• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Underwater bearing-only tracking based on square-root unscented Kalman filter smoothing algorithm

    2016-04-13 05:11:02WANGBaobaoWUPanlong
    中國慣性技術(shù)學(xué)報 2016年2期
    關(guān)鍵詞:無跡平方根卡爾曼濾波

    WANG Bao-bao, WU Pan-long

    (1. 716th Research Institute, China Shipbuilding Industry Corporation, Lianyungang 222006, China; 2. School of Automation, Nanjing University of Science and Technology, Nanjing 210094, China)

    Underwater bearing-only tracking based on square-root unscented Kalman filter smoothing algorithm

    WANG Bao-bao1, WU Pan-long2

    (1. 716th Research Institute, China Shipbuilding Industry Corporation, Lianyungang 222006, China; 2. School of Automation, Nanjing University of Science and Technology, Nanjing 210094, China)

    In passive tracking, the nonlinearity may cause computational complication and precision degradation. To solve this problem, a novel filtering-smoothing algorithm based on Square-Root Unscented Kalman Filter (SR-UKFS) is proposed to track underwater target. In the SR-UKFS algorithm, the Square-Root Unscented Kalman Filter (SR-UKF) is used as forward-filtering algorithm to provide current location results, and the Rauch-Tung-Striebel (RTS) algorithm smoothes the previous state vector and covariance matrix using the current location results. Therefore an initial value with higher precision is obtained to get more precisely locating results. Comparative analysis and validation are made on the tracking performances of SR-UKFS algorithm and SR-UKF algorithm, and the experiment results show that, under the same conditions, the SR-UKFS can more effectively improve the tracking precision than the SR-UKF algorithm. The SR-UKFS algorithm can reduce nearly 59% of the position error and nearly 54% of the velocity error. The SR-UKFS is an effective underwater bearing-only target tracking algorithm, and can provide valuable references for designing the underwater bearing-only target tracking system.

    target tracking; bearing-only; square-root unscented Kalman filter; smoothing algorithm; forward-filtering; backward- smoothing

    Using single observer to track targets avoids complex time synchronization. It provides significant practical value with strong independence and good motility. When relative movements exist between the observer and target and so does observability, the observer can track targets[1]. Underwater target motion analysis is a technique for estimation of target motion parameters, which is based on a series of measured data sequence (including azimuth angle and pitch angle) from hydrophone array of sonar platform[2]. The core of thistechnique is filtering algorithm, which is utilized to locate and track. Because of severe system nonlinearity, underwater target tracking shall face the linearization problems of state equation and measurement equation. Regarding the nonlinearity of state equation or measurement equation, related literatures adopt many modified Kalman filtering algorithms, like Extend Kalman Filter (EKF), UKF, SR-UKF and so on[3].

    EKF property depends on partial nonlinear strength. During the linearization process of EKF, Jacobian matrix is required, which sometimes makes difficulty in realization[4-5]. UKF approximates to-be-estimated parameters by constructing a group of certain weighted sample points, which avoids the linearization modeling of nonlinear objects and calculation of Jacobian matrix as a filtering algorithm which can be directly utilized in nonlinearity system for mode estimation[6]. But in practical utilization, the data round-off error may make covariance matrix negative definite, which fails the UKF algorithm in calculating the matrix square root. Compared with EKF and without additional calculated amount, UKF makes it that estimated accuracy and rate of convergence are apparently enhanced. SR-UKF algorithm estimates squarerooting matrix of error to do the recursive calculation, which solves the problem of negative definite covariance matrix and filtering divergence due to calculation error and noise signal in standard UKF algorithm, and enhances the accuracy and stability of filtering[7].

    RTS smoothing algorithm is a fixed interval optimal smoothing technique, it greatly simplifies the process of calculation, and is often used to smooth the data from the filtering operation[8]. Smoothing can build a coherent connection at series of estimations, which makes the estimations more resistant to disturbance[9].

    Based on SR-UKF, SR-UKFS adds backward smoothing for better accuracy of target state estimation in last moment, and enhances target state estimation accuracy of this moment[10]. Compared with the SR-UKF algorithm, the SR-UKFS algorithm requires a longer operation period. However, with the application of high-performance processors or the realization of filter algorithm based on FPGA, SR-UKFS algorithm can meet real-time requirements[4]. According to the relative location of target and observation platform, the paper is based on the information of noise measurement of azimuth angle and pitch angle from passive sonar, tracks the course of underwater target with the utilization of SR-UKFS, and makes the simulation comparisons between standard UKF algorithm and SR-UKF algorithm.

    1 Tracking principle and system model

    The basic function of passive sonar is to find direction to measure azimuth information (including azimuth angle and angular altitude) formed by wave beam. Azimuth angle includes the location information of target horizontal direction. Angular altitude includes the information of target depth. Among the research about orientation and tracking problem of underwater target, the shape and size of observer and target can be ignored as particle of space, and the acceleration of target can be seen as a result of noise excitation and a Gaussian random process[11]. The relations of relative movement between target and observing platform can be seen in Fig.1.

    Fig.1 Location relationship between target and observation platform

    In passive sonar tracking system, the information of sonar measurement can be obtained from a spherical coordinate[12]. Target dynamic model is usually constructed in rectangular coordinate system. Thus, the target tracking of sonar becomes a nonlinear estimation problem. The main methods to solve this problem are EKF, UKF and SR-UKF. This paper adopts SR-UKFS algorithm to track the target, namely, firstly uses SR-UKF algorithm to estimate target state, and then uses RTS smoothing algorithm to obtain the target state estimation of last moment, and finally adopts SR-UKF algorithm to estimate the target state of this moment.

    In rectangular coordinate, a linear dynamic model and a nonlinear observing model can be used to establish a target motion model. The state variable is

    and x,y,z means the relative location of X, Y, Z directions;vx, vy, vzmeans the relative speed of X, Y, Z directions. The discrete state equation of system is

    where

    xyz T is the sampling period of system.

    The observed quantity of system includes azimuth angle θ(k) and pitch angle φ(k), which can be seen in Fig.1. In rectangular coordinate system, the formula of azimuth angle and pitch angle can be seen in Formula (2):

    When the target depth z(k) is a fixed value, the observed quantity of azimuth angle and pitch angle can be transferred to the position quantity of target in direction X and Y, and the transition measurement equation of system can be seen in Formula (3):

    The measuring error of azimuth angle and pitch angle is relatively independent zero-mean Gaussian white noisis the measurement noise caused by azimuth angle and pitch angle, its variance matrix is R, and

    2 SR-UKFS algorithm

    UKF is proposed by Julier, and widely used in the field of nonlinear estimation. But in practice, due to the round-off error in numerical calculation, sometimes we may get negative definite covariance matrix, which leads to the stoppage of UKF filter[13]. In order to avoid failure, SR-UKF uses covariance square root to replace the covariance to take part in recursive calculation, which ensures the half positive definitiveness of covariance in basic state has better numerical characteristics[14].

    In the process of UKF filtering, the calculation of new Sigma point in every update requires a considerable number of calculation. Everytime we must calculate the square root of state covariance matrix P, and assumesT= SS P. In the process of SR-UKF filtering,S will be recorded to avoid heavy decomposition calculation in every resampling, which enhances the operation speed of UKF. QR disintegration and Cholesky disintegration update are two important concepts in SR-UKF.

    QR disintegration: for matrixfinding an orthogonal matrixand an upper triangular matrixto make AT=QR, which is doing a QR disintegration for matrix A. qr{·} can be used as QR disintegration with R as returned value. According to the analysis knowledge of matrix,that is Ris also the transposition of Cholesky coefficient S in matrix

    Cholesky disintegration update: if S is the Cholesky disintegration of matrix, andso the Cholesky disintegration update of matrixcan be marked asu usually is a column of vectors, but if u is a matrix which includes factors in M column, and uses vectors in M column to M times first order Cholesky update successively. In filtering process, S displaces P to participate in recursive calculation which can ensure the nonnegative definitiveness of covariance matrix for effective filtering.

    For both UKF algorithm and SR-UKF algorithm, target state estimation of this moment is related to both current measured value and the state estimation of last moment. Thus, the state estimation accuracy enhancement of last moment can enhance the tracking accuracy. SR-UKFS uses RTS algorithm as the forward filter algorithm to backward smooth the received target state estimation, to obtain a precise target state estimation of last moment, and uses SR-UKF for secondary filtering. Fig. 2 shows the process of SR-UKFS algorithm.

    Fig.2 The process of SR-UKFS

    The calculation step of SR-UKFS is given as:

    Step 1: Parameters initialize

    Step 2: Selection of sigma points

    Step 3: Time update equations

    Step 4: Measurement update equations

    Step 5: Smoothing process

    Step 6: Second forward SR-UKF filtering

    Replacing x?k-1,Sk-1byx?k-1|k,Sk-1|k, and repeating step 2 to step 4.

    where

    3 Simulation results and analysis

    During the observation, sonar observation platform is motionless. The sonar observation platform is considered as coordinate reference point, underwater target aircraft straightly motions at a constant speed 500 meters away from observation platform in a stable state, and the speed is 8m/s. The initial azimuth angle is 300 with respect to observation platform, the depth is 45 m. The relations of relative location constitute the threedimensional situation with known depth. And z= 45 m,, the target state vector can be simplified asThe simulation condition and related parameters: sampling period T=0.1 s, noise variance matrix of systemthe measured noise standard deviation of azimuth angle and pitch angle in passive sonarThe initial state vector of targthe covariance matrix of original state errothe simulation time is 46 s. The filtering parameter ofUnder above-mentioned conditions, the author evaluates the performances of UKF, SR-UKF and SR-UKFS, which are used for underwater pure orientation targets. Fig.3 and Fig.4 are the estimation variance of location of x and y direction, Fig.5 and Fig.6 are estimation variance of speed of x and y direction. Tab.1 is the comparison of location and speed mean square after the filters of UKF, SR-UKF and SR-UKFS. The simulation results clearly show that UKF has the worst tracking accuracy, the stability of SR-UKF and SR-UKFS are better, and the tracking accuracy of SR-UKFS is better than SR-UKF. Compared with the SR-UKF algorithm, the SR-UKFS algorithm can reduce nearly 59% of the position error and nearly 54% of the velocity error than the SR-UKF algorithm.

    Tab.1 Comparison between RMS estimation variances of three different conditions

    Fig.3 Estimation variance of location in line x

    Fig.4 Estimation variance of location in line y

    Fig.5 Estimation variance of speed in line x

    Fig.6 Estimation variance of speed in line y

    4 Conclusion

    In this paper, the author utilizes passive sonar to obtain the information of pitch angle and azimuth angle of underwater bearing-only target and track underwater motion targets by combination with the SR-UKFS algorithm. Based on SR-UKFS algorithm, better filtering effect can be achieved to enhance the tracking accuracy. The results of simulation show that SR-UKFS can be used in underwater motion target tracking, and the precision of filtering is significantly better than standard UKF and SR-UKFS algorithm.

    [1] Hu Y F, Jiao B L. Passive underwater target motion analysis based upon bearing-elevation measurement in three dimensions[J]. Acta Simulate Systematica Sinica, 2003, 15(6): 776-779.

    [2] Wu Pan-long, Wang Bao-bao, Cai Ya-dong, et al. Single observer passive target tracking based on extended H∞filter[J]. Journal of Chinese Inertial Technology, 2010, 18(5): 591-594.

    [3] Wang Bo, Xu De-min, Shen Meng. Underwater passive target motion analysis based on UKF[J]. Journal of Projectiles, Rockets, Missiles and Guidance, 2005, 25(2): 423-426.

    [4] Wu Pan-long, Wang Bao-bao, Ji Cun-hui. Design and realization of short range defence radar target tracking system based on DSP/FPGA[J]. WSEAS Transactions on System, 2011, 10(11): 376-386.

    [5] Wang Bao-bao, Zhang Lian-zheng. Information Fusion of Airborne radar and ESM for maneuvering target tracking system based on IMM-BLUE[J]. WSEAS Transactions on System, 2014, 13(11): 699-707.

    [6] Lefebvre T, Bruyninckx H, De Schutter J. A new method for the nonlinear transformation of means and covariances in filters and estimators[J]. IEEE Trans on Automatic Control, 2000, 45(3): 477-482.

    [7] Wu Pan-long, Kong Jian-shou. Under bearing-only target tracking based on Square-root UKF[J]. Journal of Nanjing University of Science and Technology (Natural Science), 2009, 33(6): 751-755.

    [8] Rauch H E, Tung F, Striebel C T. Maximum likelihood estimates of linear dynamic systems[J]. AIAA Student Journal American Institute of Aeronautics & Astronautics, 1965, 3(8): 1445-1450.

    [9] Cao Y, Mao X C. Improved filtering-smoothing algorithm for GPS positioning[C]//Proceedings of the 11th International IEEE Conference on Intelligent Transportation Systems. Beijing, China, 2008: 857-861.

    [10] Zhang Fan, Wu Pan-long, Zhao Long-mei. Improved SRUKF algorithm for mobile robot tracking[J]. Journal of Computational Information System, 2012, 8(15): 6499-6506.

    [11] Farina A. Target tracking with bearing-only measurements [J]. Signal Process, 1999, 78(1): 61-78.

    [12] Yu Chun-lai, Zhan Rong-hui, Wan Jian-wei. Research on robust UKF algorithm for single observer passive target tracking based on polar coordinates[J]. Journal of National University of Defense and Technology, 2008, 30(5): 73-79.

    [13] Sadhu S, Modndal S, Srinivasan M. Sigma point Kalman filter for bearing only tracking[J]. Signal Processing, 2006, 86(12): 3769-3777.

    [14] van der Merwe R, Wan E A. The square root unscented Kalman filter for state and parameter estimation[C]//Proceedings of IEEE International Conference on Acoustics, Speech and Signal Processing. New York, 2001: 3461-3464.

    [15] Wu Pan-long, Liu Jia-le, Li Xing-xiu. Maneuvering target tracking in clutter background based on improved interacting multiple-model[J]. Journal Chinese Inertial Technology, 2015, 23(6): 755-762.

    1005-6734(2016)02-0180-05

    為了避免被動跟蹤中非線性帶來的計算復(fù)雜化及跟蹤精度的下降,提出將平方根無跡卡爾曼濾波平滑算法(SR-UKFS)應(yīng)用到水下純方位目標(biāo)跟蹤。SR-UKFS利用Rauch-Tung-Striebel(RTS)平滑算法將平方根無跡卡爾曼濾波(SR-UKF)作為前向濾波算法得到的目標(biāo)狀態(tài)估計向后平滑,得到前一時刻目標(biāo)狀態(tài)估計,再利用該狀態(tài)估計值進(jìn)行再次濾波得到當(dāng)前時刻目標(biāo)狀態(tài)估計。該算法得到的前一時刻的目標(biāo)狀態(tài)估計更加精確,從而進(jìn)一步提高了目標(biāo)跟蹤的精度。最后,通過對SR-UKFS算法和SR-UKF算法的跟蹤性能進(jìn)行了對比分析和驗證,仿真結(jié)果表明在相同條件下,SR-UKFS算法能減少59%的位置誤差和54%的速度誤差,SR-UKFS算法應(yīng)用于水下純方位目標(biāo)跟蹤系統(tǒng)是有效的,為水下純方位目標(biāo)跟蹤系統(tǒng)的工程實現(xiàn)提供了非常有價值的參考。

    目標(biāo)跟蹤;純方位;平方根無跡卡爾曼濾波;平滑算法;前向濾波;后向平滑

    A

    2015-11-27;

    2016-03-16

    國家自然科學(xué)基金(61473153,61301217)

    王寶寶(1985—),男,工程師,從事火控系統(tǒng)總體設(shè)計。E-mail: wangbaobao_zdh@126.com

    10.13695/j.cnki.12-1222/o3.2016.02.008

    基于平方根無跡卡爾曼濾波平滑算法的水下純方位目標(biāo)跟蹤

    王寶寶1,吳盤龍2

    (1. 中國船舶重工集團(tuán)第七一六研究所,連云港 222006;2. 南京理工大學(xué) 自動化學(xué)院,南京 210094)

    猜你喜歡
    無跡平方根卡爾曼濾波
    小小宋慈大智慧·無形無跡的證據(jù)
    “平方根”學(xué)習(xí)法升級版
    平方根易錯點(diǎn)警示
    無跡卡爾曼濾波在電線積冰觀測數(shù)據(jù)處理中的應(yīng)用
    幫你學(xué)習(xí)平方根
    如何學(xué)好平方根
    基于無跡卡爾曼濾波的行波波頭辨識
    基于遞推更新卡爾曼濾波的磁偶極子目標(biāo)跟蹤
    應(yīng)用RB無跡卡爾曼濾波組合導(dǎo)航提高GPS重獲信號后的導(dǎo)航精度
    基于模糊卡爾曼濾波算法的動力電池SOC估計
    久久ye,这里只有精品| 免费看日本二区| 亚洲精品乱久久久久久| 九九在线视频观看精品| 久久久久久久国产电影| 在线免费十八禁| 亚洲成人手机| 91精品伊人久久大香线蕉| 超碰av人人做人人爽久久| 亚洲国产精品专区欧美| 日韩人妻高清精品专区| 久久久久久久久久久免费av| 久久这里有精品视频免费| 国产久久久一区二区三区| 免费看av在线观看网站| 女性被躁到高潮视频| 欧美zozozo另类| 欧美少妇被猛烈插入视频| av国产免费在线观看| 人妻夜夜爽99麻豆av| 看十八女毛片水多多多| 亚洲在久久综合| 国产在线一区二区三区精| 国产69精品久久久久777片| 91精品国产国语对白视频| 97热精品久久久久久| 国精品久久久久久国模美| 天美传媒精品一区二区| 免费av中文字幕在线| 啦啦啦在线观看免费高清www| 亚洲真实伦在线观看| 边亲边吃奶的免费视频| 国产男女超爽视频在线观看| av视频免费观看在线观看| 亚洲精品中文字幕在线视频 | 久久久久性生活片| 久久影院123| 欧美亚洲 丝袜 人妻 在线| 在线观看一区二区三区激情| 亚洲国产精品成人久久小说| 男男h啪啪无遮挡| 有码 亚洲区| 深爱激情五月婷婷| 在线观看一区二区三区| 国产女主播在线喷水免费视频网站| 99re6热这里在线精品视频| 建设人人有责人人尽责人人享有的 | 久久 成人 亚洲| 日韩av免费高清视频| 深夜a级毛片| 观看免费一级毛片| 男人和女人高潮做爰伦理| 99热网站在线观看| 九九在线视频观看精品| a级一级毛片免费在线观看| 一区二区三区四区激情视频| 亚洲国产av新网站| 欧美日韩在线观看h| 欧美xxxx性猛交bbbb| 国产亚洲欧美精品永久| 精品人妻视频免费看| 亚洲国产日韩一区二区| 在线观看免费高清a一片| 一本—道久久a久久精品蜜桃钙片| 最黄视频免费看| 亚洲激情五月婷婷啪啪| 亚洲国产高清在线一区二区三| 日韩国内少妇激情av| 国产av一区二区精品久久 | 小蜜桃在线观看免费完整版高清| a级毛色黄片| 亚洲精品国产成人久久av| 国产精品精品国产色婷婷| 在线观看美女被高潮喷水网站| 激情五月婷婷亚洲| 丰满人妻一区二区三区视频av| 精华霜和精华液先用哪个| 国产 一区精品| 国产精品偷伦视频观看了| 一区二区三区精品91| 欧美bdsm另类| 亚洲精品,欧美精品| av.在线天堂| 日韩,欧美,国产一区二区三区| 成人综合一区亚洲| 国产久久久一区二区三区| 国产v大片淫在线免费观看| 日日啪夜夜爽| 国产成人a区在线观看| 国产老妇伦熟女老妇高清| 婷婷色综合www| 久久韩国三级中文字幕| 午夜免费鲁丝| 最近中文字幕高清免费大全6| 欧美另类一区| 夫妻午夜视频| 天美传媒精品一区二区| 一级片'在线观看视频| 99久久中文字幕三级久久日本| 国产一区二区在线观看日韩| 久久国产乱子免费精品| 亚洲熟女精品中文字幕| 国产黄频视频在线观看| 黑丝袜美女国产一区| 日本黄色日本黄色录像| 欧美老熟妇乱子伦牲交| 美女中出高潮动态图| 国产大屁股一区二区在线视频| 一级黄片播放器| 春色校园在线视频观看| 久久精品久久精品一区二区三区| 久久 成人 亚洲| 国产av国产精品国产| 天美传媒精品一区二区| 观看美女的网站| 视频中文字幕在线观看| 国产男女内射视频| 欧美性感艳星| 青青草视频在线视频观看| 国产高清国产精品国产三级 | 欧美成人a在线观看| 偷拍熟女少妇极品色| 亚洲aⅴ乱码一区二区在线播放| 伦理电影免费视频| 久久ye,这里只有精品| 亚洲av电影在线观看一区二区三区| 99热网站在线观看| 久久人人爽人人爽人人片va| 国产亚洲午夜精品一区二区久久| 日韩中文字幕视频在线看片 | 国产亚洲最大av| 国产精品爽爽va在线观看网站| 一级毛片电影观看| 大片电影免费在线观看免费| 国产精品人妻久久久影院| 久久久成人免费电影| 少妇人妻久久综合中文| 又大又黄又爽视频免费| 国产精品一及| 只有这里有精品99| 日韩人妻高清精品专区| 成人毛片a级毛片在线播放| av在线蜜桃| 欧美精品一区二区大全| 成人美女网站在线观看视频| 老熟女久久久| 国产日韩欧美在线精品| 秋霞在线观看毛片| 在线免费观看不下载黄p国产| 成年人午夜在线观看视频| 丝袜脚勾引网站| 亚洲欧美日韩另类电影网站 | 一区二区三区免费毛片| 午夜老司机福利剧场| 国产在视频线精品| 最近2019中文字幕mv第一页| 青春草国产在线视频| 亚洲四区av| 能在线免费看毛片的网站| 亚洲高清免费不卡视频| 五月天丁香电影| 欧美xxxx性猛交bbbb| av不卡在线播放| 麻豆乱淫一区二区| 久久99热6这里只有精品| www.av在线官网国产| 久久精品国产a三级三级三级| 精品一品国产午夜福利视频| 国产日韩欧美在线精品| 中文资源天堂在线| 大香蕉久久网| 久久av网站| 人妻 亚洲 视频| 国产精品不卡视频一区二区| 欧美+日韩+精品| 五月开心婷婷网| 欧美最新免费一区二区三区| 免费av不卡在线播放| 欧美精品一区二区大全| 午夜福利高清视频| 国产成人精品久久久久久| 亚洲成人av在线免费| 欧美三级亚洲精品| 中文天堂在线官网| 26uuu在线亚洲综合色| 婷婷色综合大香蕉| 高清日韩中文字幕在线| 欧美少妇被猛烈插入视频| 国产精品爽爽va在线观看网站| 国产av国产精品国产| 亚洲国产最新在线播放| 多毛熟女@视频| 国产综合精华液| 色视频在线一区二区三区| 午夜老司机福利剧场| 99久久综合免费| 久久 成人 亚洲| 国语对白做爰xxxⅹ性视频网站| 男人爽女人下面视频在线观看| 亚洲欧美日韩另类电影网站 | 免费看日本二区| 亚洲av在线观看美女高潮| 精品99又大又爽又粗少妇毛片| 久久精品国产a三级三级三级| 观看免费一级毛片| 久久国产精品男人的天堂亚洲 | 亚洲国产色片| 国产亚洲一区二区精品| 狠狠精品人妻久久久久久综合| 欧美97在线视频| www.av在线官网国产| av.在线天堂| 成人毛片a级毛片在线播放| 身体一侧抽搐| 国产精品偷伦视频观看了| 日本wwww免费看| 国内揄拍国产精品人妻在线| 精品午夜福利在线看| 99九九线精品视频在线观看视频| 一级毛片电影观看| 欧美zozozo另类| 水蜜桃什么品种好| 精品一区二区三区视频在线| 香蕉精品网在线| 观看免费一级毛片| 欧美高清成人免费视频www| 成人亚洲精品一区在线观看 | 久久精品国产亚洲av涩爱| 午夜福利在线观看免费完整高清在| 日产精品乱码卡一卡2卡三| 汤姆久久久久久久影院中文字幕| 亚洲欧美日韩无卡精品| 少妇的逼好多水| 综合色丁香网| 丰满迷人的少妇在线观看| 一区二区三区免费毛片| 日韩欧美精品免费久久| 国产精品国产三级国产专区5o| 伊人久久国产一区二区| 久久久精品免费免费高清| 国产免费一级a男人的天堂| 久久精品久久久久久噜噜老黄| 最近最新中文字幕免费大全7| 女人十人毛片免费观看3o分钟| 国产人妻一区二区三区在| 精品人妻一区二区三区麻豆| 夜夜爽夜夜爽视频| 亚洲,欧美,日韩| 国产有黄有色有爽视频| 成人黄色视频免费在线看| 欧美国产精品一级二级三级 | 午夜福利高清视频| 五月玫瑰六月丁香| 最近的中文字幕免费完整| 久久亚洲国产成人精品v| 少妇被粗大猛烈的视频| 18禁裸乳无遮挡免费网站照片| 内地一区二区视频在线| 久久婷婷青草| 国产女主播在线喷水免费视频网站| 久久精品人妻少妇| 免费观看a级毛片全部| 一本色道久久久久久精品综合| 18禁在线播放成人免费| 精品久久久精品久久久| 国产精品蜜桃在线观看| 亚洲av中文字字幕乱码综合| 国产av精品麻豆| 午夜福利高清视频| 久久精品久久久久久久性| 丝瓜视频免费看黄片| 九草在线视频观看| 欧美精品人与动牲交sv欧美| 一区二区三区精品91| 国产高清国产精品国产三级 | 亚洲av成人精品一区久久| 久久久久久久久久人人人人人人| av在线蜜桃| 亚洲av成人精品一二三区| 色哟哟·www| 毛片女人毛片| 国产 一区 欧美 日韩| 国产成人精品福利久久| 亚洲av欧美aⅴ国产| 99久久精品热视频| 97热精品久久久久久| 精品一区二区三区视频在线| 妹子高潮喷水视频| 欧美一级a爱片免费观看看| av福利片在线观看| 黄片无遮挡物在线观看| 日本猛色少妇xxxxx猛交久久| 伦理电影免费视频| 午夜激情福利司机影院| 老师上课跳d突然被开到最大视频| 久久亚洲国产成人精品v| 男的添女的下面高潮视频| 亚洲综合色惰| 久久 成人 亚洲| 久久人人爽人人片av| 精品久久久噜噜| 五月开心婷婷网| 亚洲精品自拍成人| 国产成人精品婷婷| 能在线免费看毛片的网站| 美女视频免费永久观看网站| 日韩在线高清观看一区二区三区| 91久久精品电影网| 黑人高潮一二区| 免费观看无遮挡的男女| 免费黄色在线免费观看| 精品一区二区三卡| 肉色欧美久久久久久久蜜桃| 色婷婷av一区二区三区视频| 91久久精品国产一区二区成人| 日本黄色片子视频| 久久国产精品男人的天堂亚洲 | 亚洲国产精品国产精品| 久久鲁丝午夜福利片| 精品国产露脸久久av麻豆| 男女免费视频国产| 亚洲天堂av无毛| 最黄视频免费看| 精品少妇久久久久久888优播| 简卡轻食公司| 又黄又爽又刺激的免费视频.| 人体艺术视频欧美日本| 国产精品偷伦视频观看了| 久久影院123| 国产精品国产三级国产专区5o| av视频免费观看在线观看| 国内少妇人妻偷人精品xxx网站| 亚洲一级一片aⅴ在线观看| 精品久久久久久久末码| 18禁动态无遮挡网站| 麻豆成人av视频| 日韩av在线免费看完整版不卡| 欧美少妇被猛烈插入视频| 丰满少妇做爰视频| 女的被弄到高潮叫床怎么办| 欧美人与善性xxx| 欧美三级亚洲精品| 亚洲国产精品专区欧美| 国产精品久久久久久av不卡| 国产淫片久久久久久久久| 80岁老熟妇乱子伦牲交| 国产极品天堂在线| 夫妻午夜视频| 黄色视频在线播放观看不卡| 亚洲三级黄色毛片| 三级国产精品欧美在线观看| 一级a做视频免费观看| 欧美zozozo另类| 直男gayav资源| 成人免费观看视频高清| 亚洲精品日韩av片在线观看| av在线播放精品| 干丝袜人妻中文字幕| 午夜视频国产福利| 三级国产精品欧美在线观看| 中文精品一卡2卡3卡4更新| 日日摸夜夜添夜夜爱| 国产精品伦人一区二区| 亚洲久久久国产精品| 国产亚洲5aaaaa淫片| 男男h啪啪无遮挡| 欧美一级a爱片免费观看看| 亚洲欧美精品专区久久| 啦啦啦视频在线资源免费观看| 99久久人妻综合| 欧美精品人与动牲交sv欧美| 国产精品精品国产色婷婷| 亚洲av不卡在线观看| 黑丝袜美女国产一区| 多毛熟女@视频| 中文字幕人妻熟人妻熟丝袜美| 少妇丰满av| 久久国产亚洲av麻豆专区| 97在线人人人人妻| 午夜福利在线观看免费完整高清在| 大片电影免费在线观看免费| 水蜜桃什么品种好| 国产毛片在线视频| 在线观看一区二区三区| 欧美日韩国产mv在线观看视频 | 一区在线观看完整版| 日韩欧美精品免费久久| 精品视频人人做人人爽| 精品人妻视频免费看| 国产免费一区二区三区四区乱码| 黄色欧美视频在线观看| 午夜福利高清视频| 国产综合精华液| 超碰97精品在线观看| 国产成人精品久久久久久| 精品久久久久久久久av| 久久久久性生活片| 伊人久久精品亚洲午夜| 美女国产视频在线观看| 中文字幕精品免费在线观看视频 | 在线精品无人区一区二区三 | 美女高潮的动态| 伊人久久精品亚洲午夜| 男女下面进入的视频免费午夜| av国产久精品久网站免费入址| 国产一区有黄有色的免费视频| 永久网站在线| 中国国产av一级| 久久精品国产鲁丝片午夜精品| 亚洲精品乱码久久久久久按摩| 日日摸夜夜添夜夜爱| 国产 一区 欧美 日韩| 欧美精品人与动牲交sv欧美| 免费大片18禁| 高清在线视频一区二区三区| 交换朋友夫妻互换小说| 久久ye,这里只有精品| 国产v大片淫在线免费观看| 国产免费一级a男人的天堂| 日韩成人av中文字幕在线观看| 欧美极品一区二区三区四区| 国内少妇人妻偷人精品xxx网站| 视频中文字幕在线观看| 国产 一区 欧美 日韩| 日韩人妻高清精品专区| 午夜免费鲁丝| 国产在线一区二区三区精| 在线观看av片永久免费下载| 久久久久久久精品精品| 九九爱精品视频在线观看| 22中文网久久字幕| av在线播放精品| 国产色婷婷99| 亚洲av国产av综合av卡| 91久久精品国产一区二区成人| 国产免费又黄又爽又色| 蜜臀久久99精品久久宅男| 亚洲aⅴ乱码一区二区在线播放| 亚洲精品一区蜜桃| 午夜福利网站1000一区二区三区| 91久久精品国产一区二区三区| 欧美 日韩 精品 国产| h日本视频在线播放| 国产国拍精品亚洲av在线观看| 麻豆乱淫一区二区| 国产高清不卡午夜福利| 一边亲一边摸免费视频| 国产v大片淫在线免费观看| 1000部很黄的大片| 免费观看性生交大片5| 涩涩av久久男人的天堂| 久久久午夜欧美精品| 午夜免费鲁丝| 中文字幕人妻熟人妻熟丝袜美| 亚洲av国产av综合av卡| 免费观看在线日韩| 一级毛片黄色毛片免费观看视频| 精品久久久久久久久av| 欧美高清性xxxxhd video| 男的添女的下面高潮视频| 亚洲高清免费不卡视频| 中文资源天堂在线| 一本—道久久a久久精品蜜桃钙片| 亚洲人与动物交配视频| 成人亚洲精品一区在线观看 | 丰满乱子伦码专区| 亚洲不卡免费看| 男人舔奶头视频| 亚洲va在线va天堂va国产| 人妻制服诱惑在线中文字幕| 久久久国产一区二区| 干丝袜人妻中文字幕| 国产精品久久久久久久电影| 青春草亚洲视频在线观看| 97在线人人人人妻| 亚洲美女黄色视频免费看| 日本欧美国产在线视频| 亚洲色图av天堂| 国产精品欧美亚洲77777| 午夜精品国产一区二区电影| 国产成人精品久久久久久| 天堂8中文在线网| 中文字幕人妻熟人妻熟丝袜美| 天天躁夜夜躁狠狠久久av| 久久韩国三级中文字幕| 免费看不卡的av| 免费不卡的大黄色大毛片视频在线观看| 亚洲欧美日韩另类电影网站 | av在线蜜桃| 91精品国产国语对白视频| 国产又色又爽无遮挡免| 色吧在线观看| 91精品国产九色| 亚洲精品乱码久久久久久按摩| 我要看黄色一级片免费的| 精品少妇黑人巨大在线播放| 精品午夜福利在线看| 91精品国产九色| 亚洲国产高清在线一区二区三| a级毛片免费高清观看在线播放| 伊人久久国产一区二区| 国产亚洲5aaaaa淫片| 在线免费十八禁| 国产高清不卡午夜福利| 久久精品久久精品一区二区三区| 免费看不卡的av| 免费不卡的大黄色大毛片视频在线观看| 婷婷色av中文字幕| 国内少妇人妻偷人精品xxx网站| 国产免费一区二区三区四区乱码| 欧美激情国产日韩精品一区| 高清av免费在线| tube8黄色片| 日韩精品有码人妻一区| 久久人人爽人人片av| 一级毛片黄色毛片免费观看视频| 啦啦啦中文免费视频观看日本| 亚洲丝袜综合中文字幕| 少妇人妻久久综合中文| 亚洲成人一二三区av| 亚洲av欧美aⅴ国产| 99久久精品国产国产毛片| 国产有黄有色有爽视频| 久久97久久精品| 黄色一级大片看看| 久久国产亚洲av麻豆专区| 国产成人一区二区在线| 国产亚洲午夜精品一区二区久久| 又黄又爽又刺激的免费视频.| 精品久久久久久久久亚洲| 美女高潮的动态| 久久精品人妻少妇| 一级毛片我不卡| av天堂中文字幕网| 王馨瑶露胸无遮挡在线观看| 免费av不卡在线播放| 久久 成人 亚洲| a级一级毛片免费在线观看| 97超视频在线观看视频| 国产91av在线免费观看| 国产精品无大码| 久久久久精品性色| 日本免费在线观看一区| av国产久精品久网站免费入址| 久久久久久久久久久免费av| 亚洲色图综合在线观看| 中文资源天堂在线| 97在线视频观看| 久久久精品免费免费高清| 精品一区在线观看国产| 中文字幕久久专区| 欧美少妇被猛烈插入视频| 国产伦理片在线播放av一区| 中国国产av一级| 人人妻人人爽人人添夜夜欢视频 | 久久女婷五月综合色啪小说| 久久青草综合色| 内射极品少妇av片p| 男女国产视频网站| 亚洲人成网站在线观看播放| av又黄又爽大尺度在线免费看| 尤物成人国产欧美一区二区三区| 久久久久精品久久久久真实原创| 亚洲av不卡在线观看| 一区在线观看完整版| 一级av片app| 一区在线观看完整版| 天堂俺去俺来也www色官网| 婷婷色麻豆天堂久久| 性色av一级| 亚洲精品,欧美精品| 一级爰片在线观看| 99热国产这里只有精品6| 亚洲美女搞黄在线观看| 亚洲怡红院男人天堂| 老熟女久久久| 国产伦精品一区二区三区视频9| 欧美丝袜亚洲另类| 中文字幕av成人在线电影| 人妻少妇偷人精品九色| 欧美精品人与动牲交sv欧美| 女性被躁到高潮视频| 永久网站在线| 五月天丁香电影| 国产高潮美女av| 国产精品一区www在线观看| 国产女主播在线喷水免费视频网站| 日韩亚洲欧美综合| 欧美三级亚洲精品| 夜夜骑夜夜射夜夜干| av.在线天堂| 春色校园在线视频观看| 国产精品一区二区性色av| 男人和女人高潮做爰伦理| av在线蜜桃| 国产老妇伦熟女老妇高清| 男女免费视频国产| 日本欧美国产在线视频| 国产免费福利视频在线观看| 成年人午夜在线观看视频| 1000部很黄的大片| 亚洲国产色片| 国产乱人视频| 99热这里只有是精品在线观看| av在线观看视频网站免费| 久久人人爽人人片av| 汤姆久久久久久久影院中文字幕| 国产精品国产三级国产专区5o| av在线观看视频网站免费| 三级国产精品片| 国产一区二区三区av在线| 性色av一级| 亚洲熟女精品中文字幕| 在线亚洲精品国产二区图片欧美 | 插阴视频在线观看视频|