• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Improved stiffness test method for gas-dynamic bearing of gyro motor

    2016-04-13 05:11:18WANGJingfengLIUJinglinYANYachao
    關(guān)鍵詞:動(dòng)壓氣膜重復(fù)性

    WANG Jing-feng, LIU Jing-lin, YAN Ya-chao

    (1. College of Automation, Northwestern Polytechnical University, Xi’an 710129, China; 2. Xi’an Aerospace Precision Electromechanical Institute, China Aerospace Science and Technology Corporation, Xi’an 710100, China)

    Improved stiffness test method for gas-dynamic bearing of gyro motor

    WANG Jing-feng1,2, LIU Jing-lin1, YAN Ya-chao2

    (1. College of Automation, Northwestern Polytechnical University, Xi’an 710129, China; 2. Xi’an Aerospace Precision Electromechanical Institute, China Aerospace Science and Technology Corporation, Xi’an 710100, China)

    The film stiffness of gyro motor’s gas-dynamic bearing is a key performance indicator. In view that the stiffness test method of the H-style gas-dynamic bearing has the shortcomings of low precision and poor repeatability, an important factor, i.e. the tooling of stiffness test, is proposed, which can ensure the satisfied precision in the stiffness test of gas-dynamic bearing motor. The machining and assembling precisions, the material’s heat deformation and stress deformation are taken into account in the tooling designing. Simulation results verify that the improved stiffness test and tooling method is more favorable to improve the repeatability and the precision.

    gyro motor; gas-dynamic bearing; film stiffness; stiffness test; repeatability

    Gyro motor with gas-dynamic bearing is the key component of two-bearing gyroscope or three-bearing gyroscope. Film stiffness of gas-dynamic bearing for gyro motor is the key technical norm which influences the acceleration-square-sensitive drift coefficient of gyroscope directly.

    To reduce the error on unbalance elasticity of gyroscope, the bigger and equal film stiffness in axial and radial direction is expected. But the actual test data indicates that the stiffness in axial and radial direction of the gyro motor is smaller than designing value, and the stiffness in axial direction is smaller than the stiffness in radial direction. On the one hand the precision of machining and assembling is not guaranteed; on the other hand the heat deformation and strain deformation of material is neglected during the design. Therefore, the source of errors on stiffness test is discussed, and the method of stiffness test is improved in this paper. Finally, the accuracy and repeatability on the stiffness test of gas-dynamic bearing is guaranteed.

    Fig.1 shows the structure of the H style gas-dynamic bearing gyroscope motor. It is constituted of neck journal bearing and thrust bearing. The neck journal bearing goes by the name of radial bearing,and the thrust bearinggoes by the name of axial bearing in this motor.

    Fig.1 Structure of the H style gas-dynamic bearing motor

    1 Test method of film stiffness

    Film stiffness test can be tested by the dead-weight method and load-on method. Dead-weight method is often adopted in practical applications. This method does not need the high gyration precision and can be realized easily. The detector and the motor are fixed. When the motor is overturned by 180° along the gravity direction, the D-value of drift and the stiffness can be calculated. Through aggregate analysis, the dead-weight method is only the stiffness test method currently. Dead-weight test principle of the film stiffness in the axial and radial direction is expressed as follows.

    ① Film stiffness test in radial direction

    Firstly, the motor is fixed at position θ as shown in Fig.2(a) when the motor is stalled. Secondly, the motor is electrified. Thirdly, the relative drift J1of the motor rotor which is located at the position in Fig.2(a) can be tested. Fourthly, the motor with the test tooling gyrates 180° to the position in Fig.2(b), the relative drift J2of the motor rotor which is located at the position in Fig.2(b) also can be tested. Finally, the D-value of drift can be calculated by formula as follow.

    Film stiffness in radial direction can be calculated by formula as follow.

    where Gis the film stiffness in radial direction (N/μm), kis the demarcating coefficient on the drift of the detector (mV/μm), this parameter is calculated by means of experiment demarcate; m is the mass of the motor rotor (kg); g is the local acceleration of gravity (m/s2); DD is the D-value (mV) of voltage at the positions in Fig.2(a) and Fig.2(b).

    Fig.2 Test method of radial stiffness

    ② Film stiffness test in axial direction

    Fig.3 Test method of axial stiffness

    Firstly, when the motor is stalled, the motor is fixed at the position θ+90° according to Fig.3(a). Secondly, the motor is electrified. Thirdly, the relative drift s1of the motor rotor which is located at the position in Fig.3(a) can be tested. Fourthly, the motor with the test tooling gyrates 180° to the position in Fig.3(b), the relative driftof the motor rotor which is located at the position in Fig.3(b) also can be tested. Finally, the D-value of drift can be calculated by formula as follow.

    Film stiffness in axial direction can also be calculated by formula (2).

    ③ Coefficient kdemarcate of capacitance transducer

    Film stiffness test makes use of the capacitance transducer. Coefficient kdemarcate of JDC-2008 capacitance transducer includes the axial direction and radial direction. The valid measuring range of capacitance transducer is 5000±2000 mV. On the basis of minimum graduation (1 μm) of the test tooling, test points are selected in the full measuring range, and test data is linearly processed. Coefficient k is the gradient of linear model.

    Table.1 shows coefficient kdemarcation data of JDC-2008 capacitance transducer.

    Tab.1 Demarcating coefficient k of capacitance transducer

    2 Problems in film stiffness test

    The detector of capacitance transducer is acute and affected easily by the magnetic field leakage of motor and the environment temperature vibration. These are not separated by trials so far. In consideration of the magnetic leakage factor, the motor puts off a stator coil in the test end when the motor stiffness is tested. When the motor rotor is blocked up and the stator is electrified 2 min under the 32V/1000Hz source condition, the output voltage of capacitance transducer is recorded as shown in Table.2.

    By means of the experimental data analysis, the heat which the motor generates is serious when the motor rotor is blocked up and the stator is in work, and the temperature gradient seriously affects the test result. An important factor which ensures the precision of stiffness test of the gas-dynamic bearing motor is the tooling of stiffness test. Precision of machining and assembling, heat deformation and stress deformation of material are taken into account in the tooling designing.

    Tab.2 Experimental data of blocked up rotor

    3 Simulation and results of stiffness test tooling

    Tooling of stiffness test needs to satisfy the following qualification.

    ① Because the coefficient of expansion of titanium alloy material which the motor axis used is about 8.4× 10-6/℃~9.1×10-6/℃, the stiffness test tooling need have the capacity of anti-deformation and the better temperature conductivity. Meanwhile, the detector of capacitance transducer is acute on the temperature variation. In addition, the position where the motor axis is assembled has the abrasion performance, and then the assembling precision cannot be ensured when the motor is pulled down from the tooling repeatedly.

    ② To ensure the depth of parallelism between the detector surface and the tested surface, when the tooling is designed, some main points are taken into account as follows. The fixed part of the detector is firm and simple as far as possible, and the depth of parallelism between the fixed bore of the detector and the fixed bore of the motor axis is improved as far as possible, and the assembling times are reduced in order to avoid assembling precision composition.

    3.1 Key dimensional precision of tooling structure

    Fig.4(a) shows the combined type structure of original tooling. The detector is assembled by the end face location, screw thread coordination, nut bolt compaction. In pace of dismounting repeatedly, the depth of parallelism between the detector surface and the tested surface is not ensured. In the recent trial, the depth of parallelism becomes bad, and the circular degree of the excircle of the detector becomes bad because the detector is repeatedly screwed for a long time. Because the fixed mode of the detector is non-line contact surface, the detector is put in motion and arises the tiny drift, and then the tested clearance result is changed and forms the error. This problem often present to trials.

    Fig.4 (b) shows the “V” type briquetting structure ofmodified tooling. The depth of parallelism between the fixed bore of the detector and the fixed bore of the motor axis must be ensured when the tooling is processed. The fixed mode of the detector is “V” type briquetting, and the fixed coil installation on the coil out end is designed to ensure that the detector keeps stable in the roll-over test.

    Fig.4 Stiffness test tooling

    Because the coefficient of expansion of aluminium alloy which the original tooling is made of is about 24×10-6/℃ and aluminium alloy has the higher coefficient of expansion than titanium alloy which is used for the motor axis, so Fig.4(b) shows that the modified tooling changes material with the CrWMn alloy. The coefficient of expansion of CrWMn alloy material which the modified tooling used is about 12×10-6/℃ and it is close to that of titanium alloy.

    3.2 Stability of tooling structure

    Stability of the original tooling structure is analyzed by Analysis soft. Fig.5(a) shows the structure simulation result of original tooling under static state and the gravity. Fig.5(b) shows the structure simulation result under static state and the gravity of modified tooling.

    Fig.5(a) and Fig.5(b) have the identical simulation model of the gas-dynamic bearing motor, but the tooling in Fig.5(b) has the Fig.4(b) “V” type briquetting structure and CrWMn alloy material. From the simulation results above comparative analysis, the motor under static state and the gravity can emerge flexible deformation. The maximum drift of the original tooling is 10nm and the maximum drift of the modified tooling is 8nm. The drift is very small and there is not obvious variation. The drift of the original tooling is 3.3nm and the drift of the modified tooling is 1.3nm where the detector is assembled, and there is not also obvious variation. Stability of the tooling structure satisfies the test qualification, and the modified tooling is in favor of the stability of stiffness test.

    Fig.5 Structure simulation of tooling under static state

    3.3 Temperature and strain of tooling

    Comparing the original tooling with the modified tooling by means of the simulation method, the temperature deformation of the motor surface and the strain deformation at the position where the detector is fixed are analyzed as follow Fig.6. The stator of the gas-dynamic bearing motor is an important heat source, and surrounding gas is static and ambient temperature is 22℃when the simulation is done.

    Fig.6 shows the temperature filed steady state diagram and heat flux steady state diagram of original tooling. According to the simulation result, the maximum temperature isat the coil of the motor stator, and the temperature at the position where the detector is fixed isand the temperature at the excircle of the motor rotor iThe maximum heat flux appears at the joint of the motor axis with briquetting.

    Fig.6 Temperature filed and heat flux steady state diagram of original tooling

    Fig.7 shows the temperature filed steady state diagram and heat flux steady state diagram of modified tooling. According to the simulation result, the maximum temperature is Tmax=27.54 ℃ at the coil of the motor stator, and the temperature at the position where the detector is fixed is 22.48 ℃, and the temperature at the excircle of the motor rotor is 27.31 ℃. The maximum heat flux appears at the joint of the motor axis with briquetting.

    Fig.8 shows the strain deformation of tooling and compares the original tooling with the modified tooling when the motor stator generates heat. The maximum strain deformation appears at the excircle of the motor rotor. Here the results above are compared as Table.3.

    Table.3 shows the temperature distribution of the modified tooling and there is no obvious variation, but the strain deformation at the excircle of the motor rotor and the temperature deformation at the position where the detector is fixed are improved obviously. In summary, the modified tooling is in favor of the reduction of temperature drift and the stability of stiffness test.

    Fig.7 Temperature filed and heat flux steady state diagram of modified tooling

    Fig.8 Thermal strain diagram of the original and modified tooling

    Tab.3 Simulation results of gas-dynamic bearing motor and tooling

    4 Conclusion

    Through the stiffness test method of gas-dynamic bearing studied, some technical means on gas-dynamic bearing screening and influencing factors on stiffness test are presented. Based on the simulation results of the modified tooling, the stiffness test method is improved and in favor of the reduction of temperature drift and the stability of stiffness test.

    [1] Yang Zhi-ru, Diao Dong-feng, Yang Lei. Numerical analysis on nanoparticles-laden gas film thrust bearing[J]. Chinese Journal of Mechanical Engineering, 2013, 4: 75-679.

    [2] Zhang Y D, Yan J S, Sun L, et al. Friction reducing anti-wear and self-repairing properties of Nano-Cu additive in lubricating oil[J]. Journal of Mechanical Engineering, 2010, 46(5): 74–79.

    [3] Feng X J, Liu S J, Chao Y. The effects of MnZnFe2O4 magnetic nanoparticles on thin film lubricating performance[J]. Journal of Mechanical Engineering, 2011, 47(7): 116-122.

    [4] Liu R D, Wei X C, Tao D H, et al. Study of preparation and tribological properties of rare earth nanoparticles in lubricating oil[J]. Tribology International, 2010, 43(5-6): 1082-1086.

    [5] Moridis G J, Reagan M T, Kim S J, et al. Evaluation of the gas production potential of marine hydrate deposits in the Ulleung Basin of the Korean East Sea[J]. SPE Res Eval Eng, 2009, 14: 759-781.

    [6] Moridis G J, Collett T S, Boswell R, et al. Toward production from gas hydrates: current status, assessment of resources, and simulation-based evaluation of technology and potential[J]. SPE Res Eval Eng, 2009, 12: 745-771.

    [7] Moridis G J, Collett T S, Pooladi-Darvish M, et al. Challenges, uncertainties and issues facing gas production from gas hydrate deposits[J]. SPE Res Eval Eng, 2011, 14: 76-112.

    [8] Lin J S, Wang L W, Chen G H. Modification of grapheme platelets and their tribological properties as a lubricant additive [J]. Tribology Letters, 2011, 41(1): 209-215.

    [9] Chu K W, Wang B, Xu D L, et al. CFD-DEM simulation of the gas-solid flow in a cyclone separator[J]. Chemical Engineering Science, 2011, 66 (5): 834-847.

    [10] Sun Shi-cai, Liu Chang-ling, Ye Yu-guang, et al. Pore capillary pressure and saturation of methane hydrate bearing sediments[J]. Acta Oceanol. Sin, 2014, 33(10): 30-36.

    [11] Qin He-ping. Adhesion effect in gas dynamic bearing[C]// Seminar on development and application of inertial technology. Beijing: Chinese Society of Inertial Technology, 2010: 98-99.

    [12] Sun Li, Zhang Jun. Starting characteristics of gyro-used“H” type hydrodynamic air bearing[J]. Aerospace Control and Application, 2012, 38(5): 53-56.

    [13] 王京鋒, 劉景林, 閆亞超. 陀螺電機(jī)動(dòng)壓氣體軸承間隙誤差分析與改進(jìn)[J]. 中國慣性技術(shù)學(xué)報(bào), 2015, 23(6): 786-793. Wang Jing-feng, Liu Jing-lin, Yan Ya-chao. Trajectory optimization and guidance for reentry craft based on hp-adaptive pseudospectral method[J]. Journal of Chinese Inertial Technology, 2015, 23(6): 786-793.

    1005-6734(2016)02-0245-06

    陀螺電機(jī)動(dòng)壓氣體軸承剛度測(cè)試方法改進(jìn)

    王京鋒1,2,劉景林1,閆亞超2

    (1. 西北工業(yè)大學(xué) 自動(dòng)化學(xué)院,西安 710129;2. 中國航天科技集團(tuán) 西安航天精密機(jī)電研究所,西安 710100)

    動(dòng)壓氣體軸承陀螺電機(jī)的氣膜剛度是評(píng)價(jià)軸承承載能力的關(guān)鍵指標(biāo)。針對(duì)H型動(dòng)壓氣體軸承陀螺電機(jī)氣膜剛度測(cè)試方法存在測(cè)量精度和重復(fù)性差的問題,提出了剛度測(cè)試工裝是保證剛度測(cè)試重復(fù)性精度的一個(gè)重要方面,剛度測(cè)試工裝的加工和裝配精度、材料的熱變性和應(yīng)力變形都是影響氣膜剛度測(cè)試準(zhǔn)確性的主要因素,在設(shè)計(jì)時(shí)必須考慮。通過對(duì)現(xiàn)有剛度測(cè)試工裝材料、結(jié)構(gòu)和方法的優(yōu)化改進(jìn)和仿真分析,驗(yàn)證了采用改進(jìn)后的剛度測(cè)試工裝和方法更有利于提高了軸承剛度測(cè)試的重復(fù)性精度。

    陀螺電機(jī);動(dòng)壓氣體軸承;氣膜剛度;剛度測(cè)試;重復(fù)性

    U666.1

    A

    2015-12-02

    2016-03-31

    總裝裝備預(yù)先研究課題(51309010603)

    王京鋒(1981—),男,高工,博士研究生,主要從事陀螺電機(jī)方面研究。E-mail: jf3313345@sina.com

    10.13695/j.cnki.12-1222/o3.2016.02.020

    猜你喜歡
    動(dòng)壓氣膜重復(fù)性
    T 型槽柱面氣膜密封穩(wěn)態(tài)性能數(shù)值計(jì)算研究
    國內(nèi)首個(gè)現(xiàn)代箔片氣體動(dòng)壓軸承技術(shù)培訓(xùn)班在長(zhǎng)沙成功舉辦
    化學(xué)分析方法重復(fù)性限和再現(xiàn)性限的確定
    昆鋼科技(2021年2期)2021-07-22 07:46:56
    氣膜孔堵塞對(duì)葉片吸力面氣膜冷卻的影響
    靜葉柵上游端壁雙射流氣膜冷卻特性實(shí)驗(yàn)
    論重復(fù)性供述排除規(guī)則
    翻斗式雨量傳感器重復(fù)性試驗(yàn)統(tǒng)計(jì)處理方法
    水利信息化(2017年4期)2017-09-15 12:01:21
    躲避霧霾天氣的氣膜館
    南屯煤礦深部泵房硐室群動(dòng)壓失穩(wěn)機(jī)理及控制對(duì)策
    強(qiáng)烈動(dòng)壓巷道支護(hù)技術(shù)探討
    9色porny在线观看| 男女无遮挡免费网站观看| 蜜桃在线观看..| 成人免费观看视频高清| 别揉我奶头~嗯~啊~动态视频 | 一本大道久久a久久精品| 丝袜在线中文字幕| 一二三四社区在线视频社区8| 大话2 男鬼变身卡| 黄色片一级片一级黄色片| av天堂久久9| 一边摸一边抽搐一进一出视频| 亚洲av成人不卡在线观看播放网 | 久久性视频一级片| 两个人看的免费小视频| 下体分泌物呈黄色| 国产午夜精品一二区理论片| 51午夜福利影视在线观看| 国产成人91sexporn| 人人妻人人添人人爽欧美一区卜| 欧美亚洲日本最大视频资源| 在线精品无人区一区二区三| 亚洲熟女精品中文字幕| 国产av国产精品国产| 久久久精品区二区三区| 久久精品国产亚洲av涩爱| 日韩av不卡免费在线播放| 91麻豆av在线| 下体分泌物呈黄色| 蜜桃在线观看..| 久久久亚洲精品成人影院| 亚洲成国产人片在线观看| 啦啦啦视频在线资源免费观看| netflix在线观看网站| 亚洲色图综合在线观看| 我的亚洲天堂| 精品一区在线观看国产| 欧美少妇被猛烈插入视频| 国产精品一区二区免费欧美 | 午夜激情久久久久久久| av片东京热男人的天堂| 日本vs欧美在线观看视频| 一区二区av电影网| av片东京热男人的天堂| av一本久久久久| 久久99热这里只频精品6学生| 午夜福利影视在线免费观看| 色婷婷久久久亚洲欧美| 久久久久国产精品人妻一区二区| 久久久久久人人人人人| av电影中文网址| 日韩 亚洲 欧美在线| 免费少妇av软件| 免费观看av网站的网址| 欧美另类一区| av线在线观看网站| 老司机影院毛片| 少妇人妻 视频| 热re99久久国产66热| 在线亚洲精品国产二区图片欧美| 国产精品二区激情视频| 一区二区av电影网| 免费日韩欧美在线观看| 成年动漫av网址| 精品福利永久在线观看| 久久午夜综合久久蜜桃| 飞空精品影院首页| 国产精品av久久久久免费| 国产成人一区二区三区免费视频网站 | av一本久久久久| 一级黄色大片毛片| 亚洲精品美女久久av网站| 香蕉国产在线看| 久久综合国产亚洲精品| 久久久久久久大尺度免费视频| 国产在线视频一区二区| 精品久久久久久电影网| 99国产精品一区二区三区| av在线老鸭窝| 大型av网站在线播放| 自拍欧美九色日韩亚洲蝌蚪91| 欧美乱码精品一区二区三区| 国产成人系列免费观看| 久久天躁狠狠躁夜夜2o2o | 91精品三级在线观看| 波多野结衣一区麻豆| 日日夜夜操网爽| 男人舔女人的私密视频| 免费观看人在逋| 各种免费的搞黄视频| 国产老妇伦熟女老妇高清| 精品一品国产午夜福利视频| 国产精品偷伦视频观看了| 亚洲欧美日韩高清在线视频 | 久久久久网色| 国产不卡av网站在线观看| 18在线观看网站| 制服人妻中文乱码| 欧美日韩亚洲高清精品| 老司机影院毛片| 18禁裸乳无遮挡动漫免费视频| 婷婷色综合www| tube8黄色片| 大话2 男鬼变身卡| 久久国产精品人妻蜜桃| 91字幕亚洲| 色网站视频免费| 成人国产av品久久久| 各种免费的搞黄视频| 女性被躁到高潮视频| 久久精品熟女亚洲av麻豆精品| 大型av网站在线播放| 国产片内射在线| 国产亚洲一区二区精品| 亚洲人成77777在线视频| 首页视频小说图片口味搜索 | 成人手机av| xxxhd国产人妻xxx| 久久久国产欧美日韩av| 母亲3免费完整高清在线观看| 久久久精品94久久精品| 午夜精品国产一区二区电影| 欧美在线一区亚洲| 亚洲 欧美一区二区三区| 嫩草影视91久久| 人体艺术视频欧美日本| 多毛熟女@视频| 国产日韩欧美视频二区| 国产免费现黄频在线看| 亚洲欧洲日产国产| 中文字幕亚洲精品专区| 国产免费福利视频在线观看| 国产日韩一区二区三区精品不卡| 亚洲av在线观看美女高潮| 免费女性裸体啪啪无遮挡网站| 中文精品一卡2卡3卡4更新| 97精品久久久久久久久久精品| 亚洲第一青青草原| 免费不卡黄色视频| 欧美成人午夜精品| 国产高清不卡午夜福利| 丰满人妻熟妇乱又伦精品不卡| 午夜两性在线视频| 人体艺术视频欧美日本| 在线观看国产h片| 美女视频免费永久观看网站| 少妇裸体淫交视频免费看高清 | 久久久久国产一级毛片高清牌| 亚洲欧美精品综合一区二区三区| av有码第一页| 国产激情久久老熟女| 在线观看www视频免费| 欧美激情极品国产一区二区三区| 一本—道久久a久久精品蜜桃钙片| 久久久久网色| 一本一本久久a久久精品综合妖精| 99热国产这里只有精品6| 夜夜骑夜夜射夜夜干| h视频一区二区三区| 青草久久国产| 热re99久久国产66热| 国产xxxxx性猛交| 亚洲激情五月婷婷啪啪| 中文字幕高清在线视频| 亚洲精品久久成人aⅴ小说| 亚洲精品久久久久久婷婷小说| 日日夜夜操网爽| 国产亚洲精品第一综合不卡| 成人手机av| 久久精品国产综合久久久| 日韩 欧美 亚洲 中文字幕| 免费高清在线观看视频在线观看| 男男h啪啪无遮挡| 丝袜喷水一区| 如日韩欧美国产精品一区二区三区| 国产免费一区二区三区四区乱码| 午夜免费男女啪啪视频观看| 七月丁香在线播放| 激情视频va一区二区三区| 亚洲成av片中文字幕在线观看| 老司机午夜十八禁免费视频| 亚洲欧美激情在线| 夫妻性生交免费视频一级片| 男女国产视频网站| 新久久久久国产一级毛片| 国产成人精品久久二区二区91| 欧美久久黑人一区二区| 97在线人人人人妻| 欧美成狂野欧美在线观看| 9191精品国产免费久久| 18禁国产床啪视频网站| 国产精品亚洲av一区麻豆| 水蜜桃什么品种好| 国产精品av久久久久免费| www.熟女人妻精品国产| 亚洲av综合色区一区| 国产熟女欧美一区二区| av在线播放精品| 99久久人妻综合| 91字幕亚洲| 美女大奶头黄色视频| 国产激情久久老熟女| 午夜精品国产一区二区电影| 国产成人影院久久av| 色播在线永久视频| 亚洲第一av免费看| 日本一区二区免费在线视频| 麻豆乱淫一区二区| 啦啦啦 在线观看视频| xxx大片免费视频| 蜜桃国产av成人99| 国产成人精品久久二区二区91| 午夜免费鲁丝| 一区福利在线观看| 欧美亚洲 丝袜 人妻 在线| 欧美乱码精品一区二区三区| 亚洲精品美女久久久久99蜜臀 | 国产欧美日韩一区二区三 | 午夜激情久久久久久久| 人人妻,人人澡人人爽秒播 | 在现免费观看毛片| 99re6热这里在线精品视频| 国产成人免费观看mmmm| 久久久久久人人人人人| 老鸭窝网址在线观看| 人人妻人人添人人爽欧美一区卜| 国产成人系列免费观看| 国产一区二区在线观看av| 99九九在线精品视频| a级片在线免费高清观看视频| 亚洲国产av新网站| 亚洲精品一卡2卡三卡4卡5卡 | 大话2 男鬼变身卡| 午夜91福利影院| 91麻豆精品激情在线观看国产 | 亚洲国产欧美网| 两个人免费观看高清视频| 日韩伦理黄色片| 国产精品免费视频内射| 最近最新中文字幕大全免费视频 | 久久精品国产亚洲av高清一级| 国产日韩一区二区三区精品不卡| 午夜福利乱码中文字幕| 日韩制服骚丝袜av| 欧美亚洲日本最大视频资源| 国产成人影院久久av| 天天躁日日躁夜夜躁夜夜| 亚洲av美国av| 91麻豆av在线| www.自偷自拍.com| 日韩av在线免费看完整版不卡| 大片免费播放器 马上看| 18禁国产床啪视频网站| 高清av免费在线| 黄色 视频免费看| 母亲3免费完整高清在线观看| 亚洲av片天天在线观看| 亚洲国产日韩一区二区| 搡老乐熟女国产| 精品人妻一区二区三区麻豆| 国产欧美日韩综合在线一区二区| 97精品久久久久久久久久精品| 久久人妻福利社区极品人妻图片 | 免费女性裸体啪啪无遮挡网站| 啦啦啦中文免费视频观看日本| 两个人免费观看高清视频| 国产成人91sexporn| 亚洲精品国产区一区二| 一区二区三区精品91| 中文乱码字字幕精品一区二区三区| 在线天堂中文资源库| 一级毛片电影观看| 精品一品国产午夜福利视频| 精品欧美一区二区三区在线| 丁香六月天网| 少妇人妻久久综合中文| 女人被躁到高潮嗷嗷叫费观| 又大又爽又粗| 久久国产精品影院| 天天躁夜夜躁狠狠久久av| 无限看片的www在线观看| 成年人免费黄色播放视频| www.精华液| 国产野战对白在线观看| 亚洲天堂av无毛| 亚洲精品一卡2卡三卡4卡5卡 | 亚洲一码二码三码区别大吗| 一区二区三区乱码不卡18| 久久久久精品人妻al黑| 黄片播放在线免费| 热99久久久久精品小说推荐| 国产成人欧美在线观看 | 久久这里只有精品19| 午夜两性在线视频| 伊人亚洲综合成人网| 午夜日韩欧美国产| 黄色视频不卡| 日日夜夜操网爽| 黄片小视频在线播放| 美女扒开内裤让男人捅视频| 国产xxxxx性猛交| 色婷婷av一区二区三区视频| 亚洲av在线观看美女高潮| 免费观看a级毛片全部| 国产精品免费视频内射| 母亲3免费完整高清在线观看| 一本综合久久免费| 国产av精品麻豆| 亚洲 欧美一区二区三区| 黄片小视频在线播放| 亚洲国产中文字幕在线视频| 久久久国产欧美日韩av| 久久久久久亚洲精品国产蜜桃av| 男女午夜视频在线观看| 七月丁香在线播放| 91成人精品电影| 欧美日韩一级在线毛片| 每晚都被弄得嗷嗷叫到高潮| 国产黄频视频在线观看| 黄网站色视频无遮挡免费观看| 人成视频在线观看免费观看| 亚洲欧美中文字幕日韩二区| 大型av网站在线播放| 又黄又粗又硬又大视频| 免费观看人在逋| netflix在线观看网站| 国产在线免费精品| 久久青草综合色| 宅男免费午夜| 亚洲情色 制服丝袜| 午夜福利乱码中文字幕| 多毛熟女@视频| 久久狼人影院| 午夜久久久在线观看| 日本欧美视频一区| 精品久久蜜臀av无| 欧美97在线视频| 18禁裸乳无遮挡动漫免费视频| 乱人伦中国视频| 操出白浆在线播放| 国产欧美日韩一区二区三区在线| 国产极品粉嫩免费观看在线| 久久人人爽av亚洲精品天堂| kizo精华| 久久人人爽av亚洲精品天堂| 在线精品无人区一区二区三| av在线播放精品| 精品少妇黑人巨大在线播放| av在线播放精品| 一二三四社区在线视频社区8| 久久热在线av| 尾随美女入室| 国产精品欧美亚洲77777| 亚洲国产毛片av蜜桃av| 国产一区亚洲一区在线观看| 午夜影院在线不卡| 熟女少妇亚洲综合色aaa.| videos熟女内射| 两人在一起打扑克的视频| 久久精品国产a三级三级三级| 又大又黄又爽视频免费| 成年av动漫网址| 精品国产乱码久久久久久小说| 悠悠久久av| 69精品国产乱码久久久| 久久久久久人人人人人| 国产精品秋霞免费鲁丝片| 纯流量卡能插随身wifi吗| 午夜av观看不卡| 一二三四在线观看免费中文在| 精品国产一区二区三区久久久樱花| 99久久99久久久精品蜜桃| 精品亚洲乱码少妇综合久久| 电影成人av| 国产精品久久久久久精品电影小说| 大话2 男鬼变身卡| 国产精品99久久99久久久不卡| 欧美xxⅹ黑人| 欧美日韩精品网址| 亚洲精品日韩在线中文字幕| 韩国高清视频一区二区三区| 婷婷色综合大香蕉| av线在线观看网站| 亚洲精品乱久久久久久| 精品视频人人做人人爽| 国产高清videossex| 两个人免费观看高清视频| 一级毛片电影观看| 亚洲男人天堂网一区| 91老司机精品| 国产亚洲欧美在线一区二区| 欧美乱码精品一区二区三区| 最近最新中文字幕大全免费视频 | 久久精品成人免费网站| 热re99久久精品国产66热6| 两性夫妻黄色片| 婷婷成人精品国产| 亚洲欧洲国产日韩| 在线观看人妻少妇| 亚洲综合色网址| 午夜福利乱码中文字幕| 亚洲av电影在线观看一区二区三区| 欧美黄色片欧美黄色片| av国产精品久久久久影院| 国产精品.久久久| 亚洲中文日韩欧美视频| 免费女性裸体啪啪无遮挡网站| 在现免费观看毛片| 亚洲一区二区三区欧美精品| 蜜桃国产av成人99| 久久久精品国产亚洲av高清涩受| 十八禁高潮呻吟视频| 一级毛片 在线播放| 国产一区有黄有色的免费视频| 亚洲综合色网址| 久久精品aⅴ一区二区三区四区| 国产精品 欧美亚洲| 国产91精品成人一区二区三区 | 久久久国产一区二区| 午夜福利一区二区在线看| 精品一区在线观看国产| 久久av网站| 看免费av毛片| 亚洲av电影在线进入| 国产免费一区二区三区四区乱码| 国产成人精品久久久久久| 中文乱码字字幕精品一区二区三区| 男女下面插进去视频免费观看| 美女国产高潮福利片在线看| 只有这里有精品99| 亚洲熟女毛片儿| 日本午夜av视频| 乱人伦中国视频| 狂野欧美激情性xxxx| 一区福利在线观看| 国产精品一区二区免费欧美 | 亚洲人成电影免费在线| 女人高潮潮喷娇喘18禁视频| 又粗又硬又长又爽又黄的视频| 精品一品国产午夜福利视频| 人人澡人人妻人| 国产在线免费精品| 又黄又粗又硬又大视频| 日韩av不卡免费在线播放| 精品国产超薄肉色丝袜足j| 一区在线观看完整版| 老熟女久久久| 亚洲综合色网址| 国产欧美日韩一区二区三 | 亚洲欧美一区二区三区久久| 成年美女黄网站色视频大全免费| 精品少妇一区二区三区视频日本电影| 最黄视频免费看| videos熟女内射| 美女扒开内裤让男人捅视频| 亚洲,欧美精品.| 国产1区2区3区精品| av有码第一页| 免费日韩欧美在线观看| 日韩大码丰满熟妇| 少妇粗大呻吟视频| 老司机午夜十八禁免费视频| 久久精品熟女亚洲av麻豆精品| 制服人妻中文乱码| 女人久久www免费人成看片| 夜夜骑夜夜射夜夜干| 最近最新中文字幕大全免费视频 | 午夜老司机福利片| 亚洲国产看品久久| 黄色a级毛片大全视频| 人人妻人人澡人人爽人人夜夜| 99国产精品一区二区三区| 亚洲一区二区三区欧美精品| 久久久久久久国产电影| 精品久久蜜臀av无| 免费在线观看完整版高清| 99国产精品99久久久久| 高清黄色对白视频在线免费看| 国产视频一区二区在线看| 日本色播在线视频| 日本91视频免费播放| 高清av免费在线| 亚洲,欧美精品.| 久久 成人 亚洲| 精品免费久久久久久久清纯 | 日本av免费视频播放| 国产在线一区二区三区精| 亚洲综合色网址| 熟女av电影| 热re99久久国产66热| 亚洲av日韩在线播放| 国产亚洲一区二区精品| e午夜精品久久久久久久| 一区二区日韩欧美中文字幕| 日日夜夜操网爽| 成年美女黄网站色视频大全免费| 日韩中文字幕欧美一区二区 | 午夜福利视频在线观看免费| 男女高潮啪啪啪动态图| 国产一区二区三区综合在线观看| 久久精品国产综合久久久| 国产精品 国内视频| 建设人人有责人人尽责人人享有的| 中文字幕人妻熟女乱码| 日本欧美视频一区| 人人妻人人添人人爽欧美一区卜| 亚洲九九香蕉| 又紧又爽又黄一区二区| 午夜老司机福利片| 久久久精品免费免费高清| 青青草视频在线视频观看| 久久国产精品大桥未久av| a 毛片基地| 精品熟女少妇八av免费久了| 青春草视频在线免费观看| 精品一区二区三区av网在线观看 | 18禁观看日本| 一本色道久久久久久精品综合| 日韩精品免费视频一区二区三区| 亚洲色图综合在线观看| 男女下面插进去视频免费观看| 亚洲精品中文字幕在线视频| 精品久久蜜臀av无| 精品少妇黑人巨大在线播放| 国产在视频线精品| 超色免费av| av在线app专区| 国产人伦9x9x在线观看| 大陆偷拍与自拍| 一边摸一边做爽爽视频免费| 女警被强在线播放| 在线观看免费视频网站a站| 国精品久久久久久国模美| 亚洲国产精品一区二区三区在线| 丝袜在线中文字幕| 色综合欧美亚洲国产小说| 亚洲成av片中文字幕在线观看| 夜夜骑夜夜射夜夜干| 亚洲精品日韩在线中文字幕| av天堂在线播放| 国产人伦9x9x在线观看| 最近中文字幕2019免费版| 亚洲欧美日韩另类电影网站| 亚洲欧洲国产日韩| 两个人免费观看高清视频| 真人做人爱边吃奶动态| 一级片免费观看大全| 18禁观看日本| 亚洲欧洲日产国产| 视频区欧美日本亚洲| 欧美精品亚洲一区二区| 亚洲国产av新网站| 1024香蕉在线观看| 午夜福利影视在线免费观看| 成年人黄色毛片网站| 久久久国产欧美日韩av| 50天的宝宝边吃奶边哭怎么回事| 亚洲七黄色美女视频| 国产高清视频在线播放一区 | a级毛片黄视频| 日韩伦理黄色片| 考比视频在线观看| 咕卡用的链子| 国产精品偷伦视频观看了| 欧美av亚洲av综合av国产av| xxxhd国产人妻xxx| 人成视频在线观看免费观看| 欧美+亚洲+日韩+国产| 国产精品欧美亚洲77777| 午夜福利在线免费观看网站| 午夜两性在线视频| 国产一区亚洲一区在线观看| 久久鲁丝午夜福利片| 777久久人妻少妇嫩草av网站| 亚洲欧美成人综合另类久久久| 美女中出高潮动态图| 午夜福利视频精品| 亚洲精品久久久久久婷婷小说| 午夜福利视频在线观看免费| 黄色a级毛片大全视频| 国产福利在线免费观看视频| 好男人电影高清在线观看| 亚洲精品国产色婷婷电影| 国产熟女欧美一区二区| 国产精品久久久久久精品古装| av网站在线播放免费| 九草在线视频观看| 亚洲精品第二区| 国产成人欧美在线观看 | 午夜91福利影院| 国产色视频综合| 男人添女人高潮全过程视频| 高清不卡的av网站| 丝袜人妻中文字幕| 在线观看一区二区三区激情| 久久 成人 亚洲| 国产精品国产三级专区第一集| 一个人免费看片子| 日日摸夜夜添夜夜爱| 国产黄色免费在线视频| 国产精品久久久av美女十八| 国精品久久久久久国模美| 亚洲一区二区三区欧美精品| 一个人免费看片子| 国产av国产精品国产| a级毛片在线看网站| 18禁观看日本| 激情五月婷婷亚洲| 一级毛片黄色毛片免费观看视频| 少妇粗大呻吟视频| 欧美精品av麻豆av| 男女免费视频国产| 老熟女久久久| 高潮久久久久久久久久久不卡| 一级片免费观看大全|