• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Fully digital intensity modulated LIDAR

    2016-04-18 10:14:19FaioPOLLASTRONEGianCarloCARDARILLIRoertoPIZZOFERRATOMaroRE
    Defence Technology 2016年4期

    Faio POLLASTRONE*,Gian Carlo CARDARILLI,Roerto PIZZOFERRATO,Maro RE

    aDepartment FSN,F(xiàn)USTEC-IEE-ENEA Frascati,Roma,Italy

    bDepartment of Electronics Engineering,University of Rome “Tor Vergata”,Roma,Italy

    cDepartment of Industrial Engineering,University of Rome “Tor Vergata”,Roma,Italy

    Fully digital intensity modulated LIDAR

    Fabio POLLASTRONEa,*,Gian Carlo CARDARILLIb,Roberto PIZZOFERRATOc,Marco REb

    aDepartment FSN,F(xiàn)USTEC-IEE-ENEA Frascati,Roma,Italy

    bDepartment of Electronics Engineering,University of Rome “Tor Vergata”,Roma,Italy

    cDepartment of Industrial Engineering,University of Rome “Tor Vergata”,Roma,Italy

    In several applications,such as collision avoidance,it is necessary to have a system able to rapidly detect the simultaneous presence of different obstacles.In general,these applications do not require high resolution performance,but it is necessary to assure high system reliability also within critical scenarios,as in the case of partially transparent atmosphere or environment in presence of multiple objects (implying multiple echoes having different delay times.)This paper describes the algorithm,the architecture and the implementation of a digital Light Detection and Ranging(LIDAR)system based on a chirped optical carrier.This technique provides some advantages compared to the pulsed approach,primarily the reduction of the peak power of the laser.In the proposed architecture all the algorithms for signal processing are implemented using digital hardware.In this way,some specif i c advantages are obtained:improved detection performance (larger dynamics,range and resolution),capability of detecting multiple obstacles having different echoes amplitude,reduction of the noise effects,reduction of the costs,size and weight of the resulting equipment.The improvement provided by this fully digital solution is potentially useful in different applications such as:collision avoidance systems,3D mapping of environments and,in general,remote sensing systems which need wide distance and dynamics.

    CW-IM LIDAR;Chirp;Laser Obstacle Avoidance

    1.Introduction

    LIDAR based on laser beam scanning can be applied to several detection and ranging f i elds,including obstacle avoidance in aerospace navigation [1]as well as real-time surveillance of restricted areas.For example,LIDAR can be used in port areas security to detect crafts in rapid approach,which are not easily revealed by passive optical systems at night,also considering that RF Radar systems can fail in case of nonconductive or small boats.

    Many laser modulation techniques can be applied,obtaining different measurement ranges and resolutions:

    1)Continuous wave amplitude modulated [2],based on the sinusoidal modulation of the laser beam intensity (submillimetrical resolution,single echo and small distance);

    2)Pulsed LIDAR [3](long distance,multiple echoes);

    3)Pulse compression [4,5](long distance and multiple echoes)

    4)Continuous wave frequency modulated (CW-FM)technique (long distance and multiple echoes)[6,7].

    5)Continuous wave intensity modulated [8],based on the laser beam intensity modulated by a chirped signal.

    The CW-IM-technique is generally implemented by using analog electronic circuits or optical system.Despite its greater operative frequency which can allow a higher resolution,the use of an analog implementation reduces the f l exibility and the robustness of the obtained equipment,and does not enable the application of powerful processing techniques that can improve the performance in presence of multiple echoes with very different amplitudes.On the contrary,a digital approach is able to exploit these techniques,increases the integration and reduces the complexity of the assembling [9].As a consequence,the resulting devices have reduced costs and increased reliability.

    For these reasons during the last years,the authors developed different versions of a fully digital processing system for LIDAR.This system is able to measure the times of f l ight of the optical wave also in presence of multiple echoes.The system has been developed in a collaboration between ENEA and University of Rome “Tor Vergata”.

    All the above versions of the electronic circuits for the LIDAR have been designed and tested;one of these has also been actually applied to an optical laser probe.

    This paper describes the CW-IM algorithm used in the experimental equipment,the architecture of the hardware and f i rmware developed,the test performed and their results.

    The paper is organized as follows:in Section 2 the algorithm is brief l y discussed,while in Section 3 the architecture of the fast prototype is illustrated.Section 4 contains a discussion on the digital implementation of the proposed algorithm.Section 5 describes the experimental results of a f i rst version of the LIDAR electronic system,while Section 6 contains the preliminary electrical test of the second release.The last section contains the conclusions and the possible future activities.

    2.CW-IM algorithm

    CW-IM LIDAR technique is based on linear complex chirp signal

    where fr= Δfreq/T is the increasing rate of chirp frequency,T is the sweep duration and Δfreq=stop_freq-start_freq is the chirp bandwidth.

    The laser beam is modulated with the component

    The echo signal S(t)at the output of the photodiode that receives the lights backscattered from the targets is given by

    S(t)corresponds to RQ(t)delayed by time of fl ight Δt=2·D/C(where D is the target distance and C is the speed of light).The amplitude of the echo ARdepends on the target material,the angle of incidence and the distance.

    For sake of simplicity,in this discussion additional phase shifts in the echo have not been considered;this assumption does not affect the fi nal results.

    The product C( t) = R( t)·S( t )can be expressed as

    where

    The high-frequency terms CIHand CQHare 2 chirps with double chirp rate and different start and stop frequency with respect to R(t).The most of CIHand CQHsignals are removed from the C(t)signal using a complex low-pass f i lter,as shown in Fig.1.The remaining low-frequency terms CILand CQLare 2 sinusoids at frequency2 frΔt ,they depend on the time of fl ight Δt.

    Fig.1.Trend of the signals frequencies during the chirp period.

    The instantaneous frequencies of the previously described signals are shown in Fig.1.

    In case of multiple echoes with different delays Δti,it is possible to know the amplitude ARiof the single echo by analyzing the module of the Fast Fourier Transform (|FFT|)of the(CIL+i CQL)signal.

    3.Architecture of the fast prototyping system

    Two fully digital CW-IM LIDAR electronics have been developed starting from Field Programmable Gate Array(FPGA)fast prototyping system [10].

    The f i rst release (see Fig.2)is based on Stratix II EP2S60 DSP Development Board presenting the following characteristics:

    1)Altera Stratix II EP2S60F1020C4 FPGA;

    2)100 MHz system clock;

    3)Two 12-bit 125 MspsA/D (modelAD9433BSQ)converters used in interleaved mode to obtain a 150 Msps analog to digital conversion;

    4)14 bit 165 Msps D/A converter (model TI DAC904);

    5)An Ethernet MAC/PHY;

    6)A JTAG interface.

    Moreover,the hardware contains a signal conditioning circuitry and an optical interface composed by a laser diode and a photoreceiver.

    4.Implementation of CW-IM LIDAR algorithm on digital hardware

    The proposed algorithm has been implemented through the digital processing of the signals;the main limitations are due to the sampling frequency (Fs)of the A/D converter.If compared with the conventional analog implementations we obtain the following advantages:

    1)Simplif i cation of the system and lower cost due to the absence of critical analog parts;

    2)The digital generation of the quadrature complex chirp signal(with frequency in the range 0-Fs/2)corresponds toa better stability/linearity and f l exibility in comparison with the analog implementations;

    Fig.2.First version of the fully digital CW-IM LIDAR electronic system.Fast prototyping board architecture.

    3)High linearity of the complex product and of the digital low pass band f i lters (FIR);

    4)Small size and very low weight;

    5)Flexibility due to the possibility to reprogram the FPGA(also in real time)by loading new algorithms;

    6)Scalability,with the proposed approach we can take full advantage ofthe technologicaldevelopments; for example A/D speed improvements can be exploited to increase the resolution;

    7)The digital implementation inside the FPGA of the complex chirp R(t)makes it possible to use a reference signal that can be used directly without any A/D conversions.This characteristic permits to use greater wordlengths for the chirp representation,allowing a signif i cant optimization of the algorithm.

    The f i rst implementation uses two A/D converters in interleaving mode for increasing the input sampling frequency (up to 150 Msps).The performance degradation due to sampling jitter and linearity mismatches of the two A/D converters are acceptable in our application.However,methods for correcting these errors are already present in the literature.

    The LIDAR electronic hardware/f i rmware architecture is shown in Fig.3.The f i rmware has been implemented inVHDL by using ALTERA Quartus II Macrofunctions.

    The FPGA f i rmware is composed of the following blocks:

    1)The inter leaving mux that alternatively selects the S1 and S2 signal,outputting the S(t)echo signal@150 Msps;

    2)One Quadrature Chirp Generator that generates the R(t)reference modulation chirp (20 bit resolution).The Quadrature Chirp Generator is composed of a Numerically Controlled Oscillator (NCO)combined with a Ramp_generator.TheRamp_generatoroutputsthe Phase_Increment (proportional to the instantaneous frequency)and the Reset of the NCO and is controlled by the Chirp_Sync.The Chirp_Sync generates the Start_Ch and Stop_Ch signals that command the increase and the reset for the Ramp_Generator;

    3)A Complex Multiplier implementing the product of the echo signal S(t)and the complex modulation signal R(t);

    Fig.3.Hardware/f i rmware for implementation of the algorithm.

    4)A low pass decimator FIR f i lter implemented by using the Altera FIR compiler tool;the low pass decimator FIR is composed of two decimator FIR in cascade and the FIR characteristics are reported as the following:

    F i r s t F I R S a m p l i n g f r e q u e n c y (Fs1) 1 5 0 M H z D e c i m a t i o n -f a c t o r 4 T a p s 5 0 W i n d o w t y p e H a m m i n g -3 d B f r e q u e n c y Fs1× 0 . 0 4 -5 5 d B f r e q u e n c y Fs1× 0 . 1 S e c o n d F I R S a m p l i n g f r e q u e n c y (Fs2) Fs1/ 4 = 3 7 . 5 M H z D e c i m a t i o n f a c t o r 2 T a p s 6 0 W i n d o w t y p e B l a c k m a n -3 d B f r e q u e n c y Fs2× 0 . 1 -6 0 d B f r e q u e n c y Fs2× 0 . 1 8 = 6 . 7 5 M H z

    5)A f l oating point FFT (2048 samples),synchronized with the R(t)chirp modulation start,implemented by using the Altera FFT IP Core.

    A PC,connected as shown in Fig.2,is used to conf i gure the FPGA board and to acquire the elaborated signals (such as the FFT result).The connection PC-FPGA board is realized by using the USB blaster device and the Altera software tools.

    In the following,some considerations about the frequency limitations related to the digital implementation of the detection algorithm are reported.As shown in Fig.1 (see curve R(t)),it is possible to generate and sample signals with instantaneous frequency up to Fs/2=75 MHz.Moreover,aliasing phenomena are possible in the high frequency components CIHand CQHof the product signal C(t).

    The LIDAR resolution can be improved by increasing the sweep bandwidth and the chirp rate fr.For this reason and considering the hardware constraint,in the f i rst version of the LIDAR electronic realization the frequency of R(t)has been swept from 0 MHz to 75 MHz.The low pass FIR decimator(decimation factor=8;cut-off frequency 0.35·Fs/8 < ?·Fs/ decimation_factor)is needed to remove most of the CIHand CQHcomponents.However,being CIHand CQHtwo chirp signals,during the chirp period there are two short time intervals where residual signal are present,not removed by the f i lters (see yellow triangles in Fig.1).The reduction of the FIR cut-off frequency decreases the duration of CIHand CQHresiduals,improving the signal to noise ratio (SNR),but on the other hand reduces the maximum measurable range.

    Taking into account the decimation factor and to avoid discontinuity of the CLcomponents (due to an FFT window longer than the R(t),with the resulting presence of two or more sequencesR(t)inthewindow)thenumberofsamplesfortheFFT windowislimitedto2048.Thechirplasermodulationperiodhas been set to 16,384 samples (corresponding to 109 μs).The characteristics of the used electronic board limit the resolution,because it depends on many parameters (start_freq,stop_freq,sampling frequency Fsetc.).In our f i rst implementation setting the start_freq=0 and stop_freq=Fs/2 we obtain

    Table 1Main parameters related to f i rst fully digital LIDAR electronic developed.

    On the other hand,it is possible to extend the measurement range by increasing the sweep_duration or reducing the decimation_factor,or by using a more sophisticated laser modulation based on phase-shift keying [11].The maximum detectable frequency is limited by the cut-off frequency of the FIR decimation f i lter;in our case,F(xiàn)s× 0.35/(decimation_factor ×0.5)is the available output bandwidth.As a consequence,the theoretical range obtained in the developed system is

    Table 1 summarizes the main parameters related to the f i rst version of the Fully Digital LIDAR system.

    The measurement throughput (? 10kHz)allows low frame rate imaging.

    Table 2 reports the Main f i rmware functions of the CW-IM algorithm.In particular the resource utilization is related to the f i rst version of the LIDAR electronics (FPGA Altera 2S60).

    5.System test

    The system has been tested by using two different approaches:a)by emulating the optical delay with an electrical delay line;b)by using a laboratory optical set up.Moreover,the experimental results (reported below)were compared and found in agreement with preliminary simulation using Matlab and Simulink,

    5.1.Electrical test

    An electrical test has been performed on the f i rst version of the LIDAR electronics in order to verify its behavior in the caseof various types of signals in input to the system.In particular,the electrical characterization of the digital LIDAR system considers different attenuation and delay times for the echo signal.

    Table 2Main f i rmware functions and relative utilization of the FPGA resources (f i rst LIDAR electronics Altera 2S60).

    The experimental set up is composed of a coaxial cable in series with a variable attenuator that sends back the output of the modulation signal RQ(t)to the input S(t)signal (Fig.4). Moreover,a FIFO has been implemented in the FPGA for emulating greater echo delays.

    The test carried out on this f i rst version of the LIDAR electronic prototype demonstrates the correctness of the time delay measured,and the linearity of the echo amplitude.

    Fig.4.Electrical test layout for the f i rst LIDAR electronic prototype.

    Fig.5.Electrical tests of the f i rst LIDAR electronic prototype.|FFT|for different echo attenuation.

    Fig.6.Distance measure obtained with echo signal attenuated by 72 dB.

    In particular,as shown in Figs.5 and 6 it is possible to detect echoes with attenuation up to 72 dB,although in this f i rst embodiment it is not possible to discriminate echoes of very different amplitudes.This is due to the fact that the greater echo,through its residues,introduces a background noise that covers the smaller echo.This problem has been reduced in the second LIDAR electronic (see Section 6).

    The target distance is calculated applying the equation:

    where#sample|FFT|peak represents the bin number (FFT output sample)having the maximum FFT magnitude.The constant dist_offset is due to the hardware component delays(LIDAR electronics,laser,photodetector,cables etc.).

    5.2.Optical test

    A more sophisticated test bed has been developed by including a simplif i ed Optical Laser Probe,in order to test the above implementation.

    In this case the electrical signal RQ(t)has been connected to the modulation input of a 75 mW CW 660 nm semiconductor laser diode (Melles Griot Mod.56RCS008/HS),and S(t)is obtained from the electrical output of a photodiode (Thorlabs Mod.PDA10A-EC)with an optical bandwidth from 200 nm to1000 nm and a RF output bandwidth from DC to 150 MHz.The experimental set-up is shown in the picture of Fig.7.

    Fig.7.Photograph taken during optical tests.

    Fig.8.Optically-measured|FFT|echo distance versus actual target distance.

    Fig.9.Optically-measured FFT Module in a double echo case.

    Fig.8 shows the relation between the measured positions of the obstacle (using FFT magnitude)and the actual target distance;the linearity error is very low in comparison with the theoretical resolution (2 meters).

    Fig.9 shows the output of FFT in the case of presence of two different echoes,the f i rst(15 meters)is related to a transparent glass slide and the second is related to the target (54 meters). Both pulses are easily detectable.

    6.Upgrade of the LIDAR electronics end relative tests

    The CW-IM digital LIDAR electronics has been recently upgraded to a new version with a more performant proto board. It is based on:

    Altera Stratix 3SL150 FPGA (142K logic elements)

    two 14 bit 150 MSPS A/D converters

    two 14 bit 250 MSPS D/A converters

    Considering the increase of the sampling frequency of the A/D converters (overclocked to 165 Msps),the new architecture does not need the interleaving features.Moreover,while the 2 meter distance resolution has been conserved,minor improvements in the algorithm implementation (start_freq,stop_freq,sweep_duration)have been made.In particular,by increasing the out-of-band rejection of the low-pass FIR and the start_freq,and reducing the stop_freq,the CHresiduals have been drastically reduced.

    Fig.10.Electrical tests of the second LIDAR electronic prototype:spectrum vs echo attenuation.

    Fig.11.Electrical test:comparison of the SNR obtained using f i rst and new hardware architecture.

    The result is a decrease of the signal noise f l oor (see Fig.10)and a consequent improvement of the Signal to Noise Ratio(SNR),particularly in the case of high level echo signals (see Fig.11).The reduction of the noise level increases the ability to detect small amplitudes echoes,while the increase of SNR allows the detection of simultaneous electrical echoes having very different amplitudes.

    Fig.11 shows the comparison of the SNR between the f i rst and the new version of the LIDAR electronics.On the graph the SNR is represented in relation to the normalized echo input amplitude.

    In the f i rst version of the LIDAR electronic system the SNR saturates at about 43 dB,while in the new system the SNR increases fairly linearly with the echo amplitude from 35 dB (in the case of input attenuation of 72 dB)up to 117 dB in the case of full scale echo (0 dB attenuation).

    7.Conclusions

    In this paper the digital implementation of a LIDAR based on a CW-IM laser modulation has been presented.If compared with the analog implementation,this approach gives interesting advantages in terms of cost,performance,f l exibility and physical size of the f i nal equipment.The proposed architecture is based on the FFT which allows a very eff i cient implementation of the algorithm.The relation between the different algorithm parameters and the system performance has been analyzed. Moreover,the algorithm has been tested implementing two hardware prototypes.These prototypes have been used for different experiments enabling the evaluation of the performance of the whole equipment.All the results show that this technique is suitable to implement an eff i cient low-cost LIDAR,particularly useful for defense and security applications.The improvements obtained in the second version of LIDAR electronic prototype are particularly interesting in terms of decrease of RNR.Optical tests of the second LIDAR electronic version,connected to the optical laser probe mock-up,are planned.If the improvement of the SNR will be conf i rmed,the LIDAR prototype will be able to recognize multiples echoes having large difference in amplitudes.

    [1]Sabatini R,Richardson MA,Roviaro E.Development and f l ight test of an avionics lidar for helicopter and UAV low-level f l ight.J Aeronaut Aerosp Eng 2013;2:114.doi:10.4172/2168-9792.1000114.

    [2]Pollastrone F, NeriC.Testresults fortriple-modulation radar electronics with improved range disambiguation.Fusion Eng Des 2015;96-97:912-16.doi:10.1016/j.fusengdes.2015.04.056.ISSN 0920-3796.

    [3]Spinhirne JD.Micro pulse lidar.IEEE Trans Geosci Remote Sens 1993;31(1):48-55.doi:10.1109/36.210443.

    [4]Allen C,Gogineni S.A f i ber-optic-based 1550-nm laser radar altimeter with RF pulse compression.In:Geoscience and Remote Sensing Symposium,1999.IGARSS ‘99 Proceedings.IEEE 1999 International,vol.3.1999.p.1740-2,doi:10.1109/IGARSS.1999.772080.

    [5]Allen C,Cobanoglu Y,Chong SK,Gogineni S.Performance of a 1319 nm laser radar using RF pulse compression.In:Geoscience and Remote Sensing Symposium,2001.IGARSS ‘01.IEEE 2001 International,vol.3. 2001.p.997-9,doi:10.1109/IGARSS.2001.976726.

    [6]Gao S,Hui R.Frequency-modulated continuous-wave lidar using I/Q modulator for simplif i ed heterodyne detection.Opt Lett 2012;37:2022-4. doi:10.1364/OL.37.002022.

    [7]Agishev R,Gross B,Moshary F,Gilerson A,Ahmed S.Range-resolved pulsed and CWFM lidars:potential capabilities comparison.Appl Phys B 2006;85:149-62.doi:10.1007/s00340-006-2254-6.

    [8]CampbellJF,LinB,NehrirAR,HarrisonFW,OblandMD. Super-resolution technique for CW lidar using Fourier transform reordering and Richardson-Lucy deconvolution December 15,2014/Vol. 39,No.24/OPTICS LETTERS 6981.

    [9]Cardarilli GC,Del Re A,Nannarelli A,Re M.Residue number system reconf i gurable datapath,Proc.IEEE International Symposium on Circuits and Systems,ISCAS 2002,II-756-II-759 vol.2,2002,doi:10.1109/ ISCAS.2002.1011463.

    [10]Hamblen JO,Hall TS,Michael D.Rapid prototyping of digital systems. SOPC Edition Springer Science;2008.

    [11]Campbell JF,Lin B,Nehrir AR.Advanced sine wave modulation of continuous wave laser system for atmospheric CO2 differential absorption measurements.Appl Opt 2014;53(5).doi:10.1364/AO.53.000816.

    Received 20 November 2015;revised 17 March 2016;accepted 13 April 2016 Available online 28 April 2016

    Peer review under responsibility of China Ordnance Society.

    *Corresponding author.Tel.:+39 06 9400 5535.

    E-mail address:fabio.pollastrone@enea.it(F.POLLASTRONE).

    http://dx.doi.org/10.1016/j.dt.2016.04.002

    2214-9147/? 2016 China Ordnance Society.Production and hosting by Elsevier B.V.All rights reserved.

    ? 2016 China Ordnance Society.Production and hosting by Elsevier B.V.All rights reserved.

    日本猛色少妇xxxxx猛交久久| 亚洲人成网站在线观看播放| 亚洲伊人久久精品综合| 性高湖久久久久久久久免费观看| 国产精品嫩草影院av在线观看| 成人国产av品久久久| 又黄又爽又刺激的免费视频.| 欧美bdsm另类| 午夜免费男女啪啪视频观看| 亚洲人与动物交配视频| 人人澡人人妻人| 欧美精品一区二区免费开放| 99精国产麻豆久久婷婷| 亚洲国产精品国产精品| 我要看黄色一级片免费的| 美女主播在线视频| 宅男免费午夜| 成年av动漫网址| 女性被躁到高潮视频| 午夜久久久在线观看| 国语对白做爰xxxⅹ性视频网站| 各种免费的搞黄视频| 黑人猛操日本美女一级片| 国产精品一区二区在线不卡| 国产精品欧美亚洲77777| www.色视频.com| av播播在线观看一区| 亚洲精品视频女| 宅男免费午夜| 性色avwww在线观看| 两个人看的免费小视频| 美女主播在线视频| 成年美女黄网站色视频大全免费| 飞空精品影院首页| 精品99又大又爽又粗少妇毛片| 亚洲欧美中文字幕日韩二区| 黑人欧美特级aaaaaa片| 亚洲综合色网址| 精品一区二区免费观看| 国产精品秋霞免费鲁丝片| 天堂8中文在线网| 韩国av在线不卡| h视频一区二区三区| 亚洲国产精品一区二区三区在线| av又黄又爽大尺度在线免费看| 人妻人人澡人人爽人人| 亚洲欧美色中文字幕在线| 熟女电影av网| 日本猛色少妇xxxxx猛交久久| 男人爽女人下面视频在线观看| 又黄又爽又刺激的免费视频.| 狠狠婷婷综合久久久久久88av| 少妇人妻久久综合中文| 国产精品熟女久久久久浪| 在线观看人妻少妇| 国产女主播在线喷水免费视频网站| 中国三级夫妇交换| 国产精品久久久久久精品电影小说| 天天影视国产精品| 日本黄大片高清| 亚洲av福利一区| 大片免费播放器 马上看| 成年人午夜在线观看视频| 夫妻午夜视频| 日韩三级伦理在线观看| 大码成人一级视频| 全区人妻精品视频| 女人被躁到高潮嗷嗷叫费观| 亚洲人与动物交配视频| 黄色怎么调成土黄色| 中国国产av一级| 1024视频免费在线观看| 91精品国产国语对白视频| 美女国产高潮福利片在线看| 99热这里只有是精品在线观看| 超碰97精品在线观看| 国产欧美日韩一区二区三区在线| 韩国av在线不卡| 天堂8中文在线网| 久久人人爽人人爽人人片va| 中文精品一卡2卡3卡4更新| 午夜福利影视在线免费观看| 久久精品熟女亚洲av麻豆精品| 日本黄大片高清| 免费久久久久久久精品成人欧美视频 | 免费高清在线观看视频在线观看| 观看美女的网站| 热re99久久精品国产66热6| 亚洲性久久影院| 中文欧美无线码| 亚洲综合色网址| 欧美精品亚洲一区二区| 亚洲成av片中文字幕在线观看 | 99热国产这里只有精品6| 校园人妻丝袜中文字幕| 纯流量卡能插随身wifi吗| 亚洲精品美女久久av网站| 久久精品国产自在天天线| 久久青草综合色| 晚上一个人看的免费电影| 亚洲图色成人| 国产欧美亚洲国产| 国产男人的电影天堂91| 五月天丁香电影| 久久国产精品男人的天堂亚洲 | 国产乱来视频区| 久久久久久久久久成人| av福利片在线| 五月天丁香电影| 成人午夜精彩视频在线观看| 亚洲av欧美aⅴ国产| 一级a做视频免费观看| 国产黄色视频一区二区在线观看| 91精品三级在线观看| 精品熟女少妇av免费看| 免费高清在线观看视频在线观看| 亚洲综合色惰| 成人国产av品久久久| 国产精品一国产av| 亚洲第一av免费看| 人妻人人澡人人爽人人| 欧美日韩视频高清一区二区三区二| 亚洲av.av天堂| 久久99精品国语久久久| 男女边摸边吃奶| 国产免费一级a男人的天堂| 国产精品无大码| 亚洲国产精品专区欧美| 精品一区二区免费观看| 国产亚洲午夜精品一区二区久久| 国产极品粉嫩免费观看在线| 丰满迷人的少妇在线观看| 一边摸一边做爽爽视频免费| 精品亚洲乱码少妇综合久久| 亚洲三级黄色毛片| 欧美激情 高清一区二区三区| 午夜老司机福利剧场| 在线精品无人区一区二区三| 日韩一区二区视频免费看| 男女无遮挡免费网站观看| 如何舔出高潮| 成人二区视频| 99热这里只有是精品在线观看| a 毛片基地| 色婷婷久久久亚洲欧美| 亚洲四区av| 国产精品一区www在线观看| 久久人人爽人人片av| 黄网站色视频无遮挡免费观看| 一级黄片播放器| 麻豆乱淫一区二区| 飞空精品影院首页| 欧美 日韩 精品 国产| 久久国产亚洲av麻豆专区| 九色成人免费人妻av| 91精品国产国语对白视频| 国产精品免费大片| 亚洲 欧美一区二区三区| 精品一区二区免费观看| 黑人猛操日本美女一级片| 91精品伊人久久大香线蕉| 久久精品国产综合久久久 | a级毛色黄片| 9热在线视频观看99| 久久久久网色| 亚洲av免费高清在线观看| 国产精品久久久久成人av| 纯流量卡能插随身wifi吗| av.在线天堂| 制服人妻中文乱码| 天天躁夜夜躁狠狠躁躁| 在线精品无人区一区二区三| 国产欧美亚洲国产| videossex国产| 五月天丁香电影| 乱码一卡2卡4卡精品| 午夜福利,免费看| 免费黄频网站在线观看国产| 高清av免费在线| 午夜91福利影院| 在线 av 中文字幕| 精品人妻一区二区三区麻豆| 80岁老熟妇乱子伦牲交| 九九在线视频观看精品| 国产一区二区三区综合在线观看 | 亚洲综合色惰| 免费久久久久久久精品成人欧美视频 | 亚洲av电影在线观看一区二区三区| 18禁动态无遮挡网站| 欧美xxⅹ黑人| 国产精品一区二区在线不卡| tube8黄色片| 婷婷色麻豆天堂久久| 啦啦啦视频在线资源免费观看| 国产xxxxx性猛交| 一级片免费观看大全| 人人妻人人添人人爽欧美一区卜| 久久久a久久爽久久v久久| 亚洲av欧美aⅴ国产| 国产亚洲最大av| 欧美日韩亚洲高清精品| 亚洲av国产av综合av卡| 夜夜骑夜夜射夜夜干| 亚洲精华国产精华液的使用体验| 亚洲国产精品专区欧美| 国产成人欧美| 狠狠婷婷综合久久久久久88av| 国产精品欧美亚洲77777| 晚上一个人看的免费电影| 亚洲一码二码三码区别大吗| 男男h啪啪无遮挡| 亚洲丝袜综合中文字幕| 亚洲色图 男人天堂 中文字幕 | 亚洲精品美女久久av网站| 两个人免费观看高清视频| 久久精品国产亚洲av天美| 人妻系列 视频| 美女视频免费永久观看网站| 国产高清三级在线| 女性生殖器流出的白浆| 久久99一区二区三区| av国产精品久久久久影院| 欧美精品av麻豆av| 一二三四中文在线观看免费高清| 视频中文字幕在线观看| 成人18禁高潮啪啪吃奶动态图| 精品第一国产精品| 在现免费观看毛片| 精品人妻一区二区三区麻豆| 国产在线一区二区三区精| 国产深夜福利视频在线观看| 老女人水多毛片| 青春草视频在线免费观看| 日韩精品免费视频一区二区三区 | 色94色欧美一区二区| 极品人妻少妇av视频| 下体分泌物呈黄色| 久久久久久久久久人人人人人人| 免费大片18禁| 在线观看一区二区三区激情| 精品一区二区免费观看| 久久久久久久大尺度免费视频| 男女免费视频国产| 91精品国产国语对白视频| 国产午夜精品一二区理论片| 女人精品久久久久毛片| 亚洲美女搞黄在线观看| a级毛片在线看网站| 久久精品国产综合久久久 | 久久精品国产综合久久久 | 咕卡用的链子| 国产精品.久久久| 欧美精品av麻豆av| 亚洲第一av免费看| 国产成人免费观看mmmm| 久久99热6这里只有精品| 中文字幕人妻丝袜制服| av国产久精品久网站免费入址| 久久久欧美国产精品| 中国三级夫妇交换| 晚上一个人看的免费电影| 久久久亚洲精品成人影院| 9191精品国产免费久久| 亚洲精品美女久久久久99蜜臀 | 99re6热这里在线精品视频| 国产国拍精品亚洲av在线观看| 久久精品国产亚洲av天美| 国产黄色免费在线视频| 亚洲色图 男人天堂 中文字幕 | 赤兔流量卡办理| 青春草视频在线免费观看| 女人久久www免费人成看片| 久久免费观看电影| 制服人妻中文乱码| 中文字幕亚洲精品专区| 男女边摸边吃奶| 欧美人与性动交α欧美软件 | av国产久精品久网站免费入址| 深夜精品福利| 五月玫瑰六月丁香| 韩国av在线不卡| 黑丝袜美女国产一区| 青青草视频在线视频观看| 久久精品熟女亚洲av麻豆精品| 99热网站在线观看| 自线自在国产av| 制服诱惑二区| 在线观看www视频免费| 一级片免费观看大全| 欧美人与性动交α欧美软件 | 国产 精品1| 99视频精品全部免费 在线| 亚洲精品av麻豆狂野| 亚洲精华国产精华液的使用体验| av一本久久久久| 又黄又爽又刺激的免费视频.| 亚洲欧美成人综合另类久久久| 人妻系列 视频| 22中文网久久字幕| 欧美精品亚洲一区二区| 国产精品 国内视频| 高清欧美精品videossex| 久久女婷五月综合色啪小说| 宅男免费午夜| 一区在线观看完整版| 麻豆乱淫一区二区| 蜜臀久久99精品久久宅男| www日本在线高清视频| 99精国产麻豆久久婷婷| 咕卡用的链子| 精品国产露脸久久av麻豆| av卡一久久| 久久久久精品人妻al黑| 91久久精品国产一区二区三区| 国产亚洲av片在线观看秒播厂| 精品国产乱码久久久久久小说| 激情视频va一区二区三区| 久久99一区二区三区| 午夜91福利影院| 女性生殖器流出的白浆| 热re99久久国产66热| 99re6热这里在线精品视频| 日韩中文字幕视频在线看片| 久久国产精品男人的天堂亚洲 | 丝袜喷水一区| 日韩三级伦理在线观看| 久久国产精品男人的天堂亚洲 | 男人添女人高潮全过程视频| 日本色播在线视频| av电影中文网址| 高清在线视频一区二区三区| 国产1区2区3区精品| 黄网站色视频无遮挡免费观看| 亚洲人成网站在线观看播放| 边亲边吃奶的免费视频| 18禁观看日本| 久久国产精品大桥未久av| 日韩伦理黄色片| 视频中文字幕在线观看| 日韩一区二区视频免费看| 日韩中字成人| 在线 av 中文字幕| 捣出白浆h1v1| 国产黄频视频在线观看| 久久精品久久久久久噜噜老黄| 一级毛片 在线播放| 婷婷成人精品国产| 22中文网久久字幕| 国精品久久久久久国模美| 国产不卡av网站在线观看| 久久这里只有精品19| 九色亚洲精品在线播放| 不卡视频在线观看欧美| 菩萨蛮人人尽说江南好唐韦庄| 大香蕉97超碰在线| 捣出白浆h1v1| 国产高清国产精品国产三级| 国产一区有黄有色的免费视频| 国产熟女欧美一区二区| 亚洲,一卡二卡三卡| 国产不卡av网站在线观看| 啦啦啦在线观看免费高清www| 亚洲国产成人一精品久久久| 国产极品天堂在线| 亚洲欧美一区二区三区国产| 一级毛片黄色毛片免费观看视频| 国产精品一区二区在线不卡| 午夜福利视频在线观看免费| 亚洲激情五月婷婷啪啪| 久久久久久久精品精品| 国产av国产精品国产| 多毛熟女@视频| 男男h啪啪无遮挡| 国产日韩欧美视频二区| 亚洲国产毛片av蜜桃av| 日韩不卡一区二区三区视频在线| 亚洲国产精品成人久久小说| 中国美白少妇内射xxxbb| 91午夜精品亚洲一区二区三区| 99热6这里只有精品| 2022亚洲国产成人精品| 美女福利国产在线| 国产精品久久久久久久久免| 中文字幕人妻熟女乱码| tube8黄色片| 最后的刺客免费高清国语| 伊人亚洲综合成人网| 精品亚洲成国产av| 卡戴珊不雅视频在线播放| 大香蕉久久成人网| 成人午夜精彩视频在线观看| 亚洲四区av| 精品久久蜜臀av无| 亚洲国产日韩一区二区| 女人被躁到高潮嗷嗷叫费观| 精品一区在线观看国产| 狠狠婷婷综合久久久久久88av| 内地一区二区视频在线| 色视频在线一区二区三区| 91国产中文字幕| 精品少妇黑人巨大在线播放| 婷婷成人精品国产| av在线播放精品| 亚洲熟女精品中文字幕| 亚洲,欧美,日韩| 香蕉精品网在线| 少妇猛男粗大的猛烈进出视频| 少妇人妻 视频| 美女脱内裤让男人舔精品视频| 丁香六月天网| www日本在线高清视频| 少妇的逼好多水| 婷婷色麻豆天堂久久| 欧美日本中文国产一区发布| 高清在线视频一区二区三区| 国产精品熟女久久久久浪| 男女边吃奶边做爰视频| 免费人妻精品一区二区三区视频| 2022亚洲国产成人精品| 国产免费又黄又爽又色| 人妻系列 视频| 国产精品久久久久久av不卡| av免费在线看不卡| 男的添女的下面高潮视频| 日韩在线高清观看一区二区三区| 激情视频va一区二区三区| 亚洲欧美日韩卡通动漫| 国产麻豆69| 男女啪啪激烈高潮av片| 人人妻人人爽人人添夜夜欢视频| 纯流量卡能插随身wifi吗| 又黄又粗又硬又大视频| 免费av中文字幕在线| 少妇被粗大猛烈的视频| 日本-黄色视频高清免费观看| 精品视频人人做人人爽| 妹子高潮喷水视频| av卡一久久| 大片电影免费在线观看免费| 国产黄色免费在线视频| 欧美激情 高清一区二区三区| 成年av动漫网址| 色婷婷久久久亚洲欧美| 青春草亚洲视频在线观看| 亚洲熟女精品中文字幕| 久久人妻熟女aⅴ| 欧美+日韩+精品| 精品亚洲成国产av| 国产日韩欧美视频二区| 亚洲婷婷狠狠爱综合网| 黑人猛操日本美女一级片| 免费在线观看黄色视频的| 成年美女黄网站色视频大全免费| 高清视频免费观看一区二区| 在线观看人妻少妇| 国产精品国产三级国产专区5o| 欧美97在线视频| 晚上一个人看的免费电影| 国产黄色视频一区二区在线观看| 国产av国产精品国产| 日日撸夜夜添| 国产片内射在线| 青青草视频在线视频观看| 91久久精品国产一区二区三区| 日日撸夜夜添| 五月伊人婷婷丁香| 亚洲中文av在线| 久久精品aⅴ一区二区三区四区 | 十八禁高潮呻吟视频| 99久久精品国产国产毛片| 久久久久久久精品精品| 国产激情久久老熟女| 亚洲国产av影院在线观看| 在线观看三级黄色| 人妻少妇偷人精品九色| 亚洲精品日本国产第一区| 大香蕉97超碰在线| 午夜激情久久久久久久| 一级毛片 在线播放| 街头女战士在线观看网站| 国产高清不卡午夜福利| 国产成人精品久久久久久| 免费观看a级毛片全部| 视频区图区小说| 青春草亚洲视频在线观看| 人妻系列 视频| 午夜福利,免费看| 波野结衣二区三区在线| 午夜激情久久久久久久| 嫩草影院入口| 中文字幕制服av| 在线天堂中文资源库| av免费观看日本| 日韩成人av中文字幕在线观看| 免费看av在线观看网站| 国产精品不卡视频一区二区| 22中文网久久字幕| 国产精品免费大片| 亚洲国产精品成人久久小说| 成人综合一区亚洲| 欧美精品人与动牲交sv欧美| 国产亚洲欧美精品永久| 国产片特级美女逼逼视频| 国产成人精品一,二区| 如日韩欧美国产精品一区二区三区| 欧美xxxx性猛交bbbb| 边亲边吃奶的免费视频| 亚洲四区av| 久久人妻熟女aⅴ| 国产亚洲精品久久久com| 全区人妻精品视频| 十分钟在线观看高清视频www| 精品久久久精品久久久| 精品人妻一区二区三区麻豆| 国产高清不卡午夜福利| 各种免费的搞黄视频| 国产精品熟女久久久久浪| 成年动漫av网址| 日韩人妻精品一区2区三区| www.熟女人妻精品国产 | 亚洲,欧美,日韩| 人人妻人人澡人人看| 啦啦啦视频在线资源免费观看| 18禁观看日本| 免费观看av网站的网址| 777米奇影视久久| 午夜激情av网站| 久久亚洲国产成人精品v| 观看av在线不卡| 亚洲综合精品二区| 色94色欧美一区二区| 王馨瑶露胸无遮挡在线观看| 欧美最新免费一区二区三区| 精品少妇久久久久久888优播| 成年人免费黄色播放视频| 久久人人爽av亚洲精品天堂| 飞空精品影院首页| 99精国产麻豆久久婷婷| 亚洲综合色网址| 人妻系列 视频| 久久久国产精品麻豆| 午夜av观看不卡| 欧美国产精品一级二级三级| 九色亚洲精品在线播放| 日韩在线高清观看一区二区三区| 国产永久视频网站| 日韩不卡一区二区三区视频在线| 亚洲成人手机| 久久精品久久久久久久性| av视频免费观看在线观看| 日产精品乱码卡一卡2卡三| 亚洲情色 制服丝袜| 狠狠精品人妻久久久久久综合| 国产免费现黄频在线看| 黑人高潮一二区| 欧美xxxx性猛交bbbb| 亚洲成av片中文字幕在线观看 | 婷婷色av中文字幕| 久久久久久久久久久免费av| 一本—道久久a久久精品蜜桃钙片| 欧美人与性动交α欧美软件 | 亚洲色图 男人天堂 中文字幕 | 午夜福利影视在线免费观看| 久久精品aⅴ一区二区三区四区 | 啦啦啦啦在线视频资源| 国产男女超爽视频在线观看| 国国产精品蜜臀av免费| 亚洲国产欧美日韩在线播放| 美女脱内裤让男人舔精品视频| 男女国产视频网站| 亚洲美女搞黄在线观看| 亚洲av日韩在线播放| 日韩成人av中文字幕在线观看| 久久久a久久爽久久v久久| 午夜日本视频在线| 黄色毛片三级朝国网站| 秋霞伦理黄片| 日本wwww免费看| 久久久久国产精品人妻一区二区| 欧美激情极品国产一区二区三区 | 五月天丁香电影| 一本一本久久a久久精品综合妖精 国产伦在线观看视频一区 | 欧美人与性动交α欧美软件 | 搡女人真爽免费视频火全软件| 男人爽女人下面视频在线观看| 国产午夜精品一二区理论片| 日韩制服骚丝袜av| 97人妻天天添夜夜摸| 日韩,欧美,国产一区二区三区| 亚洲综合色网址| 国产乱人偷精品视频| 免费人妻精品一区二区三区视频| 亚洲av免费高清在线观看| 大香蕉久久网| 精品久久国产蜜桃| 涩涩av久久男人的天堂| 男人操女人黄网站| 97人妻天天添夜夜摸| 免费女性裸体啪啪无遮挡网站| 日本av手机在线免费观看| 精品视频人人做人人爽| 草草在线视频免费看| 99久久精品国产国产毛片| 精品人妻熟女毛片av久久网站| 日韩中文字幕视频在线看片| 黄色 视频免费看| 美女大奶头黄色视频| 亚洲高清免费不卡视频| 亚洲精品一二三| 亚洲综合色网址| 国产乱人偷精品视频| 最黄视频免费看| a级毛色黄片| 在线看a的网站| 卡戴珊不雅视频在线播放|