周世偉,陳善任,薛朋,徐明崗
中國(guó)農(nóng)業(yè)科學(xué)院農(nóng)業(yè)資源與農(nóng)業(yè)區(qū)劃研究所,北京 100081
?
催化濕式過氧化氫氧化苯酚的誘導(dǎo)期研究
周世偉,陳善任,薛朋,徐明崗*
中國(guó)農(nóng)業(yè)科學(xué)院農(nóng)業(yè)資源與農(nóng)業(yè)區(qū)劃研究所,北京100081
摘要針對(duì)黏土基催化劑催化過氧化氫(H2O2)氧化苯酚過程中誘導(dǎo)期發(fā)生機(jī)制及影響因素尚不清楚的問題,采用自制化學(xué)反應(yīng)裝置和批動(dòng)力學(xué)試驗(yàn)方法,研究了誘導(dǎo)期發(fā)生的原因及其關(guān)鍵影響因子。結(jié)果表明:H2O2擴(kuò)散或吸附到催化劑金屬活性位及隨后的表面修飾(通過≡Fe(Ⅲ)還原到≡Fe(Ⅱ)降低pH)共同決定了誘導(dǎo)期;Fermi’s方程能很好地?cái)M合苯酚氧化過程(R2>0.99);反應(yīng)溫度和溶液pH強(qiáng)烈影響誘導(dǎo)時(shí)間(tI),隨溫度增加和pH降低,tI分別從59和129 min降到22和0 min(沒有誘導(dǎo)期),而催化劑與H2O2濃度對(duì)tI的影響相對(duì)較小,隨催化劑和H2O2濃度增加,tI分別從69和75 min降到32和52 min。盡管誘導(dǎo)時(shí)間可通過調(diào)整反應(yīng)參數(shù)來縮短或消除,但考慮到成本和環(huán)境風(fēng)險(xiǎn),在用黏土基催化劑處理實(shí)際含酚廢水時(shí)應(yīng)采用適宜的反應(yīng)條件:H2O2和苯酚摩爾比為15,催化劑濃度為0.8~1.0 gL,溫度為30~40 ℃,不調(diào)整介質(zhì)pH,反應(yīng)時(shí)間為2 h。
關(guān)鍵詞催化濕式過氧化氫氧化;黏土基催化劑;苯酚;表面催化反應(yīng);誘導(dǎo)期
Study on Induction Period during Catalytic Wet Peroxide Oxidation of Phenol
ZHOU Shiwei, CHEN Shanren, XUE Peng, XU Minggang
Institute of Agricultural Resources and Regional Planning, Chinese Academy of Agricultural Sciences, Beijing 100081, China
AbstractAiming at improving the understanding of occurrence mechanism and affecting factors of induction period, a small laboratory-made reactor with batch kinetic test method was adopted to investigate the induction period occurrence reasons and the key affecting factors during phenol oxidation by H2O2over clay-based catalysts. The results showed that the contact of active metals with H2O2and the sequent surface modification, by decreasing pH via the reduction of ≡Fe (Ⅲ) to ≡Fe (Ⅱ), jointly determined the induction period. A Fermi′s equation could fit well the kinetic process (R2>0.99), and the reaction temperature and initial solution pH strongly affected the induction time (tI) which reduced from 59 min to 22 min and from 129 min to 0 min (no induction period), respectively, with increasing temperature and decreasing pH. The catalyst amount and H2O2concentration had less effect ontIwhich reduced from 69 to 32 min and from 75 to 52 min, respectively, with increasing the contents of catalyst and H2O2. Although the undesirable induction time could be shortened or eliminated by adjusting reaction parameters, considering its cost and environmental risk, the following optimum reaction conditions should be adopted for CWPO of actual phenol-containing wastewater over clay-based catalysts: the mole ratio of H2O2to phenol being 15, catalyst concentration being 0.8-1.0 gL, temperature being 30-40 ℃, pH of matrix not adjusted, and reaction time being 2 h.
Key wordscatalytic wet peroxide oxidation (CWPO); clay-based catalyst; phenol; surface-catalyzed reaction; induction period
苯酚是工業(yè)廢水(如精煉廠、焦化廠、煤炭和石化等廢水)中常見的污染物[1]。由于高毒性和難生物降解性,苯酚被列為優(yōu)先控制污染物(priority pollutants),因此,發(fā)展有效的苯酚消減技術(shù)始終是環(huán)境治理中的熱點(diǎn)。近年來,催化濕式過氧化氫氧化(catalytic wet peroxide oxidation,CWPO)成為安全、簡(jiǎn)單、高效和有發(fā)展前景的有機(jī)物處理技術(shù),由于氧化劑過氧化氫(H2O2)廉價(jià)無毒且能在常溫常壓下快速氧化絕大多數(shù)有機(jī)物,因此被稱為真正的“綠色氧化”,備受青睞[2-6]。黏土基催化劑(水滑石和柱撐黏土等)因其價(jià)廉易得,并拓寬了催化劑適用的pH范圍,降低了催化劑活性組分的流失,而被廣泛應(yīng)用于含酚廢水處理中。
目前,對(duì)該反應(yīng)過程及機(jī)理仍不十分清楚,如在苯酚氧化反應(yīng)過程中,許多研究已觀察到誘導(dǎo)期的存在,但對(duì)其發(fā)生機(jī)制卻甚少探究,以致存有爭(zhēng)議:如Carriazo等[7-8]認(rèn)為誘導(dǎo)期源于苯酚在催化劑表面的吸附;Park等[9]認(rèn)為誘導(dǎo)期是由于催化劑表面要降低氧化狀態(tài)而形成的;Belaroui等[10]將誘導(dǎo)期歸于催化劑活性金屬組分的溶解;Luo等[11]認(rèn)為誘導(dǎo)期是由于催化劑表面Fe組分的質(zhì)子化。深入研究誘導(dǎo)期發(fā)生及影響因素有助于闡釋類Fenton氧化機(jī)理和調(diào)控反應(yīng)過程。筆者研究了苯酚氧化反應(yīng)中誘導(dǎo)期發(fā)生過程和一些關(guān)鍵因素(如反應(yīng)溫度、溶液pH、催化劑濃度和氧化劑濃度等)對(duì)誘導(dǎo)期的影響,旨在發(fā)展溫和、高效的CWPO技術(shù),用于處理難生物降解的有機(jī)廢水。
1 材料與方法
1.1黏土基催化劑
應(yīng)用共聚合方法,制備和表征了一系列黏土基催化劑——Cu4.8Ni1.2Al2-水滑石、Cu6Al2-水滑石黏土復(fù)合物及Al5-Fe1-柱撐黏土[12-14]。這些催化劑顯示出了高催化活性和高穩(wěn)定性,能夠在較低溫度(30~40 ℃)、短時(shí)間(2 h)內(nèi)催化H2O2完全氧化苯酚和4-氯酚。因此,將其作為高效非均相催化劑應(yīng)用于研究中。
1.2苯酚氧化反應(yīng)
反應(yīng)條件設(shè)定:催化劑劑量為0.5、0.8、1.0、1.5和2.0 gL;H2O2和苯酚摩爾比為5、10、15、20和25;反應(yīng)溫度為30、40和50 ℃;pH為3.5、4.5、5.5、6.5和7.5。
試驗(yàn)在250 mL三口瓶中進(jìn)行,將150 mL 2.66 mmolL的苯酚溶液與催化劑放入三口瓶后,進(jìn)行磁力攪拌,加入少量HCl和NaOH調(diào)節(jié)pH至設(shè)定值。待水浴加熱到設(shè)定溫度后,加入一定量的H2O2啟動(dòng)氧化反應(yīng),于不同的反應(yīng)時(shí)間(10、20、30、40、50、60、70、80、90和120 min)各取出5 mL反應(yīng)液,分成2份:一份立即加入0.1 g MnO2以消除殘余的,然后離心并收集上清液,用于測(cè)定苯酚;另一份直接過濾,測(cè)定剩余的H2O2。
溶液用等體積CH2Cl2萃取后,在氣相色譜儀(Agilent 7890A GC)上測(cè)苯酚濃度,檢測(cè)器采用火焰離子化監(jiān)測(cè)儀(FID),色譜柱采用氣相毛細(xì)管色譜柱(HP-5)。操作條件:FID溫度為300 ℃;進(jìn)樣口溫度為280 ℃;柱頭進(jìn)樣及進(jìn)樣體積為1 μL;載氣(N2,99.999%)流速恒定,為25 mLmin;柱前壓為103.4 kPa。升溫程序:40 ℃保持2 min;以10 ℃min升至100 ℃,保持1 min;以25 ℃min升至280 ℃,保持1 min。
基于H2O2與NH4VO3在酸性介質(zhì)中生成橘紅色過氧釩陽(yáng)離子[17],因此在紫外分光光度計(jì)(U-3900H)上可定量測(cè)定H2O2濃度,測(cè)量波長(zhǎng)為450 nm。
注:H2O2和苯酚摩爾比為15;催化劑濃度為1 gL;穩(wěn)定溫度為30 ℃; pH為6.5。圖1 不同催化劑下苯酚氧化動(dòng)力學(xué)Fig.1 Kinetics of catalytic oxidation of phenol over different catalysts
2結(jié)果與討論
2.1誘導(dǎo)期的發(fā)生
圖1是不同催化劑下的苯酚氧化動(dòng)力學(xué)。從圖1可以看出,并非所有反應(yīng)都出現(xiàn)誘導(dǎo)期,可能和催化劑表面特性直接相關(guān):Al5-Fe1-柱撐黏土催化下,有較長(zhǎng)的誘導(dǎo)期(50 min);Cu4.8Ni1.2Al2-水滑石催化下,沒有誘導(dǎo)期(線性);Cu6Al2-水滑石黏土復(fù)合物催化下,有較短的誘導(dǎo)期(<10 min)發(fā)生??赡茉蚴荋2O2擴(kuò)散或吸附到催化劑活性金屬表面位是苯酚氧化反應(yīng)得以發(fā)生的前提,因此,該過程決定了誘導(dǎo)期長(zhǎng)短。Al5-Fe1-柱撐黏土中活性金屬Fe濃度較低,且被包圍在黏土層間,與H2O2接觸需要一定的時(shí)間;相反,Cu4.8Ni1.2Al2-水滑石中活性金屬Cu濃度高,且裸露在礦物表面,與H2O2容易接觸。
圖2 Al5-Fe1-柱撐黏土催化苯酚氧化(30 ℃)過程中H2O2分解動(dòng)力學(xué)Fig.2 Kinetics of H2O2 decomposition during the catalytic oxidation of phenol over Al5-Fe1-PILC at 30 ℃
大量研究表明[2-6],CWPO處理技術(shù)中,H2O2分解產(chǎn)生羥基自由基(HO·)是驅(qū)動(dòng)有機(jī)物氧化的關(guān)鍵,因此,認(rèn)為H2O2分解速率或產(chǎn)生HO·速率直接決定了誘導(dǎo)期長(zhǎng)短。圖2為Al5-Fe1-柱撐黏土催化苯酚氧化過程中H2O2分解動(dòng)力學(xué)。從圖2可以看出,在Al5-Fe1-柱撐黏土催化苯酚氧化過程中,H2O2都有一段時(shí)間的滯后分解(30~60 min),相應(yīng)地HO·的產(chǎn)生也會(huì)滯后,這會(huì)導(dǎo)致苯酚氧化誘導(dǎo)期發(fā)生。并且,H2O2分解速率及滯后期受溶液初始pH、催化劑濃度及初始H2O2濃度影響,從而可知這些因素將影響苯酚氧化誘導(dǎo)期。Fermi’s方程能描述整個(gè)苯酚氧化動(dòng)力學(xué)過程,該方程表達(dá)式如下:
(1)
式中:Ct和C0分別為苯酚在時(shí)間t和初始(t= 0)時(shí)的濃度,mmolL;k為表觀一級(jí)動(dòng)力學(xué)速率常數(shù),min-1;t*為過渡時(shí)間,min,與S型曲線拐點(diǎn)相關(guān)[18-19]。
設(shè)三階微分值為零[11],可以得到誘導(dǎo)時(shí)間(tI)計(jì)算式:
(2)
Fermi’s方程擬合結(jié)果見表1。由表1可知,該方程與苯酚氧化動(dòng)力學(xué)過程擬合較好(R2>0.99,p<0.000 1)。根據(jù)表1獲得的動(dòng)力學(xué)參數(shù)(k和tI),可以評(píng)估關(guān)鍵因子(如反應(yīng)溫度和溶液pH等)對(duì)苯酚氧化過程的影響。
對(duì)H2O2分解速率與苯酚氧化動(dòng)力學(xué)參數(shù)k和tI作圖,見圖3。從圖3可以看出,H2O2分解速率與苯酚氧化動(dòng)力學(xué)參數(shù)有明顯線性相關(guān):隨H2O2分解速率加快,k增加且tI變小,即苯酚氧化誘導(dǎo)期縮短,反應(yīng)速率加快。
表1 Fermi’s方程擬合參數(shù)
圖3 Al5-Fe1-柱撐黏土催化下H2O2分解速率與苯酚氧化(30 ℃)動(dòng)力學(xué)參數(shù)的關(guān)系Fig.3 Relationships between H2O2 decomposition rate and oxidation kinetic parameters of phenol over Al5-Fe1-PILC at 30 ℃
總之,Al5-Fe1-柱撐黏土催化苯酚氧化誘導(dǎo)期直接受制于H2O2分解,其分解過程經(jīng)歷如下3個(gè)階段[20-21]:
≡Fe(Ⅲ)+H2O2→≡Fe(Ⅲ)H2O2
(3)
≡Fe(Ⅲ)H2O2→≡Fe(Ⅱ)+HO2·+H+
(4)
≡Fe(Ⅱ)+H2O2→≡Fe(Ⅲ)+HO·+OH-
(5)
通常認(rèn)為式(4)是H2O2分解速率限制步驟[20],因此,誘導(dǎo)期最終受H2O2分解速率限制步驟,即催化劑表面活化(通過還原過程降低pH)影響。在誘導(dǎo)期,催化劑表面pH持續(xù)下降;誘導(dǎo)期后,合適的pH導(dǎo)致大量HO·生成,繼而快速氧化苯酚。Tatibou?t等[22]發(fā)現(xiàn)pH為3.7左右,HO·生成最多,支持了這個(gè)猜測(cè)。前期的研究[14,23]也證實(shí),無論苯酚還是氯酚,在柱撐黏土上的氧化都存在明顯的誘導(dǎo)期,并且,誘導(dǎo)期主要源于柱撐黏土催化劑表面修飾〔通過≡Fe(Ⅲ)還原到≡Fe(Ⅱ)降低表面酸度〕。
本試驗(yàn)進(jìn)一步表明,誘導(dǎo)期發(fā)生的機(jī)制是H2O2擴(kuò)散或吸附到催化劑活性金屬位及隨后的催化劑表面修飾和H2O2分解,二者共同決定了誘導(dǎo)期長(zhǎng)短。
2.2關(guān)鍵因子對(duì)誘導(dǎo)期的影響
注:H2O2和苯酚摩爾比為15;催化劑濃度為1 gL;pH為6.5。圖4 Al5-Fe1-柱撐黏土催化下溫度對(duì)苯酚氧化過程的影響Fig.4 The effect of temperature on phenol oxidation and its kinetic parameters (k and tI) over Al5-Fe1-PILC
研究表明,反應(yīng)溫度是誘導(dǎo)期最具決定性的影響因子[11,24],溫度對(duì)苯酚氧化過程的影響見表1和圖4。隨溫度升高,k明顯增大(從0.13 min-1升至0.38 min-1),tI顯著降低(從59 min降至22 min),并且均存在相關(guān)性(R2分別為0.994 4和0.984 0)。該結(jié)果與Luo等[11,25]研究結(jié)果相似,即誘導(dǎo)時(shí)間與反應(yīng)溫度呈指數(shù)相關(guān)。根據(jù)圖4的線性關(guān)系,可計(jì)算出Al5-Fe1-柱撐黏土催化H2O2氧化苯酚的活化能(Ea)為44 kJmol,遠(yuǎn)低于Akyurtlu等[25]的計(jì)算值(139 kJmol),這是因?yàn)楹笳呤歉邷馗邏合翺2氧化苯酚過程。綜上,CWPO技術(shù)在處理廢水中所需能耗低,應(yīng)予以推廣。盡管高溫(超過50 ℃)會(huì)縮短誘導(dǎo)期,卻相應(yīng)地需要消耗更多電能。
圖5 不同反應(yīng)條件對(duì)Al5-Fe1-柱撐黏土催化苯酚氧化過程的影響(30 ℃)Fig.5 Effect of different reaction conditions on phenol oxidation by H2O2 over Al5-Fe1-PILC at 30 ℃
不同反應(yīng)條件對(duì)苯酚氧化過程的影響見表1和圖5。從表1和圖5可以看出,溶液初始pH極顯著地影響誘導(dǎo)期,隨pH升高,誘導(dǎo)時(shí)間延長(zhǎng)。低pH(3.5)下,苯酚濃度幾乎隨時(shí)間直線下降,沒有誘導(dǎo)期;高pH(7.5)下,苯酚氧化基本不發(fā)生。有研究表明,催化劑表面一定的酸度是HO·得以產(chǎn)生的重要保障[22];Luo等[11]也認(rèn)為較低pH時(shí)催化劑表面Fe能夠快速質(zhì)子化(活化),從而導(dǎo)致H2O2快速分解,苯酚快速氧化。綜上,低pH可縮短誘導(dǎo)期。但是,在處理實(shí)際廢水時(shí),如果靠添加一定量的酸來降低體系pH,進(jìn)而縮短或消除誘導(dǎo)期是不可取的,因?yàn)檫@可能引起新的環(huán)境風(fēng)險(xiǎn),如Fe和Cu等活性金屬淋失。事實(shí)上,Al5-Fe1-柱撐黏土等非均相催化劑在正常的pH范圍(如苯酚pH為6.5)也能保持極高的催化活性,因此,最為經(jīng)濟(jì)友好的CWPO技術(shù)是不調(diào)整體系的pH。相比反應(yīng)溫度和溶液初始pH,催化劑濃度特別是初始H2O2濃度對(duì)誘導(dǎo)期的影響較弱,但都隨其用量增加,誘導(dǎo)時(shí)間縮短(分別從69 min降至32 min,從75 min降至52 min)(表1和圖5)。該結(jié)果與Luo等[11]的研究略有不同,其研究結(jié)果為苯酚氧化的誘導(dǎo)期基本不受催化劑和氧化劑濃度的影響??傊?,適度增大催化劑和H2O2濃度,一定程度上可以加快反應(yīng)速率,但考慮到效益和環(huán)境風(fēng)險(xiǎn),其用量不宜過大。
綜上,CWPO技術(shù)處理含酚廢水時(shí)(使用黏土催化劑),能夠觀察到反應(yīng)誘導(dǎo)期,這是因?yàn)镠2O2吸附、擴(kuò)散,進(jìn)而與催化劑活性金屬組分接觸,最終觸發(fā)Fenton反應(yīng)(H2O2分解)和自由基生成-氧化反應(yīng),使苯酚等有機(jī)污染物快速被氧化降解。研究誘導(dǎo)期發(fā)生機(jī)制及影響因素具有重要意義:理論上可以揭示類Fenton氧化反應(yīng)機(jī)理,即表面金屬還原降低pH是反應(yīng)限速步驟;實(shí)踐上可以為縮短甚或消除誘導(dǎo)期提供科學(xué)依據(jù),即提高CWPO處理效率。因此,研究并實(shí)際調(diào)控誘導(dǎo)期是十分必要的。根據(jù)本試驗(yàn)結(jié)果可知:反應(yīng)溫度、溶液初始pH以及催化劑與氧化劑濃度顯著影響(縮短或延長(zhǎng))苯酚氧化反應(yīng)的誘導(dǎo)時(shí)間。因此,在實(shí)際處理含酚廢水時(shí),可考慮適當(dāng)增加溫度并降低pH,或者適當(dāng)增加催化劑與氧化劑濃度,以有效縮短誘導(dǎo)期并提升氧化速率。但是,靠改變反應(yīng)條件來消除或縮短誘導(dǎo)期往往面臨著成本增加(增加溫度和催化劑氧化劑濃度)或者環(huán)境風(fēng)險(xiǎn)增加(降低溶液pH),故不能一味盲目地消除誘導(dǎo)期。結(jié)合前期研究,筆者提出最優(yōu)反應(yīng)條件:H2O2和苯酚摩爾比為15;催化劑濃度為0.8~1.0 gL;溫度為30~40 ℃;pH無需調(diào)整;反應(yīng)時(shí)間為2 h。
3結(jié)論
(1)黏土催化苯酚氧化過程中,H2O2擴(kuò)散或吸附到催化劑活性金屬位及隨后的表面還原修飾(降低pH)決定了誘導(dǎo)期長(zhǎng)短。
(2)苯酚氧化過程符合Fermi’s方程(R2>0.99),反應(yīng)溫度、溶液初始pH、催化劑及H2O2濃度明顯影響一級(jí)動(dòng)力學(xué)速率常數(shù)和誘導(dǎo)時(shí)間:隨溫度升高,催化劑和氧化劑濃度增加,或降低pH,誘導(dǎo)期顯著縮短。
(3)考慮效益和環(huán)境風(fēng)險(xiǎn),黏土材料催化苯酚氧化的適宜反應(yīng)條件為:H2O2和苯酚摩爾比為15;催化劑濃度為0.8~1.0 gL;溫度為30~40 ℃;pH無需調(diào)整;反應(yīng)時(shí)間為2 h。
參考文獻(xiàn)
[1]BUSCA G,BERARDINELLI S,RESINI C,et al.Technologies for the removal of phenol from fluid streams:a short review of recent developments[J].Journal of Hazardous Materials,2008,160(23):265-288.
[2]PERATHONER S,CENTI G.Wet hydrogen peroxide catalytic oxidation(WHPCO)of organic waste in agro-food and industrial streams[J].Topics in Catalysis,2005,33(1234):207-224.
[3]LIOTTA L F,GRUTTADAURIA M,DI CARLO G,et al.Heterogeneous catalytic degradation of phenolic substrates:catalysts activity[J].Journal of Hazardous Materials,2009,162(23):588-606.
[4]GARRIDO-RAMIREZ E G,THENG B K G,MORA M L.Clays and oxide minerals as catalysts and nanocatalysts in Fenton-like reactions:a review[J].Applied Clay Science,2010,47(34):182-192.
[5]GIL A,KORILI S A,TRUJILLANO R,et al.Pillared clays and related catalysts[M].Springer:Springer Science+Business Media LLC,2010.
[6]ROKHINA E V,VIRKUTYTR J.Environmental application of catalytic processes:heterogeneous liquid phase oxidation of phenol with hydrogen peroxide[J].Critical Reviews in Environmental Science and Technology,2011,41(2):125-167.
[7]CARRIAZO J G,GUELOU E,BARRAULT J,et al.Catalytic wet peroxide oxidation of phenol over Al-Cu or Al-Fe modified clays[J].Applied Clay Science,2003,22(6):303-308.
[8]KURIAN M,SUGUNAN S.Wet peroxide oxidation of phenol over mixed pillared montmorillonites[J].Chemical Engineering Journal,2006,115(3):139-146.
[9]PARK C,BAKER R T K.Modifications in the catalytic properties of nickel supported on different dielectric oxides[J].Chemistry of Materials,2002,14(1):273-280.
[10]BELAROUI L S,BENGUEDDACH A.Study of the catalytic activity of Al-Fe pillared clays in the Baeyer-Villiger oxidation[J].Clay Minerals,2012,47(2):275-284.
[11]LUO M L,BOWDEN D,BRIMBLECOMBE P.Catalytic property of Fe-Al pillared clay for Fenton oxidation of phenol by H2O2[J].Applied Catalysis(B:Environmental),2009,85(34):201-206.
[12]ZHOU S W,QIAN Z Y,SUN T,et al.Catalytic wet peroxide oxidation of phenol over Cu-Ni-Al hydrotalcite[J].Applied Clay Science,2011,53(4):627-633.
[13]ZHOU S W,GU C T,QIAN Z Y,et al.The activity and selectivity of catalytic peroxide oxidation of chlorophenols over Cu-Al hydrotalciteclay composite[J].Journal of Colloid and Interface Science,2011,357(2):447-452.
[14]ZHOU S W,ZHANG C B,HU X F,et al.Catalytic wet peroxide oxidation of 4-chlorophenol over Al-Fe-,Al-Cu-,and Al-Fe-Cu-pillared clays:sensitivity,kinetics and mechanism[J].Applied Clay Science,2014,95:275-283.
[15]MEI J G,YU S M,CHENG J.Heterogeneous catalytic wet peroxide oxidation of phenol over delaminated Fe-Ti-PILC employing microwave irradiation[J].Catalysis Communications,2004,5(8):437-440.
[16]LIOU R M,CHEN S H.CuO impregnated activated carbon for catalytic wet peroxide oxidation of phenol[J].Journal of Hazardous Materials,2009,172(1):498-506.
[17]NOGUEIRA R F P,OLIVEIRA M C,PATERLINI W C.Simple and fast spectrophotometric determination of H2O2in photo-Fenton reactions using metavanadate[J].Talanta,2005,66(1):86-91.
[18]HERNEY-RAMIREZA J,SILVA A M T,VICENTE M A,et al.Degradation of Acid Orange 7 using a saponite-based catalyst in wet hydrogen peroxide oxidation:kinetic study with the Fermi’s equation[J].Applied Catalysis(B:Environmental),2011,101(34):197-205.
[19]SILVA A M T,HERNEY-RAMIREZ J,SOYLEMEZ U,et al.A lumped kinetic model based on the Fermi’s equation applied to the catalytic wet hydrogen peroxide oxidation of Acid Orange 7[J].Applied Catalysis(B:Environmental),2012,121122:10-19.
[20]KWAN W P,VOELKER B M.Rates of hydroxyl radical generation and organic compound oxidation in mineral-catalyzed Fenton-like systems[J].Environmental Science & Technology,2003,37(6):1150-1158.
[21]HUANG C P,HUANG Y H.Comparison of catalytic decomposition of hydrogen peroxide and catalytic degradation of phenol by immobilized iron oxides[J].Applied Catalysis(A:General),2008,346(12):140-148.
[22]TATIBOUЁT J M,GUELOU E,FOURNIER J.Catalytic oxidation of phenol by hydrogen peroxide over a pillared clay containing iron:active species and pH effect[J].Topics in Catalysis,2005,33(1):225-232.
[23]ZHOU S W,ZHANG C B,XU R,et al.Chloride ions promoted the catalytic wet peroxide oxidation of phenol over clay-based catalysts[J].Water Science and Technology,2015.doi:10.2166wst.2015.571.
[24]VELEGRAKI T,NOULI E,KATSONI A,et al.Wet oxidation of benzoic acid catalyzed by cupric ions:key parameters affecting induction period and conversion[J].Applied Catalysis(B:Environmental),2011,101(34):479-485.
[25]AKYURTLU J F,AKYURTLU A,KOVENKLIOGLU S.Catalytic oxidation of phenol in aqueous solutions[J].Catalysis Today,1998,40(4):343-352.□郭曉婭,年躍剛,閆海紅,等.淀粉廢水資源化利用現(xiàn)狀與應(yīng)用前景[J].環(huán)境工程技術(shù)學(xué)報(bào),2016,6(2): 117-126.
GUO X Y,NIAN Y G,YAN H H, et al.Current status and application prospect of resource utilization of starch wastewater[J].Journal of Environmental Engineering Technology,2016,6(2): 117-126.
中圖分類號(hào):X703.1
文章編號(hào):1674-991X(2016)02-0111-06
doi:10.3969j.issn.1674-991X.2016.02.017
作者簡(jiǎn)介:周世偉(1975—),男,助理研究員,博士,主要從事環(huán)境化學(xué)研究,swzhou77@163.com*責(zé)任作者:徐明崗(1961—),男,研究員,博士,主要從事土壤化學(xué)研究,xuminggang@caas.cn
基金項(xiàng)目:國(guó)家自然科學(xué)基金項(xiàng)目(41271254)
收稿日期:2015-11-27
環(huán)境工程技術(shù)學(xué)報(bào)2016年2期