色毛片三级朝国网站| 国产日韩欧美亚洲二区| 亚洲欧美一区二区三区黑人 | 国产亚洲午夜精品一区二区久久| 日日撸夜夜添| 最新中文字幕久久久久| 日本与韩国留学比较| 日韩三级伦理在线观看| 亚洲精品国产色婷婷电影| 欧美另类一区| 国产激情久久老熟女| 狂野欧美激情性xxxx在线观看| 国产av国产精品国产| 免费日韩欧美在线观看| 久久99热6这里只有精品| 97在线人人人人妻| 免费在线观看完整版高清| 成人亚洲欧美一区二区av| 亚洲一区二区三区欧美精品| 日韩精品有码人妻一区| 精品久久国产蜜桃| 亚洲婷婷狠狠爱综合网| 建设人人有责人人尽责人人享有的| av线在线观看网站| 国产免费现黄频在线看| 各种免费的搞黄视频| 亚洲欧美清纯卡通| av视频免费观看在线观看| 午夜日本视频在线| 中文字幕av电影在线播放| 久久久久久人人人人人| 波野结衣二区三区在线| 久久人人爽人人爽人人片va| 99热这里只有是精品在线观看| 欧美老熟妇乱子伦牲交| 街头女战士在线观看网站| 黄色怎么调成土黄色| 国产精品蜜桃在线观看| 精品国产露脸久久av麻豆| 日韩大片免费观看网站| 国产黄色视频一区二区在线观看| 日韩在线高清观看一区二区三区| 黄片无遮挡物在线观看| 高清不卡的av网站| 高清毛片免费看| 色网站视频免费| 国产精品国产三级国产av玫瑰| 最近手机中文字幕大全| 精品人妻在线不人妻| freevideosex欧美| 国产免费视频播放在线视频| 91成人精品电影| 国产免费福利视频在线观看| 黑人猛操日本美女一级片| 秋霞在线观看毛片| 久久精品人人爽人人爽视色| 亚洲国产精品专区欧美| 国产黄色视频一区二区在线观看| 黄色一级大片看看| av免费在线看不卡| 啦啦啦视频在线资源免费观看| 在线免费观看不下载黄p国产| 韩国精品一区二区三区 | 久久韩国三级中文字幕| 成年女人在线观看亚洲视频| 国产免费福利视频在线观看| 成人国产麻豆网| 日韩三级伦理在线观看| 免费观看无遮挡的男女| 高清欧美精品videossex| 美女视频免费永久观看网站| 巨乳人妻的诱惑在线观看| 久久人人爽人人爽人人片va| 美女福利国产在线| 国产精品国产三级国产专区5o| 老女人水多毛片| 国产欧美亚洲国产| 亚洲精品视频女| 一本色道久久久久久精品综合| 一级毛片电影观看| av电影中文网址| 巨乳人妻的诱惑在线观看| 天天躁夜夜躁狠狠久久av| av天堂久久9| 如何舔出高潮| 永久免费av网站大全| 欧美精品av麻豆av| 亚洲伊人色综图| 狠狠婷婷综合久久久久久88av| 色哟哟·www| 人妻系列 视频| 国产欧美亚洲国产| 精品久久国产蜜桃| 成人二区视频| av.在线天堂| √禁漫天堂资源中文www| 在线观看www视频免费| 精品酒店卫生间| 我的女老师完整版在线观看| a级毛片黄视频| 一本一本久久a久久精品综合妖精 国产伦在线观看视频一区 | 欧美xxⅹ黑人| 色视频在线一区二区三区| 黑人巨大精品欧美一区二区蜜桃 | 一边摸一边做爽爽视频免费| 夫妻性生交免费视频一级片| 搡老乐熟女国产| 中文字幕制服av| 肉色欧美久久久久久久蜜桃| 免费大片18禁| 又黄又爽又刺激的免费视频.| 久久久亚洲精品成人影院| 黄片播放在线免费| 国产成人精品一,二区| 亚洲激情五月婷婷啪啪| 久久午夜福利片| 精品国产一区二区三区四区第35| 日本午夜av视频| 一级毛片我不卡| 久热这里只有精品99| 免费观看a级毛片全部| 日韩免费高清中文字幕av| 午夜视频国产福利| 亚洲美女视频黄频| 国产乱来视频区| 久久精品人人爽人人爽视色| 伦理电影免费视频| av在线app专区| 久久久亚洲精品成人影院| 国产av国产精品国产| 在线观看一区二区三区激情| 欧美人与性动交α欧美精品济南到 | 2018国产大陆天天弄谢| 内地一区二区视频在线| 天天躁夜夜躁狠狠久久av| 一区二区三区四区激情视频| 午夜视频国产福利| 18禁裸乳无遮挡动漫免费视频| 日韩 亚洲 欧美在线| 国产一区二区激情短视频 | 黄色视频在线播放观看不卡| 色94色欧美一区二区| 欧美精品国产亚洲| 国产日韩欧美视频二区| 另类亚洲欧美激情| 亚洲成色77777| freevideosex欧美| 国产亚洲欧美精品永久| 亚洲精品av麻豆狂野| 婷婷色av中文字幕| 国产av一区二区精品久久| 亚洲av欧美aⅴ国产| 综合色丁香网| 欧美变态另类bdsm刘玥| 最近最新中文字幕免费大全7| 九色亚洲精品在线播放| 国产白丝娇喘喷水9色精品| 免费不卡的大黄色大毛片视频在线观看| 日韩一区二区三区影片| 日本黄大片高清| 在线观看美女被高潮喷水网站| 日本91视频免费播放| 2022亚洲国产成人精品| 久久国内精品自在自线图片| 女人久久www免费人成看片| 久久久国产一区二区| 欧美 日韩 精品 国产| 国产成人精品久久久久久| 亚洲情色 制服丝袜| 精品亚洲成国产av| 亚洲色图 男人天堂 中文字幕 | 女人久久www免费人成看片| 有码 亚洲区| 纯流量卡能插随身wifi吗| 午夜福利网站1000一区二区三区| 日韩欧美精品免费久久| 欧美日本中文国产一区发布| 亚洲欧洲日产国产| 少妇精品久久久久久久| 亚洲av成人精品一二三区| 狂野欧美激情性bbbbbb| 国产成人精品在线电影| 天美传媒精品一区二区| 久久毛片免费看一区二区三区| 日本vs欧美在线观看视频| 青春草国产在线视频| 天堂中文最新版在线下载| 国产成人av激情在线播放| 国产免费又黄又爽又色| 日本vs欧美在线观看视频| 国产亚洲一区二区精品| 亚洲激情五月婷婷啪啪| 人妻人人澡人人爽人人| 亚洲人成网站在线观看播放| 亚洲综合色惰| 人妻系列 视频| 九九在线视频观看精品| 日韩成人av中文字幕在线观看| 成人综合一区亚洲| 亚洲av男天堂| 久久久久久久国产电影| 国产精品无大码| 国产精品嫩草影院av在线观看| 国产欧美亚洲国产| 欧美日韩视频高清一区二区三区二| av在线app专区| 一区在线观看完整版| 黄色视频在线播放观看不卡| 香蕉丝袜av| 91在线精品国自产拍蜜月| 精品人妻在线不人妻| av片东京热男人的天堂| 国产欧美日韩一区二区三区在线| 一区二区三区精品91| 欧美国产精品va在线观看不卡| www.av在线官网国产| 欧美少妇被猛烈插入视频| 极品少妇高潮喷水抽搐| 看非洲黑人一级黄片| 一本久久精品| 欧美成人精品欧美一级黄| 在线看a的网站| 国产免费视频播放在线视频| 免费看光身美女| 丰满乱子伦码专区| 亚洲精品久久成人aⅴ小说| 日本vs欧美在线观看视频| 婷婷色av中文字幕| 一区二区三区精品91| 久久久久精品性色| 国产成人精品久久久久久| 亚洲成人手机| 精品酒店卫生间| 国产日韩一区二区三区精品不卡| 国产高清三级在线| 七月丁香在线播放| 精品人妻一区二区三区麻豆| 国产一区二区在线观看av| 蜜桃国产av成人99| 国产极品天堂在线| 人妻少妇偷人精品九色| 中文天堂在线官网| 成年人午夜在线观看视频| 国产av精品麻豆| 亚洲 欧美一区二区三区| 少妇被粗大的猛进出69影院 | 国产精品蜜桃在线观看| 欧美日韩视频精品一区| 久久久久国产精品人妻一区二区| 亚洲一码二码三码区别大吗| av不卡在线播放| 国产成人精品在线电影| av卡一久久| 十八禁网站网址无遮挡| 午夜免费鲁丝| 欧美激情国产日韩精品一区| 亚洲情色 制服丝袜| 午夜视频国产福利| 激情五月婷婷亚洲| 午夜免费观看性视频| 国产欧美另类精品又又久久亚洲欧美| 国产亚洲av片在线观看秒播厂| 欧美日韩精品成人综合77777| 日韩一区二区三区影片| 免费高清在线观看视频在线观看| 久久精品夜色国产| 婷婷色麻豆天堂久久| www日本在线高清视频| 黑丝袜美女国产一区| 高清不卡的av网站| av有码第一页| 91在线精品国自产拍蜜月| 午夜福利,免费看| 伦理电影免费视频| 亚洲欧美成人精品一区二区| 国产精品一区二区在线不卡| 日韩成人伦理影院| 狂野欧美激情性xxxx在线观看| 精品视频人人做人人爽| 久久久国产一区二区| 国产精品麻豆人妻色哟哟久久| 菩萨蛮人人尽说江南好唐韦庄| 黄色 视频免费看| 免费人妻精品一区二区三区视频| 建设人人有责人人尽责人人享有的| 日韩一本色道免费dvd| 老司机亚洲免费影院| 中文字幕人妻丝袜制服| 国产精品熟女久久久久浪| 香蕉丝袜av| 欧美日韩国产mv在线观看视频| 成人免费观看视频高清| 王馨瑶露胸无遮挡在线观看| 久久久久国产网址| 亚洲欧美日韩卡通动漫| 久久久久久久久久久免费av| 国产免费一区二区三区四区乱码| 人体艺术视频欧美日本| 婷婷色综合www| 精品国产露脸久久av麻豆| 9191精品国产免费久久| 在线天堂最新版资源| 咕卡用的链子| 国产有黄有色有爽视频| 亚洲欧美清纯卡通| 寂寞人妻少妇视频99o| 国产在视频线精品| 欧美日韩一区二区视频在线观看视频在线| 2021少妇久久久久久久久久久| 日本免费在线观看一区| 在线 av 中文字幕| 边亲边吃奶的免费视频| 日韩 亚洲 欧美在线| 男的添女的下面高潮视频| 亚洲国产精品成人久久小说| 国产永久视频网站| 国产日韩欧美视频二区| 男人操女人黄网站| 中文字幕亚洲精品专区| 草草在线视频免费看| 亚洲图色成人| 亚洲av.av天堂| 涩涩av久久男人的天堂| 免费不卡的大黄色大毛片视频在线观看| 乱码一卡2卡4卡精品| 国产成人免费观看mmmm| 国产高清三级在线| 国产激情久久老熟女| 亚洲丝袜综合中文字幕| 国产亚洲最大av| 另类亚洲欧美激情| 国产成人av激情在线播放| 亚洲在久久综合| 黄色怎么调成土黄色| 日本黄色日本黄色录像| 嫩草影院入口| 免费观看av网站的网址| 曰老女人黄片| 天天操日日干夜夜撸| 97人妻天天添夜夜摸| 亚洲激情五月婷婷啪啪| 激情视频va一区二区三区| 制服诱惑二区| 日韩制服丝袜自拍偷拍| 亚洲美女黄色视频免费看| 亚洲欧美中文字幕日韩二区| 国产精品.久久久| 又粗又硬又长又爽又黄的视频| 免费黄色在线免费观看| 五月开心婷婷网| 少妇的丰满在线观看| 少妇熟女欧美另类| 精品国产露脸久久av麻豆| 精品少妇久久久久久888优播| 一级爰片在线观看| 国产欧美日韩综合在线一区二区| 最近2019中文字幕mv第一页| 久久久久久久久久人人人人人人| 视频中文字幕在线观看| 在线观看免费视频网站a站| 菩萨蛮人人尽说江南好唐韦庄| 啦啦啦啦在线视频资源| 午夜福利网站1000一区二区三区| 亚洲成人手机| 高清视频免费观看一区二区| 2018国产大陆天天弄谢| 亚洲精品一区蜜桃| 欧美精品一区二区免费开放| 欧美日韩av久久| 香蕉丝袜av| 国产成人a∨麻豆精品| 亚洲,欧美,日韩| 亚洲精品久久午夜乱码| 国产免费现黄频在线看| 国内精品宾馆在线| 亚洲精品视频女| 啦啦啦啦在线视频资源| 日本wwww免费看| 一个人免费看片子| 777米奇影视久久| 午夜视频国产福利| 日本爱情动作片www.在线观看| 成人免费观看视频高清| av不卡在线播放| 天天躁夜夜躁狠狠久久av| a级毛色黄片| 如日韩欧美国产精品一区二区三区| 纯流量卡能插随身wifi吗| 精品一区二区免费观看| 精品视频人人做人人爽| 久久人人爽av亚洲精品天堂| 亚洲中文av在线| 国产在视频线精品| 男女啪啪激烈高潮av片| 啦啦啦啦在线视频资源| 亚洲国产av影院在线观看| 在线观看一区二区三区激情| 中文字幕最新亚洲高清| 欧美激情极品国产一区二区三区 | 国产成人精品无人区| 亚洲精品第二区| 国产精品一国产av| 极品少妇高潮喷水抽搐| 夫妻午夜视频| 欧美激情国产日韩精品一区| 国产免费一区二区三区四区乱码| 亚洲精品aⅴ在线观看| 午夜激情av网站| 欧美亚洲 丝袜 人妻 在线| 中文字幕亚洲精品专区| 国产一区亚洲一区在线观看| 国产精品人妻久久久久久| 久久精品久久精品一区二区三区| 美国免费a级毛片| 欧美+日韩+精品| 国产免费视频播放在线视频| 制服丝袜香蕉在线| 韩国av在线不卡| 日韩中字成人| 在线观看人妻少妇| 狂野欧美激情性xxxx在线观看| 亚洲国产日韩一区二区| 欧美人与性动交α欧美软件 | 久久久久久久大尺度免费视频| 亚洲国产精品专区欧美| 久热这里只有精品99| 天美传媒精品一区二区| 中文字幕人妻丝袜制服| 少妇 在线观看| 日本午夜av视频| 免费黄频网站在线观看国产| 搡老乐熟女国产| 精品酒店卫生间| 99久国产av精品国产电影| 亚洲av中文av极速乱| 久久久久久久大尺度免费视频| 国产精品国产三级国产av玫瑰| 久久毛片免费看一区二区三区| av在线播放精品| 精品国产露脸久久av麻豆| 欧美日韩国产mv在线观看视频| 亚洲成色77777| 亚洲欧美清纯卡通| 日产精品乱码卡一卡2卡三| a级毛色黄片| 免费人妻精品一区二区三区视频| 欧美亚洲日本最大视频资源| 最近最新中文字幕免费大全7| 国产精品国产av在线观看| 啦啦啦视频在线资源免费观看| 国产免费福利视频在线观看| 亚洲成人一二三区av| 桃花免费在线播放| 18禁国产床啪视频网站| 精品国产国语对白av| 久久久久久久久久久久大奶| 18禁动态无遮挡网站| 国产欧美另类精品又又久久亚洲欧美| 国产毛片在线视频| 日韩欧美精品免费久久| 丝袜人妻中文字幕| 建设人人有责人人尽责人人享有的| 久久99蜜桃精品久久| 久久精品久久久久久久性| 天天躁夜夜躁狠狠久久av| 水蜜桃什么品种好| 最近中文字幕2019免费版| 卡戴珊不雅视频在线播放| 欧美+日韩+精品| 国产日韩一区二区三区精品不卡| 久久毛片免费看一区二区三区| 久久精品久久精品一区二区三区| 大话2 男鬼变身卡| 如何舔出高潮| 国产亚洲欧美精品永久| www.av在线官网国产| 在线 av 中文字幕| 国产一区二区在线观看日韩| 成年动漫av网址| 亚洲精品av麻豆狂野| 纵有疾风起免费观看全集完整版| 中文字幕亚洲精品专区| 色哟哟·www| 国产精品.久久久| 黄色视频在线播放观看不卡| 视频区图区小说| 久热这里只有精品99| 男男h啪啪无遮挡| 久久免费观看电影| 国产爽快片一区二区三区| 国产亚洲午夜精品一区二区久久| 国产白丝娇喘喷水9色精品| 水蜜桃什么品种好| 精品一区二区三区四区五区乱码 | 国产精品人妻久久久影院| 亚洲在久久综合| 老司机亚洲免费影院| av免费观看日本| 亚洲国产看品久久| 久久97久久精品| 男的添女的下面高潮视频| 久久人人97超碰香蕉20202| 免费av中文字幕在线| 久久久久久久久久久免费av| 亚洲精品第二区| 久久久久久伊人网av| 蜜桃在线观看..| 精品久久久精品久久久| 91aial.com中文字幕在线观看| 亚洲国产毛片av蜜桃av| 久久青草综合色| 成人毛片a级毛片在线播放| 国产爽快片一区二区三区| 一级毛片电影观看| 人体艺术视频欧美日本| 亚洲av综合色区一区| xxx大片免费视频| 九草在线视频观看| 51国产日韩欧美| 精品一区二区三区四区五区乱码 | 日韩av免费高清视频| 五月开心婷婷网| 亚洲精品第二区| 成人国产av品久久久| 久久精品国产亚洲av天美| 91久久精品国产一区二区三区| 亚洲人成77777在线视频| 久久99热6这里只有精品| 大码成人一级视频| 岛国毛片在线播放| 亚洲欧美日韩另类电影网站| 最近最新中文字幕免费大全7| 亚洲成av片中文字幕在线观看 | 成人二区视频| 国产精品免费大片| 大陆偷拍与自拍| 超碰97精品在线观看| 亚洲内射少妇av| 久久久久久久久久久免费av| 三级国产精品片| 爱豆传媒免费全集在线观看| 久久久久国产网址| 99热6这里只有精品| 各种免费的搞黄视频| www.av在线官网国产| 久久人人爽人人片av| 一本色道久久久久久精品综合| 在线天堂中文资源库| 久久久久国产精品人妻一区二区| 最近最新中文字幕免费大全7| 欧美日本中文国产一区发布| 欧美xxxx性猛交bbbb| 色吧在线观看| 久久久久国产网址| 99热全是精品| 国产男人的电影天堂91| 国产精品一区二区在线观看99| 建设人人有责人人尽责人人享有的| 亚洲av福利一区| 久久久久久久久久久免费av| 久久精品久久久久久久性| 九色成人免费人妻av| 最近中文字幕2019免费版| 女人被躁到高潮嗷嗷叫费观| 国产片内射在线| 亚洲欧美一区二区三区黑人 | 亚洲成人av在线免费| 国产精品久久久久久久久免| 激情五月婷婷亚洲|