• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    ARTICLE Photodissociation Dynamics of 2-Iodotoluene Investigated by Femtosecond Time-Resolved Mass Spectrometry?

    2016-04-08 06:35:42ZhimingLiuYanmeiWangChunlongHuJinyouLongBingZhangStateKeyLaboratoryofMagneticResonanceandAtomicandMolecularPhysicsWuhanInstituteofPhysicsandMathematicsChineseAcademyofSciencesWuhan430071ChinaDatedReceivedonNovember
    CHINESE JOURNAL OF CHEMICAL PHYSICS 2016年1期

    Zhi-ming Liu,Yan-mei Wang,Chun-long Hu,Jin-you Long,Bing Zhang?State Key Laboratory of Magnetic Resonance and Atomic and Molecular Physics,Wuhan Institute of Physics and Mathematics,Chinese Academy of Sciences,Wuhan 430071,China(Dated:Received on November 15,2015;Accepted on January 14,2016)

    ?

    ARTICLE Photodissociation Dynamics of 2-Iodotoluene Investigated by Femtosecond Time-Resolved Mass Spectrometry?

    Zhi-ming Liu,Yan-mei Wang,Chun-long Hu,Jin-you Long,Bing Zhang?
    State Key Laboratory of Magnetic Resonance and Atomic and Molecular Physics,Wuhan Institute of Physics and Mathematics,Chinese Academy of Sciences,Wuhan 430071,China
    (Dated:Received on November 15,2015;Accepted on January 14,2016)

    The photodissociation dynamics of 2-iodotoluene following excitation at 266 nm have been investigated employing femtosecond time-resolved mass spectrometry.The photofragments are detected by multiphoton ionization using an intense laser fi eld centered at 800 nm.A dissociation time of 380±50 fs was measured from the rising time of the co-fragments of toluene radical(C7H7)and iodine atom(I),which is attributed to the averaged time needed for the C?I bond breaking for the simultaneously excited nσ?and ππ?states by 266 nm pump light.In addition,a probe light centered at 298.23 nm corresponding to resonance wavelength of ground-state iodine atom is used to selectively ionize ground-state iodine atoms generated from the dissociation of initially populated nσ?and ππ?states.And a rise time of 400±50 fs is extracted from the fi tting of time-dependent I+transient,which is in agreement with the dissociation time obtained by multiphoton ionization with 800 nm,suggesting that the main dissociative products are ground-state iodine atoms.

    Key words:2-Iodotoluene,Photodissociation,Dissociation time,Femtosecond timeresolved mass spectrometry

    ?Part of the special issue for“the Chinese Chemical Society’s 14th National Chemical Dynamics Symposium”.

    ?Author to whom correspondence should be addressed.E-mail: bzhang@wipm.ac.cn,Tel.:+86-27-87197441,FAX:+86-27-87198491

    I.INTRODUCTION

    The photodissociation dynamics of halogenated organic compounds has attracted historically great attention,not only due to its crucial role in highly detailed fundamental studies but also its harmfulness to environment[1?17].The principal goal of photodissociation studies is to obtain the clearest picture of the molecular dynamics in the excited state as the molecule leaves the Franck-Condon region such as what transient states to traverse,where the fragments are formed,what the lifetime of the upper state is and which bonds break and so on.Many experimental techniques have been developed to investigate photodissociation reaction process,for instance photofragment translation spectroscopy[4?6], velocity map imaging[7,8]and ultrafast time-resolved time-of- fl ight mass spectrometry[9?15],which are coupled with high level ab initio calculations[15?17]to provide a clear picture of the fragmentation mechanisms of molecules.

    The UV absorption spectra of aryl iodine are dominated by two contributions:one is the nσ?states resulting from the promotion of a nonbonding electron from the iodine atom valence shell to an antibonding σ?localized along the C?I bond,which leads to a rapid direct dissociation,and the other is due to the absorption to the bound ππ?states of the benzene ring which has predissociation character for the coupling with repulsive nσ?states.As a result of the overlap of these two di ff erent type states in the same energy region,the dynamics cannot be directly obtained from the absorption spectrum.Femtosecond time-resolved mass spectrometry coupled with state-selective resonance enhanced multiphoton ionization has been emerging as a powerful tool for investigating photodissciation dynamics process.It has two major advantages:the fi rst one is mass selectivity,which allows for the separate study of the reactant and fragment dynamics,the second one is the ability of selectively monitoring all fragments of di ff erent masses or same masses in di ff erent fi nal state as well as the parent ion simultaneously.

    2-Iodotoluene,which is formed by substitution of an iodine atom and a methyl group for two neighboring hydrogen atoms of the benzene,is a very interesting system for study.Using state-selective onedimensional photofragment translational spectroscopy, El-Sayed et al.investigated the photodissociation dynamics of 2-iodotoluene upon excitation at 266 nm[6]. The spatial and velocity distributions of ground-state iodine atom I and excited state iodine atom I?were determined.Two distinct ground-state iodine atoms velocity distributions were observed.One is a high velocity,narrow distribution with high anisotropy,whichis attributed to direct dissociation from the repulsive nσ?state.The other one is a low velocity,broader distribution appearing lower anisotropy,which is due to the predissociation from the bound ππ?state.The dissociation times for these two channels were estimated by calculating time-dependence of anisotropy parameter β.Fang et al.have calculated the potential energy curves for the ground and low-lying excited states of 2-iodotoluene along the assumed photolysis reaction coordinates and elucidated the dissociation mechanism and channels following excitation at 266 nm[17].

    Based on the previous studies on aryl halides,in this work,we identify the photodissociation dynamics of 2-iodotoluene and the processes that participate in the relaxation of the molecule after being initiated by excitation at 266 nm.Especially,the determination of time scales for the dissociation channels is the focus on. Although previous experiment has estimated the dissociation times through measurements of the anisotropy [6],the accuracy is low especially when reaction time is more or comparable to the average rotation time of the parent molecule.Femtosecond time-resolved mass spectrometry enables one to directly measure the dissociation time.To the best of our knowledge,this is the fi rst time-resolved study on the photoinduced C?I bond breaking of 2-iodotoluene at 266 nm.

    II.EXPERIMENTAL SETUP

    The details of the experimental setup are described elsewhere[18].Brie fl y,it consists of a molecular beam machine coupled to a linear time of fl ight mass spectrometer and a 1 kHz-4 mJ/pulse Ti:Sapphire regenerative-ampli fi ed laser system(Coherent Inc.),delivering pulses with a central wavelength of~800 nm and a Fourier-transform-limited full width at halfmaximum(FWHM)duration of~100 fs.One part of the output light was used to produce the pump pulse at 266 nm by mixing the fundamental(800 nm)and the second harmonic beam(400 nm)in a 0.2 mm thick BBO crystal.One part was applied to pump an optical parametric ampli fi er(OPA,Coherent Inc.TOPAS-C) to generate probe wavelength centered at 298.23 nm, which is used for the resonance-enhanced multiphoton ionization(REMPI)probing of ground-state I atoms. Another part was used as probe light to track the relaxation processes of 2-iodotoluene.The energy intensity for pump light is 0.5μJ/pulse which keeps no ion signal occurring with it alone.For the probe light,the typical energy is 10 and 60μJ/pulse for the 298.23 and 800 nm respectively.The probe beam was temporally delayed relative to the pump beam by a computer-controlled linear translation stage(PI,M-126.CG1).The two laser beams were focused with fused silica lens of f=400 mm respectively and introduced into the vacuum chamber collinearly through a dichroic mirror.

    The employed apparatus[19]is similar to that designed by Eppink and Parker[20].It consists of a molecular-beam source chamber and an ionization- fl ight detection chamber.The detection chamber was kept below 0.5μPa with the molecular beam on.2-Iodotoluene (99.9%purity)seeded in He was expanded into the source chamber with a stagnation pressure of 2 atm through a pulsed nozzle(General Valve,with a 0.5 mm ori fi ce)with the repetition rate of 10 Hz.The supersonic molecular beam is collimated by a conical skimmer and intersects perpendicularly with the two laser beams in a two-stage ion lens region.Photoion is extracted into a 36 cm fi eld-free region,which is doubly shielded against stray magnetic fi elds byμ-metal tube.At the end of the time-of- fl ight tube,the ions strike a twostage microchannel plate detector backed by a phosphor screen.The emission from the phosphor screen is monitored by a photomultiplier connected to a 1 GS/s digital oscilloscope(Tektronix Inc.,TDS2012B)USB interfaced with a computer.The LabView software was used to track the parent ion and fragments signal as function of pump-probe delay time simultaneously.

    III.RESULTS AND DISCUSSION

    With the help of detailed theoretical calculation[17] and experimental investigation[6]on 2-iodotoluene,it is easy to determine that upon excitation at 266 nm,the dominant excited states are the ππ?state with a bound character and the nσ?state with a repulsive character along the C?I stretching coordinate,which leads to the production of ground-state iodine atoms.So,the parallel relaxation processes for those two excited states are monitored by probe pulse which ionized the excited molecules.

    Figure 1(a)displays the time-of- fl ight mass spectra obtained with the pump pulse at 266 nm alone,the probe pulse at 800 nm alone and in pump-probe con fi guration at?t=0(time-overlap).The power of the probe light is~26μJ/pulse.As observed in the mass spectra, there are many fragment ions generated other than parent ion C7H7I+,especially for toluene ion C7H7+which is the dominant signal in the mass spectra,indicating that the parent ion will to a large extent undergo photoinduced fragmentation[21,22],which is similar to the femtosecond pump-probe investigation on iodobenzene [10].Figure 1(b)shows the measured time transients of the total signals of,following excitation at 266 nm and probe with 800 nm(26μJ/pulse). The polarizations of pump and probe beam are parallel with each other.The decay time pro fi le for parent ioncan be best fi tted by one exponential with decay time constant τdof 92±10 and 129±15 fs respectively convoluted with a Gaussian that describes the pump-probe cross correlation.

    FIG.1(a)One color and two color(at time overlap)mass spectra of 2-iodotoluene at 266 and 800 nm.The typical energy was 0.5 and 26μJ/pulse for the 266 nm pump and 800 nm probe pulse respectively.(b)Time-resolved C7H7I+and C7H7+transients recorded under the same conditions as(a),the circles represent experimental data and the solid lines are fi tting results.

    It is not likely that those fragment ions shown in Fig.1(a)are produced from the ionization of the corresponding neutral radicals,which is generated from dissociation of neutral molecules or fragmentation of molecular ion,due to their high ionization potential under our low probe light intensity.For instance,ionization of neutral toluene radical would require absorption at least six probe photons(800 nm)since the ionization potential of the toluene radical is expected to be only slightly lower than the ionization potential of the phenyl radical,which is 9.13 eV[23,24].If the neutral radicals can be detected,the time-pro fi le of C7H7+should have a stable channel at longer pump-probe delay time, which is not observed on the fragment ion in Fig.1(b), indicating that the neutral radical C7H7generated from dissociation in electronically excited states induced by the pump pulse is not ionized by the probe pulse 800 nm with intensity of 26μJ/pulse.So,it is expected that all fragment ions observed here are originated from dissociative ionization of parent molecules.Since no ion signals were generated with pump pulse alone,the timedependent fragment ions signal should also re fl ect the neutral excited states dynamics of 2-iodotoluene.

    The repulsive nσ?and the bound ππ?states can be excited simultaneously.So,it is expected that two decay components should be observed on the time pro fi le of parent ion or fragment ions.Such kinetics is observed on iodobenzene molecule[10].Unfortunately,only one decay component is observed for C7H7I+and C7H7+transients shown in Fig.1(b)and we tend to attribute this component to the decay dynamics of the initially populated nσ?state.There are two possible reasons for not observing the contribution from ππ?state:one is that the absorption cross-section of the ππ?state is much lower than the nσ?state and indeed the absorption coe ffi cient of the nσ?state is an order larger than that of the ππ?state according to the theoretical calculation[7];another one is that the ionization crosssection for the ππ?state is probable low with 800 nm as probe light.Thus,the ionization signal from the ππ?state would be faint,which is likely to be suppressed by strong ionization signal from the nσ?state.

    Now we turn to discuss the observed lifetime τd, which is assigned to the decay dynamics of the initial populated nσ?state as mentioned above.Indeed,a very fast relaxation will occur when excited to this state due to its repulsive character.Using state-selective photofragment translational spectroscopy Freitas and coworkers[6]studied the photodissociation dynamics of 2-iodotoluene upon excitation by 266 nm and observed a sharp high velocity distribution of ground-state iodine atoms,which was assigned to a direct dissociation occurring on the nσ?state.And they estimated the dissociation time(0.51 ps)of C?I bond on this state by calculating β variation as a function of time.According to the calculations[17],it has big possibility for the molecules to stay on this state during decay processes.Therefore,the observed lifetime for the decay of nσ?state should be shorter than the dissociation time which is associated with the time needed from the Franck-Condon region to the production of freedom iodine atoms.Thus,the fi tted τdis reasonable and not contradicted with the estimated dissociation time of 0.51 ps in Freitas’work.It is persuasive to assign the lifetime constant τdto the decay dynamics on the initially excited nσ?state.

    FIG.2 The mass spectra of 2-iodotoluene obtained with 266 nm pump light alone and 800 nm probe light alone and at time overlap between pump and probe light.The typical energy was 0.5 and 60μJ/pulse for the 266 nm pump and 800 nm probe pulse respectively.

    In order to get more insight to the dissociation dynamics of the excited states induced by 266 nm,we increase the power of probe pulse to try to detect the dissociative products.It is an ideal tool to detect molecular species with easily achieved multiphoton ionization using femtosecond lasers[25].By increasing the power of the probe beam from 26μJ/pulse to 60μJ/pulse, a time-of- fl ight mass spectrum recorded at pump-probe delay time zero is shown in Fig.2.More visible fragment ions signal intensity is observed compared with the mass spectrum obtained with probe intensity 26μJ/pulse. To follow the transient dynamics for these fragment ions,the signal intensities against the pump-probe delay time for these peaks were acquired,which is shown in Fig.3.The temporal behavior of all fragment ions can be well fi tted to one fast decay component and one rise component,convoluted with a Gaussian describing the pump-probe cross correlation.All decay and rise times measured for all cation transients are summarized in Table I.Those two components correspond to two di ff erent channels for the production of the fragment ions.For the fast decay time constant τd,it is reasonable to attribute this component to the dissociation of the parent ions after the pump-probe ionization, since it has similar trend to the parention time pro fi le shown in Fig.3.For the second rising component τr,it is a constant component without decay.Furthermore,this component depends greatly on the power of the probe beam.Thus this component is attributed to the ionization of the neutral fragments generated by the pump pulse.As mentioned above,the dissociative products are toluene radical C7H7and iodine atom I induced by the pump light.So,it is easy to assign the rise component fortransients to the ionization of neutral C7H7and I.It is very interesting to observe that thetransients also show the rise component.By closely inspecting the time pro fi le of these transients,it is discovered that the time constants τrare in agreement with that forThus,it is likely that the rise components intransients are from the dissociative ionization of neutral radical C7H7.Indeed,there are no dissociative channels from the parent molecules to product neutral radical C5H4,C4H2and C3H2after being excited by 266 nm,which further evidence our conclusion.So,the τrcomponents in these fragment ions transients re fl ect the same dynamics as in. It is worth noting that the rise time constant τrre fl ects the averaged time needed for all dissociative channels initialed by 266 nm,leading to generation of neutral radical C7H7and iodine atom I.

    FIG.3 Time-resolved cation transients recorded under the same conditions as Fig.2.The circles represent experimental data and the solid lines are fi tting results.All transients are normalized to their maxima value.

    TABLE I The time constants extracted from the fi ts of all cation transients shown in Fig.3.

    It is interesting that the decay times increase as the mass of the fragment ions decreases.As mentioned above,the decay components in all fragment ions transients are from the fragmentation after pump-probe ionization of parent molecule.These observations are similar to the ones obtained,for instance,on tetrathiafulvalene and Cr(CO)6probed with an intense probe pulse[26,27].Here as well,the degree of fragmentation is weaker at small pump-probe delays and becomes stronger at long pump-probe delays.As explained,when the molecule relaxes,the electronic energy is converted into vibrational energy,which remains in the ion upon ionization.Dissociative ionization is sensitive to vibrational relaxation since the bonds in the ion are generally weaker than those of the neutral molecules. Therefore,upon ionization,the internal energy of the ion will be more and more important and fragmentation to the smaller species will take place once intramolecular vibrational relaxation becomes e ff ective[26].

    To gain more information on the photodissociation dynamics of 2-iodotoluene upon excitation by 266 nm, the probe light at 298.23 nm,corresponding to the ground-state iodine atom resonance wavelength[28],is used to track the appearance of ground state iodine atoms product generated by cleavage of C?I bond in this molecule.There are no excited state I atom resonance wavelengths within the bandwidth of the probe light(450 cm?1),which enables us to probe the ground state iodine atoms only.Figure 4 displays the I+transient obtained following excitation at 266 nm and probe with 298.23 nm.It can be fi tted with a single rising exponential convoluted with the Gaussian pumpprobe cross correlation,yielding a rising time constant of 400±50 fs,which re fl ects the average time for all dissociative channels leading to ground state I atoms. Two distinct ground-state I atom spatial and velocity distributions were observed by El-Sayed’s group[6] using nanosecond lasers.One is a high velocity,narrow distribution that exhibits a high anisotropy,which is assigned to the direct dissociation from nσ?state. The other one is a low velocity,broader distribution accompanied by a lower averaged anisotropy,which is attributed to the predissociation dynamics of ππ?state. And they speculated that the dominant products of ground-state I atoms resulted from direct dissociation process.The dissociation time of this process is estimated to be 0.51 ps.The value 400±50 fs extracted from the time transients of ground-state I atom in our experiment is in agreement with the estimated value 0.51 ps[6].Therefore,it is reasonable to conclude that the measured rise time 400±50 fs dominantly re fl ects the dissociation time needed for C?I fi ssion on the nσ?state populated by 266 nm,though we cannot rule out the contribution from the predissociation dynamics of initially excited ππ?state.

    IV.CONCLUSION

    FIG.4 The I+transient obtained following excitation at 266 nm and probing at 298.23 nm corresponding to the resonance wavelength of ground state iodine atom.The circles are experimental data and the solid line is the fi tting result.

    The ultrafast relaxation of 2-iodotoluene has been studied after excitation at 266 nm with the goal of determining the time scales of the dissociation channels.In this excitation wavelength,a repulsive nσ?state and a bound ππ?state are populated simultaneously.The obtained time-pro fi le of parent ion(C7H7I+)with 800 nm as probe light(26 or 60μJ/pulse)can be best fi tted by one decay exponential convoluted with a Gaussian describing the pump-probe cross correlation.However, a decay component and a rise component are needed to fi t the temporal behavior of all fragment ionsobtained with strong intensity of 800 nm probe light(60μJ/pulse).The decay time constant τd(105?245 fs)for all ions re fl ects the decay dynamics of the initially populated repulsive nσ?state.While the rise time constant τr(380?405 fs)is attributed to the averaged dissociation time for all the dissociation channels induced by pump light 266 nm.In addition,we selectively tracked the dissociation channels leading to ground-state iodine atoms using groundstate iodine atom resonance wavelength of 298.23 nm as probe light.The measured appearance time 400±50 fs for I+transient is in agreement with the dissociation time obtained with multiphoton ionization with 800 nm as probe light,which indicates that the main products of dissociation induced by 266 nm are ground-state iodine atoms.

    V.ACKNOWLEDGMENTS

    This work was supported by the National BasicResearchProgramofChina(973Program) (No.2013CB922200)and the National Natural Science Foundation of China(No.91121006,No.21273274, No.21173256,and No.21303255).

    [1]R.S.Mulliken,J.Chem.Phys.8,382(1940).

    [2]R.K.Sparks,K.L.Shobatake,R.Carlson,and Y.T. Lee,J.Chem.Phys.75,3838(1981).

    [3]J.L.Knee,L.R.Khundkar,and A.H.Zewail,J.Chem. Phys.83,1996(1985).

    [4]H.J.Hwang and M.A.El-Sayed,J.Chem.Phys.94, 4877(1991).

    [5]H.J.Hwang and M.A.El-Sayed,J.Phys.Chem.6, 8725(1992).

    [6]J.E.Freitas,H.J.Hwang,and M.A.El-Sayed,J.Phys. Chem.98,3322(1994).

    [7]X.B.Zhang,Z.R.Wei,Y.Tang,T.J.Chao,B.Zhang, and K.C.Lin,ChemPhysChem.9,1130(2008).

    [8]Y.Tang,W.B.Lee,B.Zhang,and K.C.Lin,J.Phys. Chem.A 112,1421(2008).

    [9]P.Y.Cheng,D.Zhong,and A.H.Zewail,Chem.Phys. Lett.237,399(1995).

    [10]M.Kadi,J.Davidsson,A.N.Tarnovsky,M.Rasmusson,and E.?Akesson,Chem.Phys.Lett.350,93(2001).

    [11]M.Kadi and J.Davidsson,J.Chem.Phys.Lett.378, 172(2003).

    [12]M.Kadi,E.Ivasson,and J.Davidsson,Chem.Phys. Lett.384,35(2004).

    [13]R.Montero,A.P.Conde,A.Longarte,F.Casta?no,M. E.Corrales,R.de Nalda,and L.Ba?nares,Phys.Chem. Chem.Phys.12,7988(2010).

    [14]G.Gitzinger,M.E.Corrales,V.Loriot,G.A.Amaral,R.de Nalda,and L.Ba?nares,J.Chem.Phys.132, 24313(2010).

    [15]O.A.Brog,Y.J.Liu,P.Persson,S.Lunell,D.Karlsson,M.Kadi,and M.Davidsson,J.Phys.Chem.A 110,7045(2006).

    [16]Y.J.Liu,P.Persson,H.O.Karlsson,and S.Lunell,J. Chem.Phys.120,6502(2004).

    [17]Y.J.Liu,Y.C.Tian,and W.H.Fang,J.Chem.Phys. 132,014306(2010).

    [18]Y.Z.Liu,B.F.Tang,H.Shen,S.Zhang,and B.Zhang, Opt.Express.18,5791(2010).

    [19]C.C.Qin,Y.Z.Liu,S.Zhang,Y.M.Wang,Y.Tang, and B.Zhang,Phys.Rev.A 83,033423(2011).

    [20]A.T.J.B.Eppink and D.H.Parker,Rev.Sci.Instrum. 68,3477(1997).

    [21]J.C.Lorquet and B.Leyh,Org.Mass Spectrum.28, 1225(1993).

    [22]B.D.Koplitz and J.K.McVey,J.Chem.Phys.81, 4963(1984).

    [23]C.F.Logan,J.C.Ma,and P.Chen,J.Am.Chem.Soc. 116,2137(1994).

    [24]A.Nicolaides,D.M.Smith,F.Jensen,and L.Radom, J.Am.Chem.Soc.119,8083(1997).

    [25]J.Peng,N.Puskas,P.B.Corkum,D.M.Rayner,and A.V.Loboda,Anal.Chem.84,5633(2012).

    [26]D.Staedter,N.Thir′e,L.Polizzi,Y.Mairesse,P.Mayer, and V.Blanchet,J.Chem.Phys.142,194306(2015).

    [27]S.A.Trushin,W.Fuss,W.E.Schmid,and K.L. Kompa,J.Phys.Chem.A 102,4129(1998).

    [28]Y.J.Jung,Y.S.Kim,W.K.Kang,and K.H.Jung, J.Chem.Phys.107,7187(1997).

    久久 成人 亚洲| 精品亚洲乱码少妇综合久久| 亚洲精品日韩在线中文字幕| 18禁动态无遮挡网站| 日本av手机在线免费观看| 久久97久久精品| 十分钟在线观看高清视频www | 亚洲人与动物交配视频| 卡戴珊不雅视频在线播放| 能在线免费看毛片的网站| 国产精品嫩草影院av在线观看| a级毛片免费高清观看在线播放| 日韩大片免费观看网站| 午夜免费男女啪啪视频观看| 男女国产视频网站| 深爱激情五月婷婷| 能在线免费看毛片的网站| 精品一区二区三区视频在线| 久久韩国三级中文字幕| 国产精品女同一区二区软件| 久久韩国三级中文字幕| 亚洲综合精品二区| 亚洲国产精品成人久久小说| 国产视频内射| 如何舔出高潮| 高清毛片免费看| 精品久久久噜噜| 色5月婷婷丁香| 色5月婷婷丁香| 蜜臀久久99精品久久宅男| 多毛熟女@视频| 色婷婷久久久亚洲欧美| a级一级毛片免费在线观看| 身体一侧抽搐| 777米奇影视久久| 亚洲精品国产av成人精品| 丝瓜视频免费看黄片| 久久鲁丝午夜福利片| av播播在线观看一区| 国产精品一区二区在线不卡| 性色av一级| 亚洲精华国产精华液的使用体验| 国产乱人视频| 青春草亚洲视频在线观看| 少妇 在线观看| 国产伦精品一区二区三区四那| 亚洲精品aⅴ在线观看| 国产国拍精品亚洲av在线观看| 热99国产精品久久久久久7| 新久久久久国产一级毛片| 国产黄片美女视频| 成人国产av品久久久| 亚洲欧美精品自产自拍| 日韩av免费高清视频| 亚洲精品日本国产第一区| 国产成人a区在线观看| 国产av码专区亚洲av| av免费在线看不卡| 久久久久网色| 久久久欧美国产精品| 国产乱人视频| 校园人妻丝袜中文字幕| 国产欧美日韩一区二区三区在线 | 精品一品国产午夜福利视频| 永久免费av网站大全| 777米奇影视久久| 高清欧美精品videossex| 亚洲国产精品国产精品| 成年美女黄网站色视频大全免费 | 日韩中字成人| 一本久久精品| 国产成人精品一,二区| 国产精品久久久久久久电影| 亚洲自偷自拍三级| 在现免费观看毛片| 日韩在线高清观看一区二区三区| 日本av免费视频播放| 国产综合精华液| 国产精品久久久久久久久免| 色网站视频免费| 色吧在线观看| 免费观看的影片在线观看| 黄色欧美视频在线观看| 国产黄色免费在线视频| 啦啦啦中文免费视频观看日本| 嘟嘟电影网在线观看| 国产在线免费精品| 国产欧美另类精品又又久久亚洲欧美| 国内精品宾馆在线| 日日摸夜夜添夜夜添av毛片| 久久精品国产自在天天线| 亚洲aⅴ乱码一区二区在线播放| 亚洲精品456在线播放app| 免费看光身美女| 精品久久久久久久久亚洲| 久久6这里有精品| 亚洲人成网站在线播| 网址你懂的国产日韩在线| 菩萨蛮人人尽说江南好唐韦庄| 日韩欧美精品免费久久| 99久久精品一区二区三区| 日韩av在线免费看完整版不卡| 日韩强制内射视频| 嘟嘟电影网在线观看| 看十八女毛片水多多多| 97超视频在线观看视频| 少妇 在线观看| 欧美+日韩+精品| 观看av在线不卡| 少妇猛男粗大的猛烈进出视频| 欧美成人精品欧美一级黄| 男女无遮挡免费网站观看| 国产午夜精品一二区理论片| 精品一区二区三区视频在线| 丝袜喷水一区| 精品少妇黑人巨大在线播放| av.在线天堂| 一区二区av电影网| av国产精品久久久久影院| 国产片特级美女逼逼视频| 成人美女网站在线观看视频| 久久国产精品大桥未久av | 人人妻人人澡人人爽人人夜夜| 高清午夜精品一区二区三区| 久久99蜜桃精品久久| 亚洲国产欧美在线一区| 最后的刺客免费高清国语| 国产一级毛片在线| 99国产精品免费福利视频| av.在线天堂| 纯流量卡能插随身wifi吗| 亚洲人成网站在线播| 国产在线男女| 欧美三级亚洲精品| 亚洲精品日韩在线中文字幕| 免费观看a级毛片全部| 免费久久久久久久精品成人欧美视频 | 欧美日韩亚洲高清精品| 极品少妇高潮喷水抽搐| 熟女av电影| 永久免费av网站大全| 99久久精品热视频| 观看美女的网站| 午夜激情福利司机影院| 亚洲第一av免费看| 久久这里有精品视频免费| 高清视频免费观看一区二区| 波野结衣二区三区在线| 国产精品偷伦视频观看了| 最近最新中文字幕免费大全7| 日本av手机在线免费观看| 亚洲,一卡二卡三卡| 久久国内精品自在自线图片| 麻豆精品久久久久久蜜桃| 一个人免费看片子| 国产大屁股一区二区在线视频| 国产伦理片在线播放av一区| 国产一区有黄有色的免费视频| 99热这里只有是精品50| 秋霞伦理黄片| 国产在线视频一区二区| 成人亚洲欧美一区二区av| freevideosex欧美| 高清午夜精品一区二区三区| 在线看a的网站| 91午夜精品亚洲一区二区三区| 亚洲激情五月婷婷啪啪| 日韩三级伦理在线观看| 高清日韩中文字幕在线| 国产精品av视频在线免费观看| 亚洲怡红院男人天堂| 亚洲av电影在线观看一区二区三区| av女优亚洲男人天堂| av线在线观看网站| 国产一区二区三区综合在线观看 | 婷婷色综合大香蕉| 又粗又硬又长又爽又黄的视频| 高清不卡的av网站| 国产精品一区www在线观看| 精品亚洲成a人片在线观看 | 日韩成人av中文字幕在线观看| 成年人午夜在线观看视频| 女的被弄到高潮叫床怎么办| 80岁老熟妇乱子伦牲交| 九九在线视频观看精品| 国产黄色免费在线视频| 爱豆传媒免费全集在线观看| 久久青草综合色| 毛片女人毛片| 18禁动态无遮挡网站| 欧美一级a爱片免费观看看| 在线观看一区二区三区激情| 欧美97在线视频| 欧美日韩综合久久久久久| 永久免费av网站大全| 汤姆久久久久久久影院中文字幕| 欧美精品一区二区免费开放| 欧美bdsm另类| 黑人高潮一二区| a级毛片免费高清观看在线播放| 综合色丁香网| 婷婷色综合www| 久久人人爽人人片av| 久久精品国产亚洲网站| 蜜桃亚洲精品一区二区三区| 免费看不卡的av| 高清午夜精品一区二区三区| 亚洲精品日韩av片在线观看| 成人特级av手机在线观看| a级毛片免费高清观看在线播放| 噜噜噜噜噜久久久久久91| 男男h啪啪无遮挡| 美女视频免费永久观看网站| 在线播放无遮挡| 久久久亚洲精品成人影院| 国产精品一及| 精品久久久精品久久久| 色视频www国产| 国产大屁股一区二区在线视频| 黄色日韩在线| 最黄视频免费看| 久久人人爽av亚洲精品天堂 | 日本黄色日本黄色录像| 亚洲欧美日韩无卡精品| 亚洲精品国产色婷婷电影| 婷婷色综合www| 亚洲人成网站在线播| 色5月婷婷丁香| 国产精品一区二区在线观看99| 午夜福利在线观看免费完整高清在| 国产乱人视频| 最近最新中文字幕免费大全7| 亚洲综合色惰| 亚洲国产欧美在线一区| 免费观看的影片在线观看| 日本欧美视频一区| 男女免费视频国产| 啦啦啦在线观看免费高清www| 美女国产视频在线观看| 性色avwww在线观看| tube8黄色片| 寂寞人妻少妇视频99o| 最近最新中文字幕免费大全7| 国产成人a∨麻豆精品| 中文字幕免费在线视频6| 少妇高潮的动态图| 看非洲黑人一级黄片| 女人十人毛片免费观看3o分钟| 亚洲av不卡在线观看| 人人妻人人爽人人添夜夜欢视频 | 国产精品麻豆人妻色哟哟久久| 99视频精品全部免费 在线| 丰满人妻一区二区三区视频av| 一级毛片我不卡| 亚洲图色成人| 国产高清不卡午夜福利| 久久久久精品久久久久真实原创| 91精品国产国语对白视频| 特大巨黑吊av在线直播| 日本黄色日本黄色录像| 国内揄拍国产精品人妻在线| 超碰av人人做人人爽久久| 18禁动态无遮挡网站| 成人亚洲精品一区在线观看 | 国精品久久久久久国模美| 精品亚洲乱码少妇综合久久| 1000部很黄的大片| 在线观看美女被高潮喷水网站| 亚洲国产成人一精品久久久| 欧美日韩一区二区视频在线观看视频在线| 亚洲国产欧美在线一区| 国产在视频线精品| 亚洲av中文字字幕乱码综合| 日本午夜av视频| 黄色怎么调成土黄色| 九九爱精品视频在线观看| 国产黄片美女视频| 亚洲国产欧美在线一区| 久久人人爽人人片av| 免费av不卡在线播放| 国产成人精品婷婷| 美女高潮的动态| 久久女婷五月综合色啪小说| 菩萨蛮人人尽说江南好唐韦庄| 亚洲成人手机| av在线老鸭窝| 中文字幕av成人在线电影| 久久人人爽av亚洲精品天堂 | 国产黄频视频在线观看| 国产综合精华液| 国产乱来视频区| 人人妻人人爽人人添夜夜欢视频 | 亚洲无线观看免费| 3wmmmm亚洲av在线观看| 亚洲欧美日韩卡通动漫| 亚洲不卡免费看| 欧美区成人在线视频| 在线观看三级黄色| 水蜜桃什么品种好| 欧美+日韩+精品| 99精国产麻豆久久婷婷| 国产在线男女| 边亲边吃奶的免费视频| 国产精品一区二区在线不卡| 亚洲美女搞黄在线观看| av福利片在线观看| 激情五月婷婷亚洲| 老熟女久久久| 欧美xxⅹ黑人| 少妇的逼好多水| 日日啪夜夜撸| 97超视频在线观看视频| 毛片女人毛片| 男女无遮挡免费网站观看| 亚洲精品,欧美精品| 欧美成人a在线观看| 亚洲人成网站高清观看| 久久精品人妻少妇| 黑人猛操日本美女一级片| 啦啦啦啦在线视频资源| 九草在线视频观看| 国产成人91sexporn| 2021少妇久久久久久久久久久| 国产伦精品一区二区三区四那| 亚洲天堂av无毛| 欧美xxxx黑人xx丫x性爽| 又黄又爽又刺激的免费视频.| 国产乱人视频| 亚洲aⅴ乱码一区二区在线播放| 国产日韩欧美在线精品| 汤姆久久久久久久影院中文字幕| 亚洲精品久久午夜乱码| 嘟嘟电影网在线观看| 成人免费观看视频高清| 亚洲av男天堂| 日韩亚洲欧美综合| 大又大粗又爽又黄少妇毛片口| 精品人妻偷拍中文字幕| 天美传媒精品一区二区| 国产亚洲av片在线观看秒播厂| 我的老师免费观看完整版| 成人影院久久| 女的被弄到高潮叫床怎么办| 伦精品一区二区三区| 2022亚洲国产成人精品| 亚洲高清免费不卡视频| 亚洲第一av免费看| 91aial.com中文字幕在线观看| 亚洲高清免费不卡视频| 国产精品国产av在线观看| 婷婷色综合大香蕉| 最近手机中文字幕大全| 人人妻人人爽人人添夜夜欢视频 | 精品国产三级普通话版| 熟女人妻精品中文字幕| 亚洲内射少妇av| 中文字幕亚洲精品专区| 久久av网站| 最近最新中文字幕免费大全7| 王馨瑶露胸无遮挡在线观看| 舔av片在线| 秋霞在线观看毛片| 国产成人精品福利久久| 国产欧美另类精品又又久久亚洲欧美| 国产精品一区www在线观看| 五月开心婷婷网| 搡老乐熟女国产| 日本欧美视频一区| 日本色播在线视频| 美女内射精品一级片tv| 欧美成人精品欧美一级黄| 少妇高潮的动态图| 菩萨蛮人人尽说江南好唐韦庄| 免费观看的影片在线观看| 黄色欧美视频在线观看| 亚洲一区二区三区欧美精品| 欧美少妇被猛烈插入视频| 亚洲av免费高清在线观看| 久久久a久久爽久久v久久| 99精国产麻豆久久婷婷| 观看av在线不卡| 综合色丁香网| 亚洲av综合色区一区| 国产在线男女| freevideosex欧美| 美女xxoo啪啪120秒动态图| 美女cb高潮喷水在线观看| 国产亚洲av片在线观看秒播厂| 高清午夜精品一区二区三区| 丰满人妻一区二区三区视频av| 国产免费一区二区三区四区乱码| 青春草国产在线视频| 日韩在线高清观看一区二区三区| 男的添女的下面高潮视频| 一级a做视频免费观看| 黄色视频在线播放观看不卡| 成人美女网站在线观看视频| 精品国产露脸久久av麻豆| 国产男人的电影天堂91| 在现免费观看毛片| 久久毛片免费看一区二区三区| 纵有疾风起免费观看全集完整版| 免费观看性生交大片5| 久久毛片免费看一区二区三区| 大片电影免费在线观看免费| 免费黄频网站在线观看国产| 久久99热这里只有精品18| 亚洲av不卡在线观看| 亚洲美女黄色视频免费看| 国产精品国产三级国产专区5o| 日韩av不卡免费在线播放| a 毛片基地| 制服丝袜香蕉在线| 亚洲国产最新在线播放| 三级经典国产精品| 亚洲aⅴ乱码一区二区在线播放| 久久久久久久久久成人| 91久久精品国产一区二区三区| 日韩一区二区视频免费看| 国产亚洲欧美精品永久| 99热这里只有是精品50| 久久99热这里只有精品18| 亚洲美女搞黄在线观看| 精品国产乱码久久久久久小说| 极品教师在线视频| 在线观看免费日韩欧美大片 | 国产永久视频网站| 亚洲av免费高清在线观看| 亚洲电影在线观看av| 午夜福利影视在线免费观看| 亚洲av二区三区四区| 91精品伊人久久大香线蕉| 日韩,欧美,国产一区二区三区| 欧美日韩视频高清一区二区三区二| 亚洲精品一二三| 成人特级av手机在线观看| 亚洲av中文字字幕乱码综合| 又粗又硬又长又爽又黄的视频| 最近最新中文字幕大全电影3| 一区二区av电影网| 亚洲国产成人一精品久久久| 欧美精品一区二区免费开放| 亚洲精品第二区| 久久热精品热| 久久久色成人| 精品国产露脸久久av麻豆| 六月丁香七月| 看免费成人av毛片| 搡老乐熟女国产| 成人午夜精彩视频在线观看| 国产男人的电影天堂91| 久久精品久久久久久噜噜老黄| 美女福利国产在线 | 99热国产这里只有精品6| 成人二区视频| 黄片无遮挡物在线观看| 免费黄色在线免费观看| 美女脱内裤让男人舔精品视频| 免费大片18禁| 国产伦在线观看视频一区| 我要看日韩黄色一级片| 精品一品国产午夜福利视频| 久久久久视频综合| 亚洲av成人精品一区久久| 视频区图区小说| 秋霞在线观看毛片| 国产爱豆传媒在线观看| 国产精品久久久久成人av| 精品熟女少妇av免费看| 亚洲婷婷狠狠爱综合网| 欧美高清成人免费视频www| 日韩伦理黄色片| 日韩一区二区三区影片| 2022亚洲国产成人精品| 免费在线观看成人毛片| 国产黄色免费在线视频| 国产成人aa在线观看| 人妻夜夜爽99麻豆av| 国产精品女同一区二区软件| 国产成人a区在线观看| 亚洲av成人精品一二三区| 久久精品夜色国产| 国产女主播在线喷水免费视频网站| 国产在视频线精品| 亚洲成色77777| av国产精品久久久久影院| 久久久久国产网址| 久久久久久久精品精品| 人人妻人人爽人人添夜夜欢视频 | 亚洲一区二区三区欧美精品| 美女内射精品一级片tv| 欧美激情极品国产一区二区三区 | 亚洲欧洲日产国产| 国产精品久久久久久久久免| 欧美最新免费一区二区三区| av免费在线看不卡| videossex国产| 成人一区二区视频在线观看| 少妇人妻一区二区三区视频| 久久韩国三级中文字幕| tube8黄色片| av网站免费在线观看视频| 卡戴珊不雅视频在线播放| 小蜜桃在线观看免费完整版高清| 国产精品av视频在线免费观看| 欧美xxxx黑人xx丫x性爽| 国产 一区 欧美 日韩| 日韩av在线免费看完整版不卡| 综合色丁香网| 少妇精品久久久久久久| 自拍偷自拍亚洲精品老妇| 我要看黄色一级片免费的| 蜜桃在线观看..| 26uuu在线亚洲综合色| 日本欧美国产在线视频| 国产成人freesex在线| 99九九线精品视频在线观看视频| 欧美高清成人免费视频www| 国产亚洲午夜精品一区二区久久| 蜜桃久久精品国产亚洲av| 男女下面进入的视频免费午夜| 老熟女久久久| 久久久成人免费电影| 老熟女久久久| 看非洲黑人一级黄片| 极品教师在线视频| av播播在线观看一区| 丝袜脚勾引网站| 边亲边吃奶的免费视频| 在线免费十八禁| 久久热精品热| 秋霞在线观看毛片| 国产一区二区三区av在线| 亚洲国产成人一精品久久久| 99热国产这里只有精品6| 特大巨黑吊av在线直播| 欧美精品一区二区免费开放| 国产精品一二三区在线看| 自拍偷自拍亚洲精品老妇| 国产视频内射| 汤姆久久久久久久影院中文字幕| 韩国高清视频一区二区三区| 精华霜和精华液先用哪个| 在线亚洲精品国产二区图片欧美 | 妹子高潮喷水视频| 免费人妻精品一区二区三区视频| 国产精品99久久99久久久不卡 | 最近最新中文字幕免费大全7| 国产91av在线免费观看| 看非洲黑人一级黄片| 伊人久久国产一区二区| 视频区图区小说| 内地一区二区视频在线| 亚洲av成人精品一二三区| 直男gayav资源| 日日撸夜夜添| 亚洲国产毛片av蜜桃av| 亚洲国产av新网站| 国产日韩欧美亚洲二区| 亚洲一级一片aⅴ在线观看| 老师上课跳d突然被开到最大视频| 日本wwww免费看| 高清在线视频一区二区三区| 我的女老师完整版在线观看| 亚洲人成网站在线播| 欧美bdsm另类| 直男gayav资源| 中国三级夫妇交换| 精品亚洲成a人片在线观看 | 伊人久久国产一区二区| 一级毛片 在线播放| 精品久久久噜噜| 夫妻午夜视频| 成年女人在线观看亚洲视频| 男女边吃奶边做爰视频| 秋霞伦理黄片| 中国国产av一级| 国产一区二区三区综合在线观看 | 欧美高清性xxxxhd video| 黑人猛操日本美女一级片| 国产av精品麻豆| 成人二区视频| 色哟哟·www| 大陆偷拍与自拍| 免费看av在线观看网站| 日韩av免费高清视频| 波野结衣二区三区在线| 性色av一级| 国产亚洲欧美精品永久| 国产精品一区二区在线观看99| 国产精品一二三区在线看| 亚洲av福利一区| 三级经典国产精品| 韩国高清视频一区二区三区| 国产亚洲91精品色在线| 波野结衣二区三区在线| 妹子高潮喷水视频| 有码 亚洲区| 美女脱内裤让男人舔精品视频| 免费看日本二区| 大片电影免费在线观看免费| 免费av不卡在线播放| 免费看av在线观看网站| 麻豆国产97在线/欧美| 美女脱内裤让男人舔精品视频| 嘟嘟电影网在线观看| 丰满乱子伦码专区| 国产高清不卡午夜福利| 久热久热在线精品观看| av一本久久久久| 欧美xxⅹ黑人| 国产深夜福利视频在线观看| 久久综合国产亚洲精品| 精品人妻偷拍中文字幕| 又黄又爽又刺激的免费视频.|