• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Fully digital intensity modulated LIDAR

    2016-04-18 10:14:19FaioPOLLASTRONEGianCarloCARDARILLIRoertoPIZZOFERRATOMaroRE
    Defence Technology 2016年4期

    Faio POLLASTRONE*,Gian Carlo CARDARILLI,Roerto PIZZOFERRATO,Maro RE

    aDepartment FSN,F(xiàn)USTEC-IEE-ENEA Frascati,Roma,Italy

    bDepartment of Electronics Engineering,University of Rome “Tor Vergata”,Roma,Italy

    cDepartment of Industrial Engineering,University of Rome “Tor Vergata”,Roma,Italy

    Fully digital intensity modulated LIDAR

    Fabio POLLASTRONEa,*,Gian Carlo CARDARILLIb,Roberto PIZZOFERRATOc,Marco REb

    aDepartment FSN,F(xiàn)USTEC-IEE-ENEA Frascati,Roma,Italy

    bDepartment of Electronics Engineering,University of Rome “Tor Vergata”,Roma,Italy

    cDepartment of Industrial Engineering,University of Rome “Tor Vergata”,Roma,Italy

    In several applications,such as collision avoidance,it is necessary to have a system able to rapidly detect the simultaneous presence of different obstacles.In general,these applications do not require high resolution performance,but it is necessary to assure high system reliability also within critical scenarios,as in the case of partially transparent atmosphere or environment in presence of multiple objects (implying multiple echoes having different delay times.)This paper describes the algorithm,the architecture and the implementation of a digital Light Detection and Ranging(LIDAR)system based on a chirped optical carrier.This technique provides some advantages compared to the pulsed approach,primarily the reduction of the peak power of the laser.In the proposed architecture all the algorithms for signal processing are implemented using digital hardware.In this way,some specif i c advantages are obtained:improved detection performance (larger dynamics,range and resolution),capability of detecting multiple obstacles having different echoes amplitude,reduction of the noise effects,reduction of the costs,size and weight of the resulting equipment.The improvement provided by this fully digital solution is potentially useful in different applications such as:collision avoidance systems,3D mapping of environments and,in general,remote sensing systems which need wide distance and dynamics.

    CW-IM LIDAR;Chirp;Laser Obstacle Avoidance

    1.Introduction

    LIDAR based on laser beam scanning can be applied to several detection and ranging f i elds,including obstacle avoidance in aerospace navigation [1]as well as real-time surveillance of restricted areas.For example,LIDAR can be used in port areas security to detect crafts in rapid approach,which are not easily revealed by passive optical systems at night,also considering that RF Radar systems can fail in case of nonconductive or small boats.

    Many laser modulation techniques can be applied,obtaining different measurement ranges and resolutions:

    1)Continuous wave amplitude modulated [2],based on the sinusoidal modulation of the laser beam intensity (submillimetrical resolution,single echo and small distance);

    2)Pulsed LIDAR [3](long distance,multiple echoes);

    3)Pulse compression [4,5](long distance and multiple echoes)

    4)Continuous wave frequency modulated (CW-FM)technique (long distance and multiple echoes)[6,7].

    5)Continuous wave intensity modulated [8],based on the laser beam intensity modulated by a chirped signal.

    The CW-IM-technique is generally implemented by using analog electronic circuits or optical system.Despite its greater operative frequency which can allow a higher resolution,the use of an analog implementation reduces the f l exibility and the robustness of the obtained equipment,and does not enable the application of powerful processing techniques that can improve the performance in presence of multiple echoes with very different amplitudes.On the contrary,a digital approach is able to exploit these techniques,increases the integration and reduces the complexity of the assembling [9].As a consequence,the resulting devices have reduced costs and increased reliability.

    For these reasons during the last years,the authors developed different versions of a fully digital processing system for LIDAR.This system is able to measure the times of f l ight of the optical wave also in presence of multiple echoes.The system has been developed in a collaboration between ENEA and University of Rome “Tor Vergata”.

    All the above versions of the electronic circuits for the LIDAR have been designed and tested;one of these has also been actually applied to an optical laser probe.

    This paper describes the CW-IM algorithm used in the experimental equipment,the architecture of the hardware and f i rmware developed,the test performed and their results.

    The paper is organized as follows:in Section 2 the algorithm is brief l y discussed,while in Section 3 the architecture of the fast prototype is illustrated.Section 4 contains a discussion on the digital implementation of the proposed algorithm.Section 5 describes the experimental results of a f i rst version of the LIDAR electronic system,while Section 6 contains the preliminary electrical test of the second release.The last section contains the conclusions and the possible future activities.

    2.CW-IM algorithm

    CW-IM LIDAR technique is based on linear complex chirp signal

    where fr= Δfreq/T is the increasing rate of chirp frequency,T is the sweep duration and Δfreq=stop_freq-start_freq is the chirp bandwidth.

    The laser beam is modulated with the component

    The echo signal S(t)at the output of the photodiode that receives the lights backscattered from the targets is given by

    S(t)corresponds to RQ(t)delayed by time of fl ight Δt=2·D/C(where D is the target distance and C is the speed of light).The amplitude of the echo ARdepends on the target material,the angle of incidence and the distance.

    For sake of simplicity,in this discussion additional phase shifts in the echo have not been considered;this assumption does not affect the fi nal results.

    The product C( t) = R( t)·S( t )can be expressed as

    where

    The high-frequency terms CIHand CQHare 2 chirps with double chirp rate and different start and stop frequency with respect to R(t).The most of CIHand CQHsignals are removed from the C(t)signal using a complex low-pass f i lter,as shown in Fig.1.The remaining low-frequency terms CILand CQLare 2 sinusoids at frequency2 frΔt ,they depend on the time of fl ight Δt.

    Fig.1.Trend of the signals frequencies during the chirp period.

    The instantaneous frequencies of the previously described signals are shown in Fig.1.

    In case of multiple echoes with different delays Δti,it is possible to know the amplitude ARiof the single echo by analyzing the module of the Fast Fourier Transform (|FFT|)of the(CIL+i CQL)signal.

    3.Architecture of the fast prototyping system

    Two fully digital CW-IM LIDAR electronics have been developed starting from Field Programmable Gate Array(FPGA)fast prototyping system [10].

    The f i rst release (see Fig.2)is based on Stratix II EP2S60 DSP Development Board presenting the following characteristics:

    1)Altera Stratix II EP2S60F1020C4 FPGA;

    2)100 MHz system clock;

    3)Two 12-bit 125 MspsA/D (modelAD9433BSQ)converters used in interleaved mode to obtain a 150 Msps analog to digital conversion;

    4)14 bit 165 Msps D/A converter (model TI DAC904);

    5)An Ethernet MAC/PHY;

    6)A JTAG interface.

    Moreover,the hardware contains a signal conditioning circuitry and an optical interface composed by a laser diode and a photoreceiver.

    4.Implementation of CW-IM LIDAR algorithm on digital hardware

    The proposed algorithm has been implemented through the digital processing of the signals;the main limitations are due to the sampling frequency (Fs)of the A/D converter.If compared with the conventional analog implementations we obtain the following advantages:

    1)Simplif i cation of the system and lower cost due to the absence of critical analog parts;

    2)The digital generation of the quadrature complex chirp signal(with frequency in the range 0-Fs/2)corresponds toa better stability/linearity and f l exibility in comparison with the analog implementations;

    Fig.2.First version of the fully digital CW-IM LIDAR electronic system.Fast prototyping board architecture.

    3)High linearity of the complex product and of the digital low pass band f i lters (FIR);

    4)Small size and very low weight;

    5)Flexibility due to the possibility to reprogram the FPGA(also in real time)by loading new algorithms;

    6)Scalability,with the proposed approach we can take full advantage ofthe technologicaldevelopments; for example A/D speed improvements can be exploited to increase the resolution;

    7)The digital implementation inside the FPGA of the complex chirp R(t)makes it possible to use a reference signal that can be used directly without any A/D conversions.This characteristic permits to use greater wordlengths for the chirp representation,allowing a signif i cant optimization of the algorithm.

    The f i rst implementation uses two A/D converters in interleaving mode for increasing the input sampling frequency (up to 150 Msps).The performance degradation due to sampling jitter and linearity mismatches of the two A/D converters are acceptable in our application.However,methods for correcting these errors are already present in the literature.

    The LIDAR electronic hardware/f i rmware architecture is shown in Fig.3.The f i rmware has been implemented inVHDL by using ALTERA Quartus II Macrofunctions.

    The FPGA f i rmware is composed of the following blocks:

    1)The inter leaving mux that alternatively selects the S1 and S2 signal,outputting the S(t)echo signal@150 Msps;

    2)One Quadrature Chirp Generator that generates the R(t)reference modulation chirp (20 bit resolution).The Quadrature Chirp Generator is composed of a Numerically Controlled Oscillator (NCO)combined with a Ramp_generator.TheRamp_generatoroutputsthe Phase_Increment (proportional to the instantaneous frequency)and the Reset of the NCO and is controlled by the Chirp_Sync.The Chirp_Sync generates the Start_Ch and Stop_Ch signals that command the increase and the reset for the Ramp_Generator;

    3)A Complex Multiplier implementing the product of the echo signal S(t)and the complex modulation signal R(t);

    Fig.3.Hardware/f i rmware for implementation of the algorithm.

    4)A low pass decimator FIR f i lter implemented by using the Altera FIR compiler tool;the low pass decimator FIR is composed of two decimator FIR in cascade and the FIR characteristics are reported as the following:

    F i r s t F I R S a m p l i n g f r e q u e n c y (Fs1) 1 5 0 M H z D e c i m a t i o n -f a c t o r 4 T a p s 5 0 W i n d o w t y p e H a m m i n g -3 d B f r e q u e n c y Fs1× 0 . 0 4 -5 5 d B f r e q u e n c y Fs1× 0 . 1 S e c o n d F I R S a m p l i n g f r e q u e n c y (Fs2) Fs1/ 4 = 3 7 . 5 M H z D e c i m a t i o n f a c t o r 2 T a p s 6 0 W i n d o w t y p e B l a c k m a n -3 d B f r e q u e n c y Fs2× 0 . 1 -6 0 d B f r e q u e n c y Fs2× 0 . 1 8 = 6 . 7 5 M H z

    5)A f l oating point FFT (2048 samples),synchronized with the R(t)chirp modulation start,implemented by using the Altera FFT IP Core.

    A PC,connected as shown in Fig.2,is used to conf i gure the FPGA board and to acquire the elaborated signals (such as the FFT result).The connection PC-FPGA board is realized by using the USB blaster device and the Altera software tools.

    In the following,some considerations about the frequency limitations related to the digital implementation of the detection algorithm are reported.As shown in Fig.1 (see curve R(t)),it is possible to generate and sample signals with instantaneous frequency up to Fs/2=75 MHz.Moreover,aliasing phenomena are possible in the high frequency components CIHand CQHof the product signal C(t).

    The LIDAR resolution can be improved by increasing the sweep bandwidth and the chirp rate fr.For this reason and considering the hardware constraint,in the f i rst version of the LIDAR electronic realization the frequency of R(t)has been swept from 0 MHz to 75 MHz.The low pass FIR decimator(decimation factor=8;cut-off frequency 0.35·Fs/8 < ?·Fs/ decimation_factor)is needed to remove most of the CIHand CQHcomponents.However,being CIHand CQHtwo chirp signals,during the chirp period there are two short time intervals where residual signal are present,not removed by the f i lters (see yellow triangles in Fig.1).The reduction of the FIR cut-off frequency decreases the duration of CIHand CQHresiduals,improving the signal to noise ratio (SNR),but on the other hand reduces the maximum measurable range.

    Taking into account the decimation factor and to avoid discontinuity of the CLcomponents (due to an FFT window longer than the R(t),with the resulting presence of two or more sequencesR(t)inthewindow)thenumberofsamplesfortheFFT windowislimitedto2048.Thechirplasermodulationperiodhas been set to 16,384 samples (corresponding to 109 μs).The characteristics of the used electronic board limit the resolution,because it depends on many parameters (start_freq,stop_freq,sampling frequency Fsetc.).In our f i rst implementation setting the start_freq=0 and stop_freq=Fs/2 we obtain

    Table 1Main parameters related to f i rst fully digital LIDAR electronic developed.

    On the other hand,it is possible to extend the measurement range by increasing the sweep_duration or reducing the decimation_factor,or by using a more sophisticated laser modulation based on phase-shift keying [11].The maximum detectable frequency is limited by the cut-off frequency of the FIR decimation f i lter;in our case,F(xiàn)s× 0.35/(decimation_factor ×0.5)is the available output bandwidth.As a consequence,the theoretical range obtained in the developed system is

    Table 1 summarizes the main parameters related to the f i rst version of the Fully Digital LIDAR system.

    The measurement throughput (? 10kHz)allows low frame rate imaging.

    Table 2 reports the Main f i rmware functions of the CW-IM algorithm.In particular the resource utilization is related to the f i rst version of the LIDAR electronics (FPGA Altera 2S60).

    5.System test

    The system has been tested by using two different approaches:a)by emulating the optical delay with an electrical delay line;b)by using a laboratory optical set up.Moreover,the experimental results (reported below)were compared and found in agreement with preliminary simulation using Matlab and Simulink,

    5.1.Electrical test

    An electrical test has been performed on the f i rst version of the LIDAR electronics in order to verify its behavior in the caseof various types of signals in input to the system.In particular,the electrical characterization of the digital LIDAR system considers different attenuation and delay times for the echo signal.

    Table 2Main f i rmware functions and relative utilization of the FPGA resources (f i rst LIDAR electronics Altera 2S60).

    The experimental set up is composed of a coaxial cable in series with a variable attenuator that sends back the output of the modulation signal RQ(t)to the input S(t)signal (Fig.4). Moreover,a FIFO has been implemented in the FPGA for emulating greater echo delays.

    The test carried out on this f i rst version of the LIDAR electronic prototype demonstrates the correctness of the time delay measured,and the linearity of the echo amplitude.

    Fig.4.Electrical test layout for the f i rst LIDAR electronic prototype.

    Fig.5.Electrical tests of the f i rst LIDAR electronic prototype.|FFT|for different echo attenuation.

    Fig.6.Distance measure obtained with echo signal attenuated by 72 dB.

    In particular,as shown in Figs.5 and 6 it is possible to detect echoes with attenuation up to 72 dB,although in this f i rst embodiment it is not possible to discriminate echoes of very different amplitudes.This is due to the fact that the greater echo,through its residues,introduces a background noise that covers the smaller echo.This problem has been reduced in the second LIDAR electronic (see Section 6).

    The target distance is calculated applying the equation:

    where#sample|FFT|peak represents the bin number (FFT output sample)having the maximum FFT magnitude.The constant dist_offset is due to the hardware component delays(LIDAR electronics,laser,photodetector,cables etc.).

    5.2.Optical test

    A more sophisticated test bed has been developed by including a simplif i ed Optical Laser Probe,in order to test the above implementation.

    In this case the electrical signal RQ(t)has been connected to the modulation input of a 75 mW CW 660 nm semiconductor laser diode (Melles Griot Mod.56RCS008/HS),and S(t)is obtained from the electrical output of a photodiode (Thorlabs Mod.PDA10A-EC)with an optical bandwidth from 200 nm to1000 nm and a RF output bandwidth from DC to 150 MHz.The experimental set-up is shown in the picture of Fig.7.

    Fig.7.Photograph taken during optical tests.

    Fig.8.Optically-measured|FFT|echo distance versus actual target distance.

    Fig.9.Optically-measured FFT Module in a double echo case.

    Fig.8 shows the relation between the measured positions of the obstacle (using FFT magnitude)and the actual target distance;the linearity error is very low in comparison with the theoretical resolution (2 meters).

    Fig.9 shows the output of FFT in the case of presence of two different echoes,the f i rst(15 meters)is related to a transparent glass slide and the second is related to the target (54 meters). Both pulses are easily detectable.

    6.Upgrade of the LIDAR electronics end relative tests

    The CW-IM digital LIDAR electronics has been recently upgraded to a new version with a more performant proto board. It is based on:

    Altera Stratix 3SL150 FPGA (142K logic elements)

    two 14 bit 150 MSPS A/D converters

    two 14 bit 250 MSPS D/A converters

    Considering the increase of the sampling frequency of the A/D converters (overclocked to 165 Msps),the new architecture does not need the interleaving features.Moreover,while the 2 meter distance resolution has been conserved,minor improvements in the algorithm implementation (start_freq,stop_freq,sweep_duration)have been made.In particular,by increasing the out-of-band rejection of the low-pass FIR and the start_freq,and reducing the stop_freq,the CHresiduals have been drastically reduced.

    Fig.10.Electrical tests of the second LIDAR electronic prototype:spectrum vs echo attenuation.

    Fig.11.Electrical test:comparison of the SNR obtained using f i rst and new hardware architecture.

    The result is a decrease of the signal noise f l oor (see Fig.10)and a consequent improvement of the Signal to Noise Ratio(SNR),particularly in the case of high level echo signals (see Fig.11).The reduction of the noise level increases the ability to detect small amplitudes echoes,while the increase of SNR allows the detection of simultaneous electrical echoes having very different amplitudes.

    Fig.11 shows the comparison of the SNR between the f i rst and the new version of the LIDAR electronics.On the graph the SNR is represented in relation to the normalized echo input amplitude.

    In the f i rst version of the LIDAR electronic system the SNR saturates at about 43 dB,while in the new system the SNR increases fairly linearly with the echo amplitude from 35 dB (in the case of input attenuation of 72 dB)up to 117 dB in the case of full scale echo (0 dB attenuation).

    7.Conclusions

    In this paper the digital implementation of a LIDAR based on a CW-IM laser modulation has been presented.If compared with the analog implementation,this approach gives interesting advantages in terms of cost,performance,f l exibility and physical size of the f i nal equipment.The proposed architecture is based on the FFT which allows a very eff i cient implementation of the algorithm.The relation between the different algorithm parameters and the system performance has been analyzed. Moreover,the algorithm has been tested implementing two hardware prototypes.These prototypes have been used for different experiments enabling the evaluation of the performance of the whole equipment.All the results show that this technique is suitable to implement an eff i cient low-cost LIDAR,particularly useful for defense and security applications.The improvements obtained in the second version of LIDAR electronic prototype are particularly interesting in terms of decrease of RNR.Optical tests of the second LIDAR electronic version,connected to the optical laser probe mock-up,are planned.If the improvement of the SNR will be conf i rmed,the LIDAR prototype will be able to recognize multiples echoes having large difference in amplitudes.

    [1]Sabatini R,Richardson MA,Roviaro E.Development and f l ight test of an avionics lidar for helicopter and UAV low-level f l ight.J Aeronaut Aerosp Eng 2013;2:114.doi:10.4172/2168-9792.1000114.

    [2]Pollastrone F, NeriC.Testresults fortriple-modulation radar electronics with improved range disambiguation.Fusion Eng Des 2015;96-97:912-16.doi:10.1016/j.fusengdes.2015.04.056.ISSN 0920-3796.

    [3]Spinhirne JD.Micro pulse lidar.IEEE Trans Geosci Remote Sens 1993;31(1):48-55.doi:10.1109/36.210443.

    [4]Allen C,Gogineni S.A f i ber-optic-based 1550-nm laser radar altimeter with RF pulse compression.In:Geoscience and Remote Sensing Symposium,1999.IGARSS ‘99 Proceedings.IEEE 1999 International,vol.3.1999.p.1740-2,doi:10.1109/IGARSS.1999.772080.

    [5]Allen C,Cobanoglu Y,Chong SK,Gogineni S.Performance of a 1319 nm laser radar using RF pulse compression.In:Geoscience and Remote Sensing Symposium,2001.IGARSS ‘01.IEEE 2001 International,vol.3. 2001.p.997-9,doi:10.1109/IGARSS.2001.976726.

    [6]Gao S,Hui R.Frequency-modulated continuous-wave lidar using I/Q modulator for simplif i ed heterodyne detection.Opt Lett 2012;37:2022-4. doi:10.1364/OL.37.002022.

    [7]Agishev R,Gross B,Moshary F,Gilerson A,Ahmed S.Range-resolved pulsed and CWFM lidars:potential capabilities comparison.Appl Phys B 2006;85:149-62.doi:10.1007/s00340-006-2254-6.

    [8]CampbellJF,LinB,NehrirAR,HarrisonFW,OblandMD. Super-resolution technique for CW lidar using Fourier transform reordering and Richardson-Lucy deconvolution December 15,2014/Vol. 39,No.24/OPTICS LETTERS 6981.

    [9]Cardarilli GC,Del Re A,Nannarelli A,Re M.Residue number system reconf i gurable datapath,Proc.IEEE International Symposium on Circuits and Systems,ISCAS 2002,II-756-II-759 vol.2,2002,doi:10.1109/ ISCAS.2002.1011463.

    [10]Hamblen JO,Hall TS,Michael D.Rapid prototyping of digital systems. SOPC Edition Springer Science;2008.

    [11]Campbell JF,Lin B,Nehrir AR.Advanced sine wave modulation of continuous wave laser system for atmospheric CO2 differential absorption measurements.Appl Opt 2014;53(5).doi:10.1364/AO.53.000816.

    Received 20 November 2015;revised 17 March 2016;accepted 13 April 2016 Available online 28 April 2016

    Peer review under responsibility of China Ordnance Society.

    *Corresponding author.Tel.:+39 06 9400 5535.

    E-mail address:fabio.pollastrone@enea.it(F.POLLASTRONE).

    http://dx.doi.org/10.1016/j.dt.2016.04.002

    2214-9147/? 2016 China Ordnance Society.Production and hosting by Elsevier B.V.All rights reserved.

    ? 2016 China Ordnance Society.Production and hosting by Elsevier B.V.All rights reserved.

    又爽又黄无遮挡网站| 淫妇啪啪啪对白视频| 法律面前人人平等表现在哪些方面| 欧美高清成人免费视频www| 亚洲一区二区三区色噜噜| 97碰自拍视频| 18禁黄网站禁片免费观看直播| 国产精品日韩av在线免费观看| 最近视频中文字幕2019在线8| 噜噜噜噜噜久久久久久91| 91在线精品国自产拍蜜月 | 国产高清三级在线| 小蜜桃在线观看免费完整版高清| 免费观看精品视频网站| 婷婷亚洲欧美| 国产精品香港三级国产av潘金莲| 欧美成人性av电影在线观看| 精品午夜福利视频在线观看一区| 欧美精品啪啪一区二区三区| 一级a爱片免费观看的视频| 亚洲av电影在线进入| 99久久无色码亚洲精品果冻| 成人性生交大片免费视频hd| 一级毛片精品| 国产爱豆传媒在线观看| 国产一区二区在线av高清观看| 国产精华一区二区三区| 久久久久精品国产欧美久久久| 国内精品一区二区在线观看| 每晚都被弄得嗷嗷叫到高潮| 欧美午夜高清在线| 中亚洲国语对白在线视频| 人妻久久中文字幕网| 韩国av一区二区三区四区| 999久久久国产精品视频| 在线免费观看的www视频| 国产成人精品久久二区二区91| 久久久久性生活片| 美女被艹到高潮喷水动态| 精品国产亚洲在线| 国产精品一区二区三区四区久久| 欧美色视频一区免费| 九色国产91popny在线| av天堂中文字幕网| 亚洲美女黄片视频| 一二三四社区在线视频社区8| 99国产综合亚洲精品| 亚洲人成伊人成综合网2020| 亚洲国产日韩欧美精品在线观看 | АⅤ资源中文在线天堂| 国产精华一区二区三区| 久久久久久久久免费视频了| 日本黄大片高清| 在线免费观看的www视频| 在线观看午夜福利视频| 国产人伦9x9x在线观看| 久久精品91蜜桃| 久久久久久久久久黄片| 两性夫妻黄色片| 观看免费一级毛片| 动漫黄色视频在线观看| 亚洲国产欧洲综合997久久,| 熟女人妻精品中文字幕| 中文字幕av在线有码专区| 999久久久国产精品视频| 床上黄色一级片| 后天国语完整版免费观看| 欧美国产日韩亚洲一区| 日韩中文字幕欧美一区二区| 亚洲精品美女久久av网站| 一边摸一边抽搐一进一小说| 亚洲av成人精品一区久久| 亚洲中文字幕日韩| 久久久水蜜桃国产精品网| 精品一区二区三区视频在线 | 999精品在线视频| 中文字幕熟女人妻在线| 精品久久久久久,| 国产熟女xx| 又紧又爽又黄一区二区| 99久久久亚洲精品蜜臀av| 亚洲美女视频黄频| 男女视频在线观看网站免费| 国产成人一区二区三区免费视频网站| 免费一级毛片在线播放高清视频| 每晚都被弄得嗷嗷叫到高潮| 国产三级黄色录像| 日韩有码中文字幕| 91在线观看av| 亚洲成人精品中文字幕电影| 成在线人永久免费视频| 国产成人欧美在线观看| 亚洲av五月六月丁香网| avwww免费| 欧美性猛交╳xxx乱大交人| 欧美日韩一级在线毛片| 9191精品国产免费久久| 日韩欧美 国产精品| 国产高清视频在线观看网站| 熟女人妻精品中文字幕| 在线国产一区二区在线| 午夜免费成人在线视频| 欧美成人性av电影在线观看| 日本三级黄在线观看| 老熟妇乱子伦视频在线观看| 香蕉av资源在线| 99久久无色码亚洲精品果冻| 欧美极品一区二区三区四区| 一级黄色大片毛片| 久久中文看片网| 性色avwww在线观看| 蜜桃久久精品国产亚洲av| 国产毛片a区久久久久| 在线视频色国产色| 久久中文字幕人妻熟女| 欧美日韩亚洲国产一区二区在线观看| 一级黄色大片毛片| 床上黄色一级片| 成人av在线播放网站| 美女被艹到高潮喷水动态| 久久香蕉精品热| 国产精品一及| 熟女人妻精品中文字幕| 欧美日韩国产亚洲二区| 日韩成人在线观看一区二区三区| 母亲3免费完整高清在线观看| 欧美一级毛片孕妇| 变态另类成人亚洲欧美熟女| 国产精品一区二区三区四区久久| av女优亚洲男人天堂 | 最近视频中文字幕2019在线8| 国产精品自产拍在线观看55亚洲| 村上凉子中文字幕在线| 手机成人av网站| 日本撒尿小便嘘嘘汇集6| 激情在线观看视频在线高清| 十八禁人妻一区二区| 亚洲av免费在线观看| www.www免费av| 最近最新中文字幕大全电影3| 国产精品久久久久久久电影 | 这个男人来自地球电影免费观看| 国产探花在线观看一区二区| 神马国产精品三级电影在线观看| 国产高清有码在线观看视频| 最近最新中文字幕大全电影3| 999精品在线视频| 亚洲精品国产精品久久久不卡| 欧美色视频一区免费| 亚洲 欧美一区二区三区| 好男人电影高清在线观看| 亚洲狠狠婷婷综合久久图片| 欧美日韩亚洲国产一区二区在线观看| 精品国产超薄肉色丝袜足j| АⅤ资源中文在线天堂| 国产69精品久久久久777片 | bbb黄色大片| 亚洲中文日韩欧美视频| av国产免费在线观看| 母亲3免费完整高清在线观看| 亚洲人成电影免费在线| 欧美黑人巨大hd| 久久久成人免费电影| 激情在线观看视频在线高清| 9191精品国产免费久久| 久久草成人影院| 狂野欧美激情性xxxx| 国内精品一区二区在线观看| 宅男免费午夜| 国产视频内射| 黑人巨大精品欧美一区二区mp4| 天堂动漫精品| 免费在线观看成人毛片| 欧美日韩精品网址| 麻豆国产97在线/欧美| 99久久国产精品久久久| 国产精品一区二区三区四区免费观看 | 网址你懂的国产日韩在线| 在线永久观看黄色视频| 欧美日韩一级在线毛片| 国内精品一区二区在线观看| 天堂动漫精品| 性欧美人与动物交配| 欧美不卡视频在线免费观看| 亚洲精品色激情综合| 国产美女午夜福利| 亚洲欧美日韩东京热| 99久久精品热视频| 午夜精品久久久久久毛片777| 亚洲av成人一区二区三| 欧美又色又爽又黄视频| 变态另类丝袜制服| 美女高潮的动态| 日韩国内少妇激情av| 久久精品aⅴ一区二区三区四区| 国产三级黄色录像| 成年免费大片在线观看| 国产精品一区二区三区四区免费观看 | 亚洲色图av天堂| 久久精品aⅴ一区二区三区四区| 18禁裸乳无遮挡免费网站照片| 日日夜夜操网爽| 午夜免费成人在线视频| 麻豆av在线久日| 国内精品久久久久精免费| 18禁观看日本| 亚洲aⅴ乱码一区二区在线播放| 国产人伦9x9x在线观看| 人人妻,人人澡人人爽秒播| 两个人视频免费观看高清| 制服人妻中文乱码| 2021天堂中文幕一二区在线观| 日日干狠狠操夜夜爽| 国产又黄又爽又无遮挡在线| 美女大奶头视频| 亚洲五月婷婷丁香| 日本熟妇午夜| 女生性感内裤真人,穿戴方法视频| 欧美成人免费av一区二区三区| 亚洲中文字幕日韩| 国产黄色小视频在线观看| 最近最新中文字幕大全电影3| 午夜免费成人在线视频| 中国美女看黄片| 看黄色毛片网站| 久久亚洲精品不卡| 国内精品久久久久久久电影| 亚洲熟女毛片儿| 听说在线观看完整版免费高清| 欧美中文综合在线视频| 精品人妻1区二区| 亚洲精品久久国产高清桃花| 亚洲专区字幕在线| 天堂√8在线中文| 亚洲精品456在线播放app | 精品无人区乱码1区二区| 精品福利观看| 国产精品av久久久久免费| 99久久成人亚洲精品观看| 此物有八面人人有两片| 国产精华一区二区三区| 又黄又爽又免费观看的视频| 亚洲av电影在线进入| 日本在线视频免费播放| 日韩欧美精品v在线| 日本一二三区视频观看| 又黄又爽又免费观看的视频| 国产精品精品国产色婷婷| 伦理电影免费视频| 97人妻精品一区二区三区麻豆| 午夜精品在线福利| 小说图片视频综合网站| 欧美成人性av电影在线观看| 9191精品国产免费久久| 九色成人免费人妻av| 一卡2卡三卡四卡精品乱码亚洲| 黄色 视频免费看| 欧美zozozo另类| 丁香六月欧美| 97超视频在线观看视频| 精品久久久久久成人av| 亚洲美女黄片视频| 亚洲成人久久爱视频| 亚洲欧美精品综合一区二区三区| 制服丝袜大香蕉在线| 日韩大尺度精品在线看网址| 日韩欧美一区二区三区在线观看| 亚洲精品456在线播放app | 精品日产1卡2卡| 一区二区三区高清视频在线| 久久久久九九精品影院| 国产乱人伦免费视频| 午夜福利免费观看在线| 欧美一级a爱片免费观看看| 国产不卡一卡二| 99久久国产精品久久久| 亚洲成人久久性| 亚洲欧美日韩卡通动漫| 国产午夜精品论理片| 亚洲av免费在线观看| 熟女少妇亚洲综合色aaa.| 久久精品人妻少妇| 精品一区二区三区视频在线 | 日韩欧美一区二区三区在线观看| 成人亚洲精品av一区二区| 久久久久亚洲av毛片大全| 两性夫妻黄色片| 成人高潮视频无遮挡免费网站| 亚洲精品国产精品久久久不卡| av黄色大香蕉| 日本 av在线| 亚洲欧美激情综合另类| 伊人久久大香线蕉亚洲五| 十八禁人妻一区二区| 国产精品乱码一区二三区的特点| 色综合站精品国产| 国产欧美日韩精品一区二区| 深夜精品福利| 天堂影院成人在线观看| 久久精品aⅴ一区二区三区四区| 桃色一区二区三区在线观看| 99国产极品粉嫩在线观看| 18禁裸乳无遮挡免费网站照片| 亚洲欧美日韩东京热| 一个人免费在线观看的高清视频| 日日夜夜操网爽| 亚洲,欧美精品.| 老司机福利观看| 国内少妇人妻偷人精品xxx网站 | 久久国产乱子伦精品免费另类| 亚洲国产色片| 日本黄大片高清| a级毛片在线看网站| 国产伦一二天堂av在线观看| 亚洲性夜色夜夜综合| 国产av一区在线观看免费| 国产精品久久久av美女十八| 色视频www国产| 国产爱豆传媒在线观看| 亚洲成av人片免费观看| 成人特级黄色片久久久久久久| 久久久久久久精品吃奶| 色老头精品视频在线观看| 免费看美女性在线毛片视频| 亚洲国产日韩欧美精品在线观看 | 黄色片一级片一级黄色片| 成年女人看的毛片在线观看| 国产亚洲av嫩草精品影院| 亚洲 欧美一区二区三区| 18禁国产床啪视频网站| 天堂影院成人在线观看| 免费电影在线观看免费观看| 日本在线视频免费播放| 黄色女人牲交| 欧美极品一区二区三区四区| 国产精品香港三级国产av潘金莲| 亚洲第一欧美日韩一区二区三区| 一级a爱片免费观看的视频| x7x7x7水蜜桃| av在线蜜桃| 又大又爽又粗| 国产毛片a区久久久久| 观看美女的网站| 亚洲av成人一区二区三| 听说在线观看完整版免费高清| 国产1区2区3区精品| 精品乱码久久久久久99久播| 久久国产精品人妻蜜桃| 婷婷六月久久综合丁香| 国模一区二区三区四区视频 | 男插女下体视频免费在线播放| 精品福利观看| 一个人免费在线观看电影 | 久久久久久久精品吃奶| 成年版毛片免费区| 少妇裸体淫交视频免费看高清| 中文字幕最新亚洲高清| 久久精品夜夜夜夜夜久久蜜豆| 亚洲精品456在线播放app | 久久久久久久久免费视频了| 丰满的人妻完整版| 久久久久精品国产欧美久久久| 国内揄拍国产精品人妻在线| 欧洲精品卡2卡3卡4卡5卡区| 精品国产美女av久久久久小说| 国产精品久久电影中文字幕| 国产精品久久久久久精品电影| 蜜桃久久精品国产亚洲av| 一区福利在线观看| 丰满人妻熟妇乱又伦精品不卡| 黄色女人牲交| 亚洲国产精品久久男人天堂| 亚洲美女视频黄频| 色尼玛亚洲综合影院| 在线观看一区二区三区| 欧美另类亚洲清纯唯美| 又粗又爽又猛毛片免费看| 午夜激情福利司机影院| av天堂在线播放| 国产日本99.免费观看| 国产极品精品免费视频能看的| 国产成人影院久久av| 亚洲人成网站在线播放欧美日韩| 老汉色av国产亚洲站长工具| 国产1区2区3区精品| 欧美性猛交黑人性爽| 波多野结衣巨乳人妻| 九九热线精品视视频播放| 亚洲成av人片在线播放无| 露出奶头的视频| 国产亚洲精品综合一区在线观看| 性色av乱码一区二区三区2| 老司机深夜福利视频在线观看| 亚洲,欧美精品.| 精品一区二区三区av网在线观看| 久久久水蜜桃国产精品网| 99热这里只有是精品50| 亚洲国产欧洲综合997久久,| 国产激情欧美一区二区| 露出奶头的视频| 一本综合久久免费| 91久久精品国产一区二区成人 | 免费看光身美女| 综合色av麻豆| 亚洲无线观看免费| 91久久精品国产一区二区成人 | 18禁观看日本| 精品一区二区三区四区五区乱码| 亚洲欧美日韩无卡精品| 欧美中文综合在线视频| 88av欧美| 成人一区二区视频在线观看| or卡值多少钱| 老司机深夜福利视频在线观看| 国产成人精品久久二区二区91| 国产精品一区二区精品视频观看| 久久性视频一级片| 久久久久久九九精品二区国产| 非洲黑人性xxxx精品又粗又长| 亚洲美女黄片视频| www.精华液| 18禁国产床啪视频网站| 99久久精品一区二区三区| 最近视频中文字幕2019在线8| 老司机深夜福利视频在线观看| 日韩av在线大香蕉| 日本成人三级电影网站| 在线观看日韩欧美| 2021天堂中文幕一二区在线观| 婷婷丁香在线五月| 他把我摸到了高潮在线观看| 免费在线观看影片大全网站| 国产精品一区二区三区四区免费观看 | 中文在线观看免费www的网站| 免费看a级黄色片| bbb黄色大片| 99久久久亚洲精品蜜臀av| 国产亚洲av嫩草精品影院| 激情在线观看视频在线高清| av在线天堂中文字幕| 啦啦啦韩国在线观看视频| 五月玫瑰六月丁香| 国产高清videossex| 国产野战对白在线观看| 国产亚洲精品久久久com| 亚洲va日本ⅴa欧美va伊人久久| 五月玫瑰六月丁香| 欧美极品一区二区三区四区| 午夜影院日韩av| 久久久色成人| 激情在线观看视频在线高清| 我要搜黄色片| 真人做人爱边吃奶动态| 免费av毛片视频| 欧美另类亚洲清纯唯美| 搡老岳熟女国产| 日本黄色片子视频| 日韩欧美国产一区二区入口| 亚洲色图 男人天堂 中文字幕| 一个人看的www免费观看视频| 一夜夜www| 久久九九热精品免费| 99视频精品全部免费 在线 | 欧美不卡视频在线免费观看| 两个人视频免费观看高清| 亚洲自偷自拍图片 自拍| 俄罗斯特黄特色一大片| 国产欧美日韩精品一区二区| 国产高清视频在线观看网站| 久久午夜综合久久蜜桃| 国产主播在线观看一区二区| 国产精品久久电影中文字幕| 在线观看一区二区三区| 99热这里只有精品一区 | 午夜福利在线观看吧| 日韩精品中文字幕看吧| 一个人免费在线观看电影 | 两个人视频免费观看高清| 免费在线观看视频国产中文字幕亚洲| 天天添夜夜摸| 亚洲欧美日韩卡通动漫| 亚洲无线观看免费| 搡老岳熟女国产| 欧洲精品卡2卡3卡4卡5卡区| 久久欧美精品欧美久久欧美| 欧美色欧美亚洲另类二区| 国产三级在线视频| 美女高潮的动态| 欧美日本亚洲视频在线播放| x7x7x7水蜜桃| 2021天堂中文幕一二区在线观| 国产成人欧美在线观看| 啦啦啦免费观看视频1| 国产精品 欧美亚洲| av国产免费在线观看| 欧美日韩亚洲国产一区二区在线观看| 村上凉子中文字幕在线| 国产精品亚洲av一区麻豆| 久久久久亚洲av毛片大全| 美女 人体艺术 gogo| 1000部很黄的大片| 真人一进一出gif抽搐免费| 国产极品精品免费视频能看的| 久久性视频一级片| 精品国产亚洲在线| 日本一二三区视频观看| 午夜两性在线视频| 久久性视频一级片| 国产一级毛片七仙女欲春2| 一本久久中文字幕| 999久久久精品免费观看国产| 久久久色成人| 国产高清视频在线播放一区| 久久久国产成人免费| 两个人的视频大全免费| 午夜精品久久久久久毛片777| 国内精品美女久久久久久| 麻豆国产av国片精品| 欧美一区二区精品小视频在线| 国产成人aa在线观看| 日韩精品青青久久久久久| 桃色一区二区三区在线观看| 国产精品一及| 香蕉久久夜色| 给我免费播放毛片高清在线观看| 人人妻人人澡欧美一区二区| 最新美女视频免费是黄的| av在线天堂中文字幕| 亚洲人成网站在线播放欧美日韩| 色视频www国产| 99热只有精品国产| 久久精品亚洲精品国产色婷小说| 久久久久九九精品影院| 亚洲成人精品中文字幕电影| 夜夜躁狠狠躁天天躁| а√天堂www在线а√下载| 国产99白浆流出| 欧美黄色淫秽网站| 男女床上黄色一级片免费看| 欧美精品啪啪一区二区三区| 别揉我奶头~嗯~啊~动态视频| 精华霜和精华液先用哪个| 看免费av毛片| 久久久久久久精品吃奶| 亚洲 国产 在线| www.熟女人妻精品国产| 黄色视频,在线免费观看| 成人鲁丝片一二三区免费| 色在线成人网| 国产激情久久老熟女| 国产精品久久久人人做人人爽| 国产综合懂色| 床上黄色一级片| 国产亚洲精品综合一区在线观看| 国产精品精品国产色婷婷| 欧美绝顶高潮抽搐喷水| а√天堂www在线а√下载| h日本视频在线播放| 国产亚洲精品久久久com| 日本免费一区二区三区高清不卡| 久久这里只有精品19| 日韩欧美精品v在线| 亚洲欧美一区二区三区黑人| 精品一区二区三区av网在线观看| 亚洲中文av在线| 又黄又粗又硬又大视频| 母亲3免费完整高清在线观看| 亚洲av五月六月丁香网| 青草久久国产| 国产爱豆传媒在线观看| 免费在线观看亚洲国产| 天天躁狠狠躁夜夜躁狠狠躁| 欧美另类亚洲清纯唯美| 18禁国产床啪视频网站| 中文字幕av在线有码专区| 一夜夜www| 在线观看免费视频日本深夜| 99在线视频只有这里精品首页| 人人妻,人人澡人人爽秒播| 久久精品国产99精品国产亚洲性色| 巨乳人妻的诱惑在线观看| 美女扒开内裤让男人捅视频| 国产免费av片在线观看野外av| 黑人欧美特级aaaaaa片| 波多野结衣高清作品| 久久久久久久久免费视频了| 亚洲av成人av| 看免费av毛片| 亚洲狠狠婷婷综合久久图片| 特级一级黄色大片| www.www免费av| 男人舔女人的私密视频| 成年免费大片在线观看| 少妇人妻一区二区三区视频| 法律面前人人平等表现在哪些方面| 国产免费av片在线观看野外av| 最新美女视频免费是黄的| 哪里可以看免费的av片| 国产成人精品久久二区二区免费| 欧美成人性av电影在线观看| 午夜两性在线视频| 99久久国产精品久久久| 巨乳人妻的诱惑在线观看| 国产又黄又爽又无遮挡在线| 综合色av麻豆| 国产乱人伦免费视频| 久9热在线精品视频| 亚洲美女黄片视频| 国产av一区在线观看免费| 国产午夜精品久久久久久| 国产伦在线观看视频一区| 久久久久国内视频| 悠悠久久av| 久久精品国产99精品国产亚洲性色| 国产欧美日韩一区二区三|