• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Transfer alignment of shipborne aircraft with large misalignment based on rotation vector error model

    2016-04-15 03:19:10WANGZhanqingLILihuaLIUXinZHANGYanshun
    關(guān)鍵詞:無跡快速性平方根

    WANG Zhan-qing, LI Li-hua, LIU Xin, ZHANG Yan-shun

    (1. School of Automation, Beijing Institution of Technology, Beijing 100081, China; 2. Detection Guidance and Control Technology, Faculty of Aerospace Engineering, Shenyang Aerospace University, Shenyang 110136, China; 3. School of Instrumentation and Optoelectronic Engineering, Beihang University, Beijing 100191, China )

    Transfer alignment of shipborne aircraft with large misalignment based on rotation vector error model

    WANG Zhan-qing1, LI Li-hua1, LIU Xin2, ZHANG Yan-shun3

    (1. School of Automation, Beijing Institution of Technology, Beijing 100081, China; 2. Detection Guidance and Control Technology, Faculty of Aerospace Engineering, Shenyang Aerospace University, Shenyang 110136, China; 3. School of Instrumentation and Optoelectronic Engineering, Beihang University, Beijing 100191, China )

    To realize the rapid alignment of the shipborne aircrafts with large initial heading error, a rotation vector error (RVE) model is deduced. The velocity matching and the velocity plus angular rate matching methods are respectively applied to implement the transfer alignment algorithm. In view of the stability and rapidity of nonlinear filter, a square-root unscented Kalman filter is used to estimate the attitude misalignment. Simulation results shows that the rotation vector error model has higher accuracy compared with the nonlinear phi angle model, and by using the velocity plus angular rate matching method, the transfer alignment of shipborne aircraft inertial navigation system can be accomplished in 50 s, and the horizontal and heading precisions are within 20″ and 1′, respectively. These show that the proposed algorithm can meet the rapidity and accuracy requirements of the transfer alignment.

    transfer alignment; shipborne aircraft; rotation vector error model; square-root UKF

    The shipborne aircrafts’ viability and the shooting percentage of airborne missile are largely determined by the initial alignment of inertial navigation system in shipborne aircraft, thus the alignment should be accomplished accurately and quickly. There are two fundamental types of alignment process: self-alignment, using gyro compassing techniques, and the alignment of a slave inertial navigation system (SINS) with respect to a master inertial navigation system (MINS)-transfer alignment[1]. Due to the influence of complex marine environment and other interference factors, self-alignment can hardly achieve an acceptable accuracy. In this case, the transfer alignment (TA) is normally used to solve the problem[2-4].

    The linearized INS error model has been addressed in numerous papers over the last decades. These models can be classified into the Psi-angle, the Phi-angle, equivalent tilt, or additive quaternion error models according to the attitude error states[5]. However, the random position of shipborne aircraft on the carrier would lead to large misalignment between the MINS and SINS. These linear error models can hardly accurately describe the system error propagation properties in the case with large misalignment errors. SUN Changyue proposed a velocity and attitude error propagation model based on the nonlinear phi angle to deal with large initial attitude errors[6]. Xiong Zhilan deduced the multiplicative quaternion and the additive quaternion based nonlinear error models in rapid transfer alignment[7]. However, there are still some defects existing in these large misalignment models, such as singularity in phi angle model[8], large computation costs in quaternion model.

    The Extended Kalman Filter (EKF)[9]and Unscented Kalman Filter (UKF)[10]are the most widely used methods for state estimation of nonlinear models. EKF, based upon the principle of linearizing the process and observation models using Taylor series expansions, exist some shortcomings---the difficulties in determining the Jacobians, errors introduced by linearization. To overcome limitations in the EKF, UKF is proposed, which uses the unscented transformation to approximate the probability distribution by a set of deterministically chosen sample points (sigma points), thus avoids the need to use Jacobians in the algorithm. A major drawback of the UKF is its instability due to the numerical calculation error. The covariance matrices may lose their positive semi-definiteness during the filtering procedure[11].

    Based on the above considerations, in this paper we proposed a nonlinear model for the shipborne aircraft system with large misalignment. This alignment method used the differences of velocities and the angular rates between MINS and SINS as the measurements. Furthermore, square-root unscented Kalman filter (SRUKF) is used. Compared with UKF, SRUKF can avoid the error covariance matrix losing its non-negative definite and symmetry[12]. In the following sections, simulations are made under the peaceful and medium sea conditions respectively with various kinds of carrier linear motions.

    1 State dynamic model for transfer alignment

    The coordinates used in the paper are defined as: earth-centered inertial frame (i), earth-centered earthfixed frame (e), navigation frame (n) which aligned with the directions of east, north and up, calculated navigation frame (n′), body frame of master INS (m), body frame of slave INS (s).

    1.1 Rotation vector error model

    To get the RVE model for the shipborne aircraft system with large misalignment, we need first to introduce some variables as following.

    ΔΦn=[Δφ,Δφ,Δφ]T: Rotation vector error (RVE) between the SINS’s true navigation frame (n) and calculated navigation frame (n′), whereΔφE, ΔφNandΔφUare the components of RVE in E, N and U directions.

    Where

    The relationship between RVE and AQE is derived as

    Substituting (1), (2) into (3), we get

    Where

    Multiplying both sides of (4) byYT, as YTQsn′=0,YTY=0, so

    Differentiating both sides of (6),

    Where L, M are represented by

    Inserting (4), (8), (11)-(13) into (6), we can get that

    Where

    1.2 Velocity error model

    Without taking any errors into account, the ideal velocity differential equation of SINS can be expressed as:

    Here ?sis the accelerometer bias in SINS;δωand δωare mainly affected by the positioning error on which the SINS misalignment has little influence, so they can be ignored. Omitting the second order error terms results in the velocity error differential equation (19), we can get that

    Where

    Here Rris defined as

    1.3 Measurement model

    As for velocity matching, the measurement equation is:

    As for angular rate matching, the measurement equation is derived as follows:

    2 Design of transfer alignment filter

    According to the formulas derived above, the filter can be designed as:

    Where Xis the system state vector,fis the system nonlinear function, Wis the system process noise vector, z is the measurement vector, his the measurement function, Vis the measurement noise vector. Here the velocity error, rotation vector error, constant biases of accelerometers and gyros are chosen as the states to be estimated, which are described as:

    Furthermore, the system nonlinear function and the measurement function of the transfer alignment filter are:

    Since there are rounding errors existing in numerical calculation of UKF, it will damage the estimation error covariance matrix’s non-negative definite and symmetry, and therefore it will affect convergence stability of the filter. To deal with this problem, squareroot unscented Kalman filter is used in the TA to guarantee numerical stability and positive semi-definiteness of the state covariance. SRUKF forms of the UKF make use of three powerful linear algebra techniques, QR decomposition, Cholesky factor updating and efficient least squares. The SR-UKF implementation is as follows and uses the following variable definitions:

    1) The constant α determines the spread of the sigma points aroundand is usually set as: 0.0001≤α≤1;

    2) β is used to incorporate prior knowledge of the distribution of x, hereβ=2;

    Sigma point calculation and time update:

    Measurement update equations:

    State update equations:

    3 Simulation

    3.1 Simulation conditions

    To simulate the estimation of the misalignment in shipboard environment, the following simulation condition has been setup. It is assumed that the lever arm effect and flexure deformation have already been compensated. The MINS is of high accuracy and considered to have no errors. Assume that the ship sways around the pitch, roll, yaw axis with sinusoidal motion just as formula (36),

    Where,θm,γmandψmare the amplitudes of the sway. ωi=2π/Ti(i=p,r,y), here Tiis the period of sways. The values of the corresponding variables are defined in Table 1[13]. The linear motion and error parameters of the sensors are respectively defined in Table 2 and Table 3. Here the sampling period is 0.005 s and the filtering period is 0.01 s.

    Tab.1 Sea condition

    Tab.2 Linear motion

    Tab.3 Sensor error elements of the SINS

    Suppose the initial misalignment errors on E, N, and U are 0.5°, 0.5° and 10°, respectively.

    3.2 Simulation results

    The strapdown INS velocity and attitude error propagation model based on the phi angle approach is the most common way to deal with large initial attitude errors[4]. Here, we compare the RVE model with the nonlinear phi angle (NPA) model proposed in [6]. As the horizontal misalignment angles are small, they can be estimated quickly and accurately with the two models. Table 4 shows the azimuth misalignment estimation errors in different initial azimuth misalignment conditions. It can be seen that the large initial azimuth misalignment is estimated more accurately by using the RVE model than the NPA model. So the RVE model is a better choice to finish the TA of shipborne aircraft.

    Tab.4 Azimuth misalignment angle estimation errors in different initial misalignment conditions

    As the calculation of Jacobian matrices based on the rotation vector error model is very complicated and the counting amount is huge, here we do not consider about the EKF. Fig.1 shows the estimation error with large misalignment by using UKF method and SRUKF method.

    Fig.1 Estimation errors of the misalignment angles based on UKF and SRUKF

    It can be seen that the two nonlinear filters both can achieve stable state at 10 s. And the alignment accuracy based on the two methods is nearly the same. However, the numerical stability can be improved and also thepositive semi-definiteness of covariance matrices can usually be guaranteed with the SRUKF. Furthermore, the SRUKF can meet the requirement of accurate and rapid initial alignment of shipborne aircrafts, and also guarantee the numerical stability. So the SRUKF is better than that of UKF in the transfer alignment.

    Fig.2-Fig.7 shows the standard deviation estimation (SDE) of the rotation vector errors in different conditions. Tab.5 makes a list of the average standard deviation estimation of rotation vector errors in 30 times simulation.

    Fig.2 Standard deviation estimation for rotation vector error of still ship in medium sea condition with velocity matching

    Fig.3 Standard deviation estimation for rotation vector error of constant ship in medium sea condition with velocity matching

    Fig.4 Standard deviation estimation for rotation vector error of accelerating ship in medium sea condition with velocity matching

    Fig.5 Standard deviation estimation for rotation vector error of constant ship in medium sea condition with velocity plus angular rate matching

    Fig.6 Standard deviation estimation for rotation vector error of accelerating ship in medium sea condition with velocity plus angular rate matching

    Fig.7 Standard deviation estimation for rotation vector error of constant ship in peaceful sea condition with velocity plus angular rate matching

    As can be seen in Fig.2 to Fig.4 (corresponding to Tab.5-group I), horizontal rotation vector error with velocity matching can be aligned quickly and accurately. However, the vertical component converges slowly which takes approximately 200 s to achieve the desired accuracy (0.0527°) in the still and constant speed motion. However, the vertical component can be converged faster in accelerative motion as shown in Fig.4 (corresponding to Tab.5-group I-column C). It can be seen that when the ship suddenly accelerates at 20 s, the azimuth misalignment angle is converged in 5 s with the SDE to be 0.0306°. This is because that the maneuver of the ship in a short time improves the observability of the azimuth misalignment angle.

    From Fig.5 to Fig.7 (corresponding to Tab.5-group II), it shows that components in three directions can rapidly converge to a high precision with the velocity and angular rate matching. Comparing Fig.5 (corresponding to Tab.5-group II-column A) with Fig.7 (corresponding to Tab.5-group II-column C), we can get that higher accuracy is attainable under more violent swing condition. That is because the observed angular rate is small in the peaceful sea and it will largely affected by the gyro drifts. As a result, the observability of the azimuth misalignment angle will be deduced. The comparison of Tab.5-group I and II shows that the velocity and angular rate matching method is better than that of velocity matching, and can meet the TA requirement of rapidity and accuracy.

    Tab.5 Average standard deviation estimation for rotation vector errors (50 s)

    4 Conclusion

    To deal with the large misalignment of shipborne aircraft on the carrier, rotation vector error -based nonlinear error equation, measurement model and SRUKF are introduced. Digital simulations are implemented to compare the estimation effect of RVE model with SRUKF under the different sea condition and linear motions. Results demonstrate that velocity and angular rate matching with acceleration motion can achieve the highest alignment accuracy within 10 s. Furthermore, the rotation vector error model has higher accuracy in large heading error estimation than the nonlinear phi angle model. Therefore, in the practical applications, this method can be chosen to complete the TA of shipborne aircrafts’ INS.

    [1] Titterton D H, Weston J L. Strapdown inertial navigation technology[C]//2nd edition. USA: AIAA, 2004: 277-301.

    [2] Wang Yong-jun, Xu Jing-shuo, Wang Xiao-fei. Improved rapid transfer alignment method for SINS of carrier plane [J]. Journal of Chinese Inertial Technology, 2014, 22(1): 45-50.

    [3] Yang Gong-liu, Wang Li-fen, Yuan Er-kai. Rapid transfer alignment of lager misalignment angle for carrier aircrafts [J]. Journal of Chinese Inertial Technology, 2014, 22(5): 597-600.

    [4] Lu Yuan, Cheng Xiang-hong. Random misalignment and lever arm vector online estimation in shipborne aircraft transfer alignment[J]. Measurement, 2014: 756-764.

    [5] Mao Yu-liang, Chen Jia-bin. Analysis of attitude error models of strapdown inertial navigation system[J]. Journal of Chinese Inertial Technology, 2013, 21(2): 182-185.

    [6] Sun Chang-yue, Deng Zheng-long. Alignment of shipborne weapon INS with large initial azimuth uncertainty[J]. Journal of Chinese Inertial Technology, 2008, 16(5): 534-542.

    [7] Xiong Zhi-lan, Hao Yan-ling, Sun Feng. Rapid matching alignment algorithm of inertial navigation system based on quaternion[J]. Journal of Harbin Engineering University, 2008, 29 (1): 28-34.

    [8] Li Wei, Wang Jin-ling. Effective adaptive kalman filter for MEMS-IMU/Magnetometers integrated attitude and heading reference systems[J]. The Journal of Navigation, 2013, 66: 99-113.

    [9] Fang Jiang-cheng, Yang Sheng. Study on innovation adaptive EKF for in-flight alignment of airborne POS[J]. IEEE Transaction on Instrumentation and Measurement, 2011, 60(4): 1378-1388.

    [10] Li Jing, Song Ning-fang. Fuzzy adaptive strong trcking scaled unscented kalman fiter for initial alignment of large misalignment angles[J]. Review of Science Instruments, 2016, 87(7): 075118.

    [11] Sun Jin, Xu Xiao-Su, Liu Yi-Ting. Initial alignment of large azimuth misalignment angles in SINS based on adaptive UPF[J]. Sensors, 2015, 15: 21807-21823.

    [12] JaeHyok K, Mao Xu-chu, Li Shao-yuan. BDS/GPS dual systems positioning based on the modified SR-UKF algorithm[J]. Sensors, 2016, 16: 635.

    [13] Liu Xin, Wang Bo, Deng Zhi-hong. Rapid alignment method of INS with large initial azimuth uncertainty under complex dynamic disturbances[C]//Proceeding of the 2012 UKACC International Conference on Control. Cardiff UK, 2012: 1070-1075.

    基于旋轉(zhuǎn)矢量誤差模型的艦載機(jī)大失準(zhǔn)角傳遞對(duì)準(zhǔn)技術(shù)

    汪湛清1,李麗華1,劉 昕2,張延順3

    (1. 北京理工大學(xué) 自動(dòng)化學(xué)院,北京 100081;2. 沈陽航空航天大學(xué) 航空航天學(xué)部 探測制導(dǎo)與控制技術(shù)實(shí)驗(yàn)室,沈陽 110136;3. 北京航空航天大學(xué) 儀器科學(xué)與光電工程學(xué)院,北京 100191)

    為實(shí)現(xiàn)艦載機(jī)大方位失準(zhǔn)角條件下的快速傳遞對(duì)準(zhǔn),提出采用旋轉(zhuǎn)矢量誤差模型。分別推導(dǎo)了速度匹配和速度加角速度匹配的量測模型。為解決非線性濾波器的穩(wěn)定性和快速性,提出采用平方根無跡卡爾曼濾波SRUKF來估計(jì)失準(zhǔn)角。仿真結(jié)果表明,旋轉(zhuǎn)矢量誤差模型相對(duì)于非線性的歐拉角誤差模型有更高的估計(jì)精度。在海況引起的搖擺運(yùn)動(dòng)下,運(yùn)用速度加角速度匹配方法可以在50 s內(nèi)完成對(duì)準(zhǔn),此時(shí)水平精度達(dá)到20″以內(nèi),航向精度達(dá)到1′以內(nèi)。由此表明所提出的算法可以滿足艦載機(jī)傳遞對(duì)準(zhǔn)快速性和精確性的要求。

    傳遞對(duì)準(zhǔn);艦載機(jī);旋轉(zhuǎn)矢量誤差模型;平方根無跡卡爾曼濾波

    U666.1

    :A

    2016-09-13;

    :2016-11-26

    “十二五”裝備預(yù)研項(xiàng)目(51309040604)

    汪湛清(1968—),女,高級(jí)工程師,從事嵌入式系統(tǒng),組合導(dǎo)航與智能導(dǎo)航研究。E-mail: wangzq@bit.edu.cn

    1005-6734(2016)06-0723-07

    10.13695/j.cnki.12-1222/o3.2016.06.005

    猜你喜歡
    無跡快速性平方根
    小小宋慈大智慧·無形無跡的證據(jù)
    一種提升三浮陀螺標(biāo)定快速性的磁懸浮結(jié)構(gòu)優(yōu)化設(shè)計(jì)
    “平方根”學(xué)習(xí)法升級(jí)版
    平方根易錯(cuò)點(diǎn)警示
    無跡卡爾曼濾波在電線積冰觀測數(shù)據(jù)處理中的應(yīng)用
    幫你學(xué)習(xí)平方根
    如何學(xué)好平方根
    基于無跡卡爾曼濾波的行波波頭辨識(shí)
    應(yīng)用RB無跡卡爾曼濾波組合導(dǎo)航提高GPS重獲信號(hào)后的導(dǎo)航精度
    基于遺傳算法的三體船快速性仿真分析
    人妻人人澡人人爽人人| 一区二区三区免费毛片| 精品久久久久久电影网| 国产免费现黄频在线看| 亚洲第一av免费看| 一级黄片播放器| 一级二级三级毛片免费看| 日韩伦理黄色片| 永久免费av网站大全| 蜜桃在线观看..| 韩国av在线不卡| 免费观看性生交大片5| 国产极品粉嫩免费观看在线 | 极品人妻少妇av视频| 国产熟女欧美一区二区| 精品人妻在线不人妻| 国产精品久久久久久精品古装| 啦啦啦视频在线资源免费观看| 国产成人免费观看mmmm| 成人毛片a级毛片在线播放| av视频免费观看在线观看| 亚洲av综合色区一区| 美女福利国产在线| 少妇人妻久久综合中文| 99国产综合亚洲精品| 超碰97精品在线观看| 亚洲国产av新网站| 纵有疾风起免费观看全集完整版| 免费看不卡的av| 久久久久久人妻| 国产精品久久久久久精品电影小说| 久久久精品94久久精品| 亚洲美女黄色视频免费看| 黄色配什么色好看| 91成人精品电影| 麻豆精品久久久久久蜜桃| 久久99热这里只频精品6学生| 日韩大片免费观看网站| 我的老师免费观看完整版| 亚洲丝袜综合中文字幕| 亚洲图色成人| 国产精品久久久久久精品电影小说| 一级二级三级毛片免费看| 亚洲av成人精品一二三区| 亚洲欧美一区二区三区黑人 | 欧美bdsm另类| 日本黄大片高清| 国产探花极品一区二区| 国产高清三级在线| 青春草国产在线视频| 中文字幕精品免费在线观看视频 | 精品一区二区免费观看| 母亲3免费完整高清在线观看 | 欧美三级亚洲精品| 国产精品人妻久久久久久| av在线老鸭窝| 亚洲精品国产av蜜桃| 在现免费观看毛片| 日日爽夜夜爽网站| a级毛片免费高清观看在线播放| av福利片在线| 亚洲精品日韩在线中文字幕| 久久精品人人爽人人爽视色| 国产精品不卡视频一区二区| 亚洲精品一二三| 国产精品人妻久久久久久| 中国美白少妇内射xxxbb| 人人妻人人澡人人爽人人夜夜| 伦精品一区二区三区| 如日韩欧美国产精品一区二区三区 | 亚洲av欧美aⅴ国产| 久久精品熟女亚洲av麻豆精品| 日韩欧美一区视频在线观看| 午夜免费观看性视频| 久热这里只有精品99| 成年美女黄网站色视频大全免费 | 性色av一级| 午夜视频国产福利| 最近中文字幕2019免费版| 亚洲成色77777| 九草在线视频观看| 亚洲国产日韩一区二区| 久久精品国产亚洲av涩爱| 国产精品一区二区三区四区免费观看| 国产成人精品在线电影| 久久精品人人爽人人爽视色| 亚洲av成人精品一二三区| 天堂8中文在线网| a级毛片黄视频| 中文字幕人妻熟人妻熟丝袜美| 久久精品国产亚洲av涩爱| 国产极品天堂在线| 国产日韩一区二区三区精品不卡 | 美女中出高潮动态图| 99久久精品一区二区三区| 亚洲人成网站在线观看播放| 欧美变态另类bdsm刘玥| 赤兔流量卡办理| 国产在线视频一区二区| 中文字幕人妻熟人妻熟丝袜美| 又黄又爽又刺激的免费视频.| videosex国产| 免费观看a级毛片全部| 制服人妻中文乱码| 欧美丝袜亚洲另类| 免费看光身美女| 日产精品乱码卡一卡2卡三| 2018国产大陆天天弄谢| av电影中文网址| 91精品国产九色| 亚洲不卡免费看| videos熟女内射| 91精品一卡2卡3卡4卡| 日本免费在线观看一区| 国产成人91sexporn| 久久久久人妻精品一区果冻| 国产精品熟女久久久久浪| 亚洲国产精品国产精品| 久久女婷五月综合色啪小说| 亚洲av成人精品一二三区| 成人18禁高潮啪啪吃奶动态图 | 简卡轻食公司| 一级爰片在线观看| 高清午夜精品一区二区三区| 久久久久久伊人网av| 亚洲色图综合在线观看| 欧美精品高潮呻吟av久久| 少妇高潮的动态图| 欧美人与性动交α欧美精品济南到 | 亚洲精品日韩av片在线观看| 久久影院123| 18禁在线播放成人免费| 久久午夜福利片| 香蕉精品网在线| 国产午夜精品一二区理论片| 亚洲av欧美aⅴ国产| 国产精品国产三级国产av玫瑰| 亚洲情色 制服丝袜| 亚洲国产色片| 久久久精品免费免费高清| 成人亚洲精品一区在线观看| 国产熟女欧美一区二区| 国产高清不卡午夜福利| 插逼视频在线观看| 成年美女黄网站色视频大全免费 | 免费播放大片免费观看视频在线观看| a级毛片在线看网站| 成人毛片a级毛片在线播放| 国产精品成人在线| 97在线视频观看| av不卡在线播放| 免费黄频网站在线观看国产| 免费大片黄手机在线观看| 国产毛片在线视频| 日韩成人av中文字幕在线观看| 亚洲情色 制服丝袜| 国产伦精品一区二区三区视频9| 美女国产视频在线观看| 多毛熟女@视频| 中文字幕av电影在线播放| 中文乱码字字幕精品一区二区三区| 伊人久久国产一区二区| 日韩一区二区三区影片| 久久久精品免费免费高清| 国产精品.久久久| 制服诱惑二区| 久久午夜综合久久蜜桃| 精品人妻熟女av久视频| 中文字幕免费在线视频6| 久久狼人影院| 久久这里有精品视频免费| 国产精品.久久久| 91aial.com中文字幕在线观看| 国产精品三级大全| 亚洲欧美清纯卡通| 自线自在国产av| 国产精品.久久久| 中文精品一卡2卡3卡4更新| 99热全是精品| 天堂中文最新版在线下载| 在线观看国产h片| 亚洲五月色婷婷综合| 高清毛片免费看| 精品久久久久久久久av| 中文精品一卡2卡3卡4更新| 午夜福利影视在线免费观看| 18禁动态无遮挡网站| 91精品一卡2卡3卡4卡| 天天操日日干夜夜撸| 十分钟在线观看高清视频www| 能在线免费看毛片的网站| 97在线人人人人妻| 不卡视频在线观看欧美| 边亲边吃奶的免费视频| 亚洲内射少妇av| 狂野欧美激情性bbbbbb| 国产日韩欧美在线精品| 亚洲精华国产精华液的使用体验| 亚洲人成77777在线视频| 日本av免费视频播放| 久久影院123| a 毛片基地| 久久久a久久爽久久v久久| 国产成人freesex在线| 免费高清在线观看日韩| av又黄又爽大尺度在线免费看| 老司机影院成人| 成年女人在线观看亚洲视频| 一区二区三区精品91| 中文字幕最新亚洲高清| 999精品在线视频| 国产欧美亚洲国产| 久久久久久伊人网av| 久久国内精品自在自线图片| 午夜免费观看性视频| av网站免费在线观看视频| 黑人猛操日本美女一级片| 秋霞在线观看毛片| 亚洲在久久综合| 少妇丰满av| 国产高清有码在线观看视频| 精品一区二区三卡| 黄片无遮挡物在线观看| 精品卡一卡二卡四卡免费| 涩涩av久久男人的天堂| 久久精品国产自在天天线| 精品一区二区三区视频在线| 少妇被粗大的猛进出69影院 | 久热久热在线精品观看| 狠狠精品人妻久久久久久综合| 国产日韩欧美在线精品| av视频免费观看在线观看| 中文字幕最新亚洲高清| 精品亚洲成国产av| 精品视频人人做人人爽| 久久久久国产网址| 人成视频在线观看免费观看| 亚洲av电影在线观看一区二区三区| 最后的刺客免费高清国语| 岛国毛片在线播放| 久久影院123| 久久久久久久亚洲中文字幕| 如日韩欧美国产精品一区二区三区 | 精品国产乱码久久久久久小说| 日韩av在线免费看完整版不卡| 69精品国产乱码久久久| 免费不卡的大黄色大毛片视频在线观看| 亚洲国产欧美在线一区| 久久 成人 亚洲| 秋霞在线观看毛片| 亚洲第一av免费看| www.av在线官网国产| 成人手机av| √禁漫天堂资源中文www| 日韩 亚洲 欧美在线| 亚洲欧美成人精品一区二区| 成人国产麻豆网| av不卡在线播放| 免费黄色在线免费观看| 国产伦精品一区二区三区视频9| 精品久久久久久久久亚洲| 亚洲av欧美aⅴ国产| 日韩伦理黄色片| 国产精品一区二区在线不卡| 午夜激情av网站| 涩涩av久久男人的天堂| 日韩成人伦理影院| 亚洲国产精品专区欧美| 亚洲国产精品成人久久小说| 精品少妇黑人巨大在线播放| 亚洲综合色网址| 99热这里只有精品一区| 亚洲av日韩在线播放| 18禁在线播放成人免费| 黄色欧美视频在线观看| 天天操日日干夜夜撸| 日韩大片免费观看网站| 欧美亚洲 丝袜 人妻 在线| 成人午夜精彩视频在线观看| 99精国产麻豆久久婷婷| 日韩一本色道免费dvd| 国产成人91sexporn| 18禁在线无遮挡免费观看视频| 国产精品久久久久久精品古装| 人妻 亚洲 视频| 亚洲av欧美aⅴ国产| 大片电影免费在线观看免费| 日本欧美国产在线视频| www.av在线官网国产| 在线观看国产h片| 精品视频人人做人人爽| 一级片'在线观看视频| 亚洲少妇的诱惑av| 国产精品秋霞免费鲁丝片| 超碰97精品在线观看| 精品人妻偷拍中文字幕| 人妻少妇偷人精品九色| 中文天堂在线官网| 亚洲国产精品成人久久小说| 三级国产精品欧美在线观看| 一本一本综合久久| 国产成人精品久久久久久| 毛片一级片免费看久久久久| 看十八女毛片水多多多| 色哟哟·www| 久久久久久久久久久丰满| 母亲3免费完整高清在线观看 | 久久精品久久精品一区二区三区| 在线观看一区二区三区激情| 亚洲精品日韩av片在线观看| 亚洲av免费高清在线观看| 伦精品一区二区三区| 18禁裸乳无遮挡动漫免费视频| 国产成人aa在线观看| 国产精品.久久久| 啦啦啦在线观看免费高清www| 999精品在线视频| 在线天堂最新版资源| 成人漫画全彩无遮挡| 91成人精品电影| 在线观看免费日韩欧美大片 | 国产无遮挡羞羞视频在线观看| 18禁观看日本| 日韩,欧美,国产一区二区三区| 亚洲国产av新网站| 狂野欧美白嫩少妇大欣赏| 国产精品.久久久| 777米奇影视久久| 国产一级毛片在线| 精品人妻偷拍中文字幕| 精品国产国语对白av| 赤兔流量卡办理| 精品国产一区二区久久| 久久精品国产亚洲网站| 国产精品久久久久久久电影| 亚洲欧洲日产国产| 99热这里只有精品一区| 一区在线观看完整版| 国产69精品久久久久777片| 久久精品国产自在天天线| 国产片特级美女逼逼视频| 国产高清不卡午夜福利| 99九九在线精品视频| 伊人久久精品亚洲午夜| 日日爽夜夜爽网站| 日韩,欧美,国产一区二区三区| 九色成人免费人妻av| 精品亚洲成a人片在线观看| 国产精品无大码| 三级国产精品片| 夜夜看夜夜爽夜夜摸| 激情五月婷婷亚洲| 久久精品久久久久久久性| 丝袜脚勾引网站| 日韩在线高清观看一区二区三区| 日韩伦理黄色片| 国产69精品久久久久777片| 亚洲第一区二区三区不卡| 狂野欧美激情性xxxx在线观看| 久久精品国产鲁丝片午夜精品| 国产永久视频网站| 欧美日韩国产mv在线观看视频| 99久久精品一区二区三区| 久久久久久久久大av| 久久久久久久大尺度免费视频| 久久久午夜欧美精品| av女优亚洲男人天堂| 你懂的网址亚洲精品在线观看| 亚洲欧美日韩卡通动漫| 久久这里有精品视频免费| 国产极品粉嫩免费观看在线 | 国产综合精华液| 涩涩av久久男人的天堂| 这个男人来自地球电影免费观看 | 天堂俺去俺来也www色官网| 男女免费视频国产| 男人爽女人下面视频在线观看| 亚洲av日韩在线播放| 中文乱码字字幕精品一区二区三区| 免费高清在线观看日韩| 久久影院123| 国产精品一区www在线观看| 美女cb高潮喷水在线观看| 99热这里只有精品一区| 最新的欧美精品一区二区| 色婷婷久久久亚洲欧美| 少妇高潮的动态图| 国产高清国产精品国产三级| 丁香六月天网| 3wmmmm亚洲av在线观看| 久久精品国产亚洲网站| 日本黄大片高清| 黄片播放在线免费| 久久精品国产亚洲网站| 色网站视频免费| 日日爽夜夜爽网站| 国产又色又爽无遮挡免| 久久99蜜桃精品久久| 国产精品嫩草影院av在线观看| 考比视频在线观看| 精品一区二区免费观看| 老司机影院成人| 亚洲中文av在线| √禁漫天堂资源中文www| 精品亚洲成国产av| 亚洲综合色惰| 如何舔出高潮| 欧美精品人与动牲交sv欧美| 一区二区三区免费毛片| 少妇被粗大的猛进出69影院 | 熟妇人妻不卡中文字幕| 亚洲精品自拍成人| 能在线免费看毛片的网站| 欧美+日韩+精品| 免费久久久久久久精品成人欧美视频 | 一二三四中文在线观看免费高清| 97超碰精品成人国产| 亚洲成色77777| 国产有黄有色有爽视频| 亚洲内射少妇av| 精品人妻熟女av久视频| 大片免费播放器 马上看| 欧美97在线视频| 最新的欧美精品一区二区| 插阴视频在线观看视频| 久久鲁丝午夜福利片| 激情五月婷婷亚洲| 国产成人精品一,二区| 久久精品久久久久久噜噜老黄| 水蜜桃什么品种好| 亚洲av二区三区四区| 人妻人人澡人人爽人人| 国产永久视频网站| 国产精品久久久久久精品古装| 又大又黄又爽视频免费| 麻豆乱淫一区二区| 伊人亚洲综合成人网| 性高湖久久久久久久久免费观看| 97超视频在线观看视频| 久久久久精品性色| 中文天堂在线官网| 国产 精品1| a级毛片在线看网站| 国产黄色视频一区二区在线观看| 久久久亚洲精品成人影院| 高清欧美精品videossex| 国产av码专区亚洲av| 人妻人人澡人人爽人人| 久久亚洲国产成人精品v| 我的女老师完整版在线观看| 啦啦啦啦在线视频资源| 国产av码专区亚洲av| 精品少妇久久久久久888优播| 久久毛片免费看一区二区三区| 中文精品一卡2卡3卡4更新| 亚洲国产精品国产精品| 精品国产乱码久久久久久小说| 国产精品一二三区在线看| 母亲3免费完整高清在线观看 | 黄色一级大片看看| 免费观看性生交大片5| xxxhd国产人妻xxx| 内地一区二区视频在线| 成人手机av| 亚洲国产精品成人久久小说| 欧美一级a爱片免费观看看| 国产女主播在线喷水免费视频网站| 丝袜美足系列| 五月开心婷婷网| 久久精品久久精品一区二区三区| 亚洲无线观看免费| 久久久久精品久久久久真实原创| 久久久久久久国产电影| 美女大奶头黄色视频| 国产免费一区二区三区四区乱码| 国产一区二区三区综合在线观看 | 自拍欧美九色日韩亚洲蝌蚪91| 夜夜爽夜夜爽视频| 亚洲国产欧美在线一区| 国产爽快片一区二区三区| 亚洲精品自拍成人| 成人毛片60女人毛片免费| 黄色毛片三级朝国网站| 成人午夜精彩视频在线观看| 精品一区二区免费观看| 青春草国产在线视频| 夜夜看夜夜爽夜夜摸| 久久精品久久精品一区二区三区| 亚洲精品久久成人aⅴ小说 | 午夜福利视频精品| 日韩在线高清观看一区二区三区| 亚洲一级一片aⅴ在线观看| 欧美日韩亚洲高清精品| 亚洲精品亚洲一区二区| 国内精品宾馆在线| 久久国产精品大桥未久av| 亚洲成人手机| 国产精品国产av在线观看| 精品午夜福利在线看| 九九爱精品视频在线观看| 久久久国产精品麻豆| 中文精品一卡2卡3卡4更新| 久久久久久久大尺度免费视频| 日韩熟女老妇一区二区性免费视频| 亚洲国产欧美在线一区| av线在线观看网站| 中文欧美无线码| 九色亚洲精品在线播放| 日本黄色日本黄色录像| 多毛熟女@视频| 在线观看一区二区三区激情| 人人妻人人澡人人看| 欧美3d第一页| 国产精品 国内视频| 久久国内精品自在自线图片| 久久久久久久久久久免费av| 在线观看美女被高潮喷水网站| 久久久精品免费免费高清| 日韩三级伦理在线观看| 久久精品国产a三级三级三级| 午夜av观看不卡| 少妇熟女欧美另类| 人成视频在线观看免费观看| 婷婷色综合www| 亚洲人成77777在线视频| 亚洲色图综合在线观看| 国产毛片在线视频| 国产精品三级大全| 黄色欧美视频在线观看| 桃花免费在线播放| 内地一区二区视频在线| 欧美人与性动交α欧美精品济南到 | 亚洲五月色婷婷综合| 边亲边吃奶的免费视频| 高清欧美精品videossex| 国产男女超爽视频在线观看| 黄色毛片三级朝国网站| 亚洲精品美女久久av网站| 黑人欧美特级aaaaaa片| 亚洲欧美成人精品一区二区| 综合色丁香网| 少妇高潮的动态图| 午夜福利影视在线免费观看| 交换朋友夫妻互换小说| 国产精品国产三级国产专区5o| 哪个播放器可以免费观看大片| 亚洲美女搞黄在线观看| 女人精品久久久久毛片| 日韩电影二区| 伦理电影免费视频| 日韩精品免费视频一区二区三区 | 如日韩欧美国产精品一区二区三区 | 蜜桃久久精品国产亚洲av| 国产精品秋霞免费鲁丝片| 国产日韩欧美亚洲二区| 美女国产视频在线观看| 亚洲精品乱码久久久v下载方式| 婷婷色综合大香蕉| 国产一级毛片在线| a级毛片在线看网站| 国产 精品1| 日韩人妻高清精品专区| 国产精品一区www在线观看| 午夜福利网站1000一区二区三区| 搡老乐熟女国产| 久久久a久久爽久久v久久| 久久久久久伊人网av| 国产深夜福利视频在线观看| 久久精品久久久久久噜噜老黄| 亚洲国产欧美日韩在线播放| 日本av免费视频播放| 在线观看www视频免费| 只有这里有精品99| 国产精品国产三级国产专区5o| 婷婷色麻豆天堂久久| 欧美xxxx性猛交bbbb| 国产永久视频网站| 精品人妻熟女av久视频| 精品人妻偷拍中文字幕| 九色亚洲精品在线播放| 日韩一本色道免费dvd| 免费黄色在线免费观看| 国产黄色免费在线视频| 秋霞在线观看毛片| 一区二区三区精品91| 免费看av在线观看网站| 91aial.com中文字幕在线观看| 欧美日韩亚洲高清精品| 黑人高潮一二区| 国产淫语在线视频| 日本av手机在线免费观看| 国产av码专区亚洲av| 亚洲人与动物交配视频| 看非洲黑人一级黄片| 欧美一级a爱片免费观看看| 久久综合国产亚洲精品| 国产成人精品在线电影| 美女国产高潮福利片在线看| 国产精品无大码| 久久久a久久爽久久v久久| 制服人妻中文乱码| 久久国产精品大桥未久av| 99久国产av精品国产电影| 亚洲精品乱码久久久久久按摩| 亚洲人成网站在线播| 黑人高潮一二区| 亚洲,欧美,日韩| 日韩免费高清中文字幕av| 午夜日本视频在线| 亚洲图色成人| 黑人猛操日本美女一级片| 女性生殖器流出的白浆| 美女国产高潮福利片在线看| 国产一区二区在线观看日韩| 久久国产精品男人的天堂亚洲 |