• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    ARTICLE Photodissociation Dynamics of 2-Iodotoluene Investigated by Femtosecond Time-Resolved Mass Spectrometry?

    2016-04-08 06:35:42ZhimingLiuYanmeiWangChunlongHuJinyouLongBingZhangStateKeyLaboratoryofMagneticResonanceandAtomicandMolecularPhysicsWuhanInstituteofPhysicsandMathematicsChineseAcademyofSciencesWuhan430071ChinaDatedReceivedonNovember
    CHINESE JOURNAL OF CHEMICAL PHYSICS 2016年1期

    Zhi-ming Liu,Yan-mei Wang,Chun-long Hu,Jin-you Long,Bing Zhang?State Key Laboratory of Magnetic Resonance and Atomic and Molecular Physics,Wuhan Institute of Physics and Mathematics,Chinese Academy of Sciences,Wuhan 430071,China(Dated:Received on November 15,2015;Accepted on January 14,2016)

    ?

    ARTICLE Photodissociation Dynamics of 2-Iodotoluene Investigated by Femtosecond Time-Resolved Mass Spectrometry?

    Zhi-ming Liu,Yan-mei Wang,Chun-long Hu,Jin-you Long,Bing Zhang?
    State Key Laboratory of Magnetic Resonance and Atomic and Molecular Physics,Wuhan Institute of Physics and Mathematics,Chinese Academy of Sciences,Wuhan 430071,China
    (Dated:Received on November 15,2015;Accepted on January 14,2016)

    The photodissociation dynamics of 2-iodotoluene following excitation at 266 nm have been investigated employing femtosecond time-resolved mass spectrometry.The photofragments are detected by multiphoton ionization using an intense laser fi eld centered at 800 nm.A dissociation time of 380±50 fs was measured from the rising time of the co-fragments of toluene radical(C7H7)and iodine atom(I),which is attributed to the averaged time needed for the C?I bond breaking for the simultaneously excited nσ?and ππ?states by 266 nm pump light.In addition,a probe light centered at 298.23 nm corresponding to resonance wavelength of ground-state iodine atom is used to selectively ionize ground-state iodine atoms generated from the dissociation of initially populated nσ?and ππ?states.And a rise time of 400±50 fs is extracted from the fi tting of time-dependent I+transient,which is in agreement with the dissociation time obtained by multiphoton ionization with 800 nm,suggesting that the main dissociative products are ground-state iodine atoms.

    Key words:2-Iodotoluene,Photodissociation,Dissociation time,Femtosecond timeresolved mass spectrometry

    ?Part of the special issue for“the Chinese Chemical Society’s 14th National Chemical Dynamics Symposium”.

    ?Author to whom correspondence should be addressed.E-mail: bzhang@wipm.ac.cn,Tel.:+86-27-87197441,FAX:+86-27-87198491

    I.INTRODUCTION

    The photodissociation dynamics of halogenated organic compounds has attracted historically great attention,not only due to its crucial role in highly detailed fundamental studies but also its harmfulness to environment[1?17].The principal goal of photodissociation studies is to obtain the clearest picture of the molecular dynamics in the excited state as the molecule leaves the Franck-Condon region such as what transient states to traverse,where the fragments are formed,what the lifetime of the upper state is and which bonds break and so on.Many experimental techniques have been developed to investigate photodissociation reaction process,for instance photofragment translation spectroscopy[4?6], velocity map imaging[7,8]and ultrafast time-resolved time-of- fl ight mass spectrometry[9?15],which are coupled with high level ab initio calculations[15?17]to provide a clear picture of the fragmentation mechanisms of molecules.

    The UV absorption spectra of aryl iodine are dominated by two contributions:one is the nσ?states resulting from the promotion of a nonbonding electron from the iodine atom valence shell to an antibonding σ?localized along the C?I bond,which leads to a rapid direct dissociation,and the other is due to the absorption to the bound ππ?states of the benzene ring which has predissociation character for the coupling with repulsive nσ?states.As a result of the overlap of these two di ff erent type states in the same energy region,the dynamics cannot be directly obtained from the absorption spectrum.Femtosecond time-resolved mass spectrometry coupled with state-selective resonance enhanced multiphoton ionization has been emerging as a powerful tool for investigating photodissciation dynamics process.It has two major advantages:the fi rst one is mass selectivity,which allows for the separate study of the reactant and fragment dynamics,the second one is the ability of selectively monitoring all fragments of di ff erent masses or same masses in di ff erent fi nal state as well as the parent ion simultaneously.

    2-Iodotoluene,which is formed by substitution of an iodine atom and a methyl group for two neighboring hydrogen atoms of the benzene,is a very interesting system for study.Using state-selective onedimensional photofragment translational spectroscopy, El-Sayed et al.investigated the photodissociation dynamics of 2-iodotoluene upon excitation at 266 nm[6]. The spatial and velocity distributions of ground-state iodine atom I and excited state iodine atom I?were determined.Two distinct ground-state iodine atoms velocity distributions were observed.One is a high velocity,narrow distribution with high anisotropy,whichis attributed to direct dissociation from the repulsive nσ?state.The other one is a low velocity,broader distribution appearing lower anisotropy,which is due to the predissociation from the bound ππ?state.The dissociation times for these two channels were estimated by calculating time-dependence of anisotropy parameter β.Fang et al.have calculated the potential energy curves for the ground and low-lying excited states of 2-iodotoluene along the assumed photolysis reaction coordinates and elucidated the dissociation mechanism and channels following excitation at 266 nm[17].

    Based on the previous studies on aryl halides,in this work,we identify the photodissociation dynamics of 2-iodotoluene and the processes that participate in the relaxation of the molecule after being initiated by excitation at 266 nm.Especially,the determination of time scales for the dissociation channels is the focus on. Although previous experiment has estimated the dissociation times through measurements of the anisotropy [6],the accuracy is low especially when reaction time is more or comparable to the average rotation time of the parent molecule.Femtosecond time-resolved mass spectrometry enables one to directly measure the dissociation time.To the best of our knowledge,this is the fi rst time-resolved study on the photoinduced C?I bond breaking of 2-iodotoluene at 266 nm.

    II.EXPERIMENTAL SETUP

    The details of the experimental setup are described elsewhere[18].Brie fl y,it consists of a molecular beam machine coupled to a linear time of fl ight mass spectrometer and a 1 kHz-4 mJ/pulse Ti:Sapphire regenerative-ampli fi ed laser system(Coherent Inc.),delivering pulses with a central wavelength of~800 nm and a Fourier-transform-limited full width at halfmaximum(FWHM)duration of~100 fs.One part of the output light was used to produce the pump pulse at 266 nm by mixing the fundamental(800 nm)and the second harmonic beam(400 nm)in a 0.2 mm thick BBO crystal.One part was applied to pump an optical parametric ampli fi er(OPA,Coherent Inc.TOPAS-C) to generate probe wavelength centered at 298.23 nm, which is used for the resonance-enhanced multiphoton ionization(REMPI)probing of ground-state I atoms. Another part was used as probe light to track the relaxation processes of 2-iodotoluene.The energy intensity for pump light is 0.5μJ/pulse which keeps no ion signal occurring with it alone.For the probe light,the typical energy is 10 and 60μJ/pulse for the 298.23 and 800 nm respectively.The probe beam was temporally delayed relative to the pump beam by a computer-controlled linear translation stage(PI,M-126.CG1).The two laser beams were focused with fused silica lens of f=400 mm respectively and introduced into the vacuum chamber collinearly through a dichroic mirror.

    The employed apparatus[19]is similar to that designed by Eppink and Parker[20].It consists of a molecular-beam source chamber and an ionization- fl ight detection chamber.The detection chamber was kept below 0.5μPa with the molecular beam on.2-Iodotoluene (99.9%purity)seeded in He was expanded into the source chamber with a stagnation pressure of 2 atm through a pulsed nozzle(General Valve,with a 0.5 mm ori fi ce)with the repetition rate of 10 Hz.The supersonic molecular beam is collimated by a conical skimmer and intersects perpendicularly with the two laser beams in a two-stage ion lens region.Photoion is extracted into a 36 cm fi eld-free region,which is doubly shielded against stray magnetic fi elds byμ-metal tube.At the end of the time-of- fl ight tube,the ions strike a twostage microchannel plate detector backed by a phosphor screen.The emission from the phosphor screen is monitored by a photomultiplier connected to a 1 GS/s digital oscilloscope(Tektronix Inc.,TDS2012B)USB interfaced with a computer.The LabView software was used to track the parent ion and fragments signal as function of pump-probe delay time simultaneously.

    III.RESULTS AND DISCUSSION

    With the help of detailed theoretical calculation[17] and experimental investigation[6]on 2-iodotoluene,it is easy to determine that upon excitation at 266 nm,the dominant excited states are the ππ?state with a bound character and the nσ?state with a repulsive character along the C?I stretching coordinate,which leads to the production of ground-state iodine atoms.So,the parallel relaxation processes for those two excited states are monitored by probe pulse which ionized the excited molecules.

    Figure 1(a)displays the time-of- fl ight mass spectra obtained with the pump pulse at 266 nm alone,the probe pulse at 800 nm alone and in pump-probe con fi guration at?t=0(time-overlap).The power of the probe light is~26μJ/pulse.As observed in the mass spectra, there are many fragment ions generated other than parent ion C7H7I+,especially for toluene ion C7H7+which is the dominant signal in the mass spectra,indicating that the parent ion will to a large extent undergo photoinduced fragmentation[21,22],which is similar to the femtosecond pump-probe investigation on iodobenzene [10].Figure 1(b)shows the measured time transients of the total signals of,following excitation at 266 nm and probe with 800 nm(26μJ/pulse). The polarizations of pump and probe beam are parallel with each other.The decay time pro fi le for parent ioncan be best fi tted by one exponential with decay time constant τdof 92±10 and 129±15 fs respectively convoluted with a Gaussian that describes the pump-probe cross correlation.

    FIG.1(a)One color and two color(at time overlap)mass spectra of 2-iodotoluene at 266 and 800 nm.The typical energy was 0.5 and 26μJ/pulse for the 266 nm pump and 800 nm probe pulse respectively.(b)Time-resolved C7H7I+and C7H7+transients recorded under the same conditions as(a),the circles represent experimental data and the solid lines are fi tting results.

    It is not likely that those fragment ions shown in Fig.1(a)are produced from the ionization of the corresponding neutral radicals,which is generated from dissociation of neutral molecules or fragmentation of molecular ion,due to their high ionization potential under our low probe light intensity.For instance,ionization of neutral toluene radical would require absorption at least six probe photons(800 nm)since the ionization potential of the toluene radical is expected to be only slightly lower than the ionization potential of the phenyl radical,which is 9.13 eV[23,24].If the neutral radicals can be detected,the time-pro fi le of C7H7+should have a stable channel at longer pump-probe delay time, which is not observed on the fragment ion in Fig.1(b), indicating that the neutral radical C7H7generated from dissociation in electronically excited states induced by the pump pulse is not ionized by the probe pulse 800 nm with intensity of 26μJ/pulse.So,it is expected that all fragment ions observed here are originated from dissociative ionization of parent molecules.Since no ion signals were generated with pump pulse alone,the timedependent fragment ions signal should also re fl ect the neutral excited states dynamics of 2-iodotoluene.

    The repulsive nσ?and the bound ππ?states can be excited simultaneously.So,it is expected that two decay components should be observed on the time pro fi le of parent ion or fragment ions.Such kinetics is observed on iodobenzene molecule[10].Unfortunately,only one decay component is observed for C7H7I+and C7H7+transients shown in Fig.1(b)and we tend to attribute this component to the decay dynamics of the initially populated nσ?state.There are two possible reasons for not observing the contribution from ππ?state:one is that the absorption cross-section of the ππ?state is much lower than the nσ?state and indeed the absorption coe ffi cient of the nσ?state is an order larger than that of the ππ?state according to the theoretical calculation[7];another one is that the ionization crosssection for the ππ?state is probable low with 800 nm as probe light.Thus,the ionization signal from the ππ?state would be faint,which is likely to be suppressed by strong ionization signal from the nσ?state.

    Now we turn to discuss the observed lifetime τd, which is assigned to the decay dynamics of the initial populated nσ?state as mentioned above.Indeed,a very fast relaxation will occur when excited to this state due to its repulsive character.Using state-selective photofragment translational spectroscopy Freitas and coworkers[6]studied the photodissociation dynamics of 2-iodotoluene upon excitation by 266 nm and observed a sharp high velocity distribution of ground-state iodine atoms,which was assigned to a direct dissociation occurring on the nσ?state.And they estimated the dissociation time(0.51 ps)of C?I bond on this state by calculating β variation as a function of time.According to the calculations[17],it has big possibility for the molecules to stay on this state during decay processes.Therefore,the observed lifetime for the decay of nσ?state should be shorter than the dissociation time which is associated with the time needed from the Franck-Condon region to the production of freedom iodine atoms.Thus,the fi tted τdis reasonable and not contradicted with the estimated dissociation time of 0.51 ps in Freitas’work.It is persuasive to assign the lifetime constant τdto the decay dynamics on the initially excited nσ?state.

    FIG.2 The mass spectra of 2-iodotoluene obtained with 266 nm pump light alone and 800 nm probe light alone and at time overlap between pump and probe light.The typical energy was 0.5 and 60μJ/pulse for the 266 nm pump and 800 nm probe pulse respectively.

    In order to get more insight to the dissociation dynamics of the excited states induced by 266 nm,we increase the power of probe pulse to try to detect the dissociative products.It is an ideal tool to detect molecular species with easily achieved multiphoton ionization using femtosecond lasers[25].By increasing the power of the probe beam from 26μJ/pulse to 60μJ/pulse, a time-of- fl ight mass spectrum recorded at pump-probe delay time zero is shown in Fig.2.More visible fragment ions signal intensity is observed compared with the mass spectrum obtained with probe intensity 26μJ/pulse. To follow the transient dynamics for these fragment ions,the signal intensities against the pump-probe delay time for these peaks were acquired,which is shown in Fig.3.The temporal behavior of all fragment ions can be well fi tted to one fast decay component and one rise component,convoluted with a Gaussian describing the pump-probe cross correlation.All decay and rise times measured for all cation transients are summarized in Table I.Those two components correspond to two di ff erent channels for the production of the fragment ions.For the fast decay time constant τd,it is reasonable to attribute this component to the dissociation of the parent ions after the pump-probe ionization, since it has similar trend to the parention time pro fi le shown in Fig.3.For the second rising component τr,it is a constant component without decay.Furthermore,this component depends greatly on the power of the probe beam.Thus this component is attributed to the ionization of the neutral fragments generated by the pump pulse.As mentioned above,the dissociative products are toluene radical C7H7and iodine atom I induced by the pump light.So,it is easy to assign the rise component fortransients to the ionization of neutral C7H7and I.It is very interesting to observe that thetransients also show the rise component.By closely inspecting the time pro fi le of these transients,it is discovered that the time constants τrare in agreement with that forThus,it is likely that the rise components intransients are from the dissociative ionization of neutral radical C7H7.Indeed,there are no dissociative channels from the parent molecules to product neutral radical C5H4,C4H2and C3H2after being excited by 266 nm,which further evidence our conclusion.So,the τrcomponents in these fragment ions transients re fl ect the same dynamics as in. It is worth noting that the rise time constant τrre fl ects the averaged time needed for all dissociative channels initialed by 266 nm,leading to generation of neutral radical C7H7and iodine atom I.

    FIG.3 Time-resolved cation transients recorded under the same conditions as Fig.2.The circles represent experimental data and the solid lines are fi tting results.All transients are normalized to their maxima value.

    TABLE I The time constants extracted from the fi ts of all cation transients shown in Fig.3.

    It is interesting that the decay times increase as the mass of the fragment ions decreases.As mentioned above,the decay components in all fragment ions transients are from the fragmentation after pump-probe ionization of parent molecule.These observations are similar to the ones obtained,for instance,on tetrathiafulvalene and Cr(CO)6probed with an intense probe pulse[26,27].Here as well,the degree of fragmentation is weaker at small pump-probe delays and becomes stronger at long pump-probe delays.As explained,when the molecule relaxes,the electronic energy is converted into vibrational energy,which remains in the ion upon ionization.Dissociative ionization is sensitive to vibrational relaxation since the bonds in the ion are generally weaker than those of the neutral molecules. Therefore,upon ionization,the internal energy of the ion will be more and more important and fragmentation to the smaller species will take place once intramolecular vibrational relaxation becomes e ff ective[26].

    To gain more information on the photodissociation dynamics of 2-iodotoluene upon excitation by 266 nm, the probe light at 298.23 nm,corresponding to the ground-state iodine atom resonance wavelength[28],is used to track the appearance of ground state iodine atoms product generated by cleavage of C?I bond in this molecule.There are no excited state I atom resonance wavelengths within the bandwidth of the probe light(450 cm?1),which enables us to probe the ground state iodine atoms only.Figure 4 displays the I+transient obtained following excitation at 266 nm and probe with 298.23 nm.It can be fi tted with a single rising exponential convoluted with the Gaussian pumpprobe cross correlation,yielding a rising time constant of 400±50 fs,which re fl ects the average time for all dissociative channels leading to ground state I atoms. Two distinct ground-state I atom spatial and velocity distributions were observed by El-Sayed’s group[6] using nanosecond lasers.One is a high velocity,narrow distribution that exhibits a high anisotropy,which is assigned to the direct dissociation from nσ?state. The other one is a low velocity,broader distribution accompanied by a lower averaged anisotropy,which is attributed to the predissociation dynamics of ππ?state. And they speculated that the dominant products of ground-state I atoms resulted from direct dissociation process.The dissociation time of this process is estimated to be 0.51 ps.The value 400±50 fs extracted from the time transients of ground-state I atom in our experiment is in agreement with the estimated value 0.51 ps[6].Therefore,it is reasonable to conclude that the measured rise time 400±50 fs dominantly re fl ects the dissociation time needed for C?I fi ssion on the nσ?state populated by 266 nm,though we cannot rule out the contribution from the predissociation dynamics of initially excited ππ?state.

    IV.CONCLUSION

    FIG.4 The I+transient obtained following excitation at 266 nm and probing at 298.23 nm corresponding to the resonance wavelength of ground state iodine atom.The circles are experimental data and the solid line is the fi tting result.

    The ultrafast relaxation of 2-iodotoluene has been studied after excitation at 266 nm with the goal of determining the time scales of the dissociation channels.In this excitation wavelength,a repulsive nσ?state and a bound ππ?state are populated simultaneously.The obtained time-pro fi le of parent ion(C7H7I+)with 800 nm as probe light(26 or 60μJ/pulse)can be best fi tted by one decay exponential convoluted with a Gaussian describing the pump-probe cross correlation.However, a decay component and a rise component are needed to fi t the temporal behavior of all fragment ionsobtained with strong intensity of 800 nm probe light(60μJ/pulse).The decay time constant τd(105?245 fs)for all ions re fl ects the decay dynamics of the initially populated repulsive nσ?state.While the rise time constant τr(380?405 fs)is attributed to the averaged dissociation time for all the dissociation channels induced by pump light 266 nm.In addition,we selectively tracked the dissociation channels leading to ground-state iodine atoms using groundstate iodine atom resonance wavelength of 298.23 nm as probe light.The measured appearance time 400±50 fs for I+transient is in agreement with the dissociation time obtained with multiphoton ionization with 800 nm as probe light,which indicates that the main products of dissociation induced by 266 nm are ground-state iodine atoms.

    V.ACKNOWLEDGMENTS

    This work was supported by the National BasicResearchProgramofChina(973Program) (No.2013CB922200)and the National Natural Science Foundation of China(No.91121006,No.21273274, No.21173256,and No.21303255).

    [1]R.S.Mulliken,J.Chem.Phys.8,382(1940).

    [2]R.K.Sparks,K.L.Shobatake,R.Carlson,and Y.T. Lee,J.Chem.Phys.75,3838(1981).

    [3]J.L.Knee,L.R.Khundkar,and A.H.Zewail,J.Chem. Phys.83,1996(1985).

    [4]H.J.Hwang and M.A.El-Sayed,J.Chem.Phys.94, 4877(1991).

    [5]H.J.Hwang and M.A.El-Sayed,J.Phys.Chem.6, 8725(1992).

    [6]J.E.Freitas,H.J.Hwang,and M.A.El-Sayed,J.Phys. Chem.98,3322(1994).

    [7]X.B.Zhang,Z.R.Wei,Y.Tang,T.J.Chao,B.Zhang, and K.C.Lin,ChemPhysChem.9,1130(2008).

    [8]Y.Tang,W.B.Lee,B.Zhang,and K.C.Lin,J.Phys. Chem.A 112,1421(2008).

    [9]P.Y.Cheng,D.Zhong,and A.H.Zewail,Chem.Phys. Lett.237,399(1995).

    [10]M.Kadi,J.Davidsson,A.N.Tarnovsky,M.Rasmusson,and E.?Akesson,Chem.Phys.Lett.350,93(2001).

    [11]M.Kadi and J.Davidsson,J.Chem.Phys.Lett.378, 172(2003).

    [12]M.Kadi,E.Ivasson,and J.Davidsson,Chem.Phys. Lett.384,35(2004).

    [13]R.Montero,A.P.Conde,A.Longarte,F.Casta?no,M. E.Corrales,R.de Nalda,and L.Ba?nares,Phys.Chem. Chem.Phys.12,7988(2010).

    [14]G.Gitzinger,M.E.Corrales,V.Loriot,G.A.Amaral,R.de Nalda,and L.Ba?nares,J.Chem.Phys.132, 24313(2010).

    [15]O.A.Brog,Y.J.Liu,P.Persson,S.Lunell,D.Karlsson,M.Kadi,and M.Davidsson,J.Phys.Chem.A 110,7045(2006).

    [16]Y.J.Liu,P.Persson,H.O.Karlsson,and S.Lunell,J. Chem.Phys.120,6502(2004).

    [17]Y.J.Liu,Y.C.Tian,and W.H.Fang,J.Chem.Phys. 132,014306(2010).

    [18]Y.Z.Liu,B.F.Tang,H.Shen,S.Zhang,and B.Zhang, Opt.Express.18,5791(2010).

    [19]C.C.Qin,Y.Z.Liu,S.Zhang,Y.M.Wang,Y.Tang, and B.Zhang,Phys.Rev.A 83,033423(2011).

    [20]A.T.J.B.Eppink and D.H.Parker,Rev.Sci.Instrum. 68,3477(1997).

    [21]J.C.Lorquet and B.Leyh,Org.Mass Spectrum.28, 1225(1993).

    [22]B.D.Koplitz and J.K.McVey,J.Chem.Phys.81, 4963(1984).

    [23]C.F.Logan,J.C.Ma,and P.Chen,J.Am.Chem.Soc. 116,2137(1994).

    [24]A.Nicolaides,D.M.Smith,F.Jensen,and L.Radom, J.Am.Chem.Soc.119,8083(1997).

    [25]J.Peng,N.Puskas,P.B.Corkum,D.M.Rayner,and A.V.Loboda,Anal.Chem.84,5633(2012).

    [26]D.Staedter,N.Thir′e,L.Polizzi,Y.Mairesse,P.Mayer, and V.Blanchet,J.Chem.Phys.142,194306(2015).

    [27]S.A.Trushin,W.Fuss,W.E.Schmid,and K.L. Kompa,J.Phys.Chem.A 102,4129(1998).

    [28]Y.J.Jung,Y.S.Kim,W.K.Kang,and K.H.Jung, J.Chem.Phys.107,7187(1997).

    国产精品一及| 搡女人真爽免费视频火全软件| 精品国产露脸久久av麻豆 | 亚洲精品日本国产第一区| 国产精品日韩av在线免费观看| 男人舔奶头视频| 日韩在线高清观看一区二区三区| 蜜桃亚洲精品一区二区三区| 男女视频在线观看网站免费| 国产一区亚洲一区在线观看| 神马国产精品三级电影在线观看| 免费av不卡在线播放| 精品国内亚洲2022精品成人| 最近2019中文字幕mv第一页| 日本av手机在线免费观看| 婷婷色综合大香蕉| 亚洲成色77777| 成人午夜精彩视频在线观看| 最近2019中文字幕mv第一页| 久久韩国三级中文字幕| 日韩av免费高清视频| 国产三级在线视频| 伦理电影大哥的女人| 国产色婷婷99| 一级黄片播放器| 国产精品久久视频播放| 午夜激情久久久久久久| 午夜福利在线在线| 国产男女超爽视频在线观看| 人妻一区二区av| 亚洲精品第二区| 最近中文字幕高清免费大全6| 亚洲怡红院男人天堂| 国产精品综合久久久久久久免费| 久久久久久久久中文| 国产中年淑女户外野战色| 日本av手机在线免费观看| 亚洲一级一片aⅴ在线观看| 少妇丰满av| 大话2 男鬼变身卡| 在线播放无遮挡| 国产综合懂色| 青春草国产在线视频| 18禁在线无遮挡免费观看视频| 亚洲av福利一区| 日韩精品青青久久久久久| 少妇高潮的动态图| 联通29元200g的流量卡| 日韩一区二区三区影片| 午夜福利在线观看吧| 亚洲精品国产成人久久av| 最新中文字幕久久久久| 午夜福利高清视频| 国产白丝娇喘喷水9色精品| 国产色婷婷99| 蜜桃久久精品国产亚洲av| 水蜜桃什么品种好| 欧美成人a在线观看| 精品久久国产蜜桃| 久久这里只有精品中国| 身体一侧抽搐| 黄色一级大片看看| 联通29元200g的流量卡| 日韩欧美国产在线观看| 国产乱来视频区| 亚洲综合精品二区| 少妇裸体淫交视频免费看高清| 五月玫瑰六月丁香| 又大又黄又爽视频免费| 亚洲精品乱码久久久久久按摩| 国产精品久久久久久久电影| 国产精品不卡视频一区二区| 亚洲在线观看片| 精品亚洲乱码少妇综合久久| 婷婷色av中文字幕| 在线 av 中文字幕| 大片免费播放器 马上看| av一本久久久久| 亚洲精品乱久久久久久| 亚洲国产精品sss在线观看| 亚洲精品亚洲一区二区| 一级毛片黄色毛片免费观看视频| 久久精品国产亚洲av涩爱| 国产成人午夜福利电影在线观看| 久久精品国产鲁丝片午夜精品| 成年人午夜在线观看视频 | 一级毛片我不卡| 亚洲av电影在线观看一区二区三区 | 男女国产视频网站| 日韩精品有码人妻一区| 成人毛片60女人毛片免费| 人妻制服诱惑在线中文字幕| 午夜免费观看性视频| 欧美成人精品欧美一级黄| 久久午夜福利片| 国产精品女同一区二区软件| 2018国产大陆天天弄谢| 人人妻人人澡欧美一区二区| 人妻夜夜爽99麻豆av| 看十八女毛片水多多多| 国产午夜精品一二区理论片| 午夜久久久久精精品| 久久久久久久大尺度免费视频| 国产精品嫩草影院av在线观看| 亚洲精品影视一区二区三区av| 欧美性猛交╳xxx乱大交人| 国产一区二区亚洲精品在线观看| 亚洲av男天堂| 91aial.com中文字幕在线观看| av在线蜜桃| 精品国产露脸久久av麻豆 | 黄色日韩在线| av福利片在线观看| 欧美97在线视频| 亚洲不卡免费看| 极品少妇高潮喷水抽搐| 欧美潮喷喷水| 亚洲三级黄色毛片| av黄色大香蕉| 亚洲精品乱码久久久v下载方式| 久久精品国产鲁丝片午夜精品| 乱码一卡2卡4卡精品| 一级爰片在线观看| 男女那种视频在线观看| 老女人水多毛片| 精品人妻一区二区三区麻豆| 色尼玛亚洲综合影院| 久久久久久久大尺度免费视频| 成年免费大片在线观看| 99热这里只有是精品在线观看| 能在线免费观看的黄片| 午夜激情福利司机影院| 亚洲国产精品成人久久小说| 成人av在线播放网站| 99热6这里只有精品| 亚洲精品成人av观看孕妇| 亚洲精品第二区| 久久精品久久久久久久性| 最近的中文字幕免费完整| 国产美女午夜福利| 非洲黑人性xxxx精品又粗又长| 韩国av在线不卡| 在线免费观看不下载黄p国产| 久久久久久久国产电影| 色尼玛亚洲综合影院| 一级爰片在线观看| 又黄又爽又刺激的免费视频.| 黄色欧美视频在线观看| 午夜久久久久精精品| 中文字幕久久专区| 久久精品熟女亚洲av麻豆精品 | 精品少妇黑人巨大在线播放| 国产精品人妻久久久久久| 中文字幕av在线有码专区| av在线亚洲专区| 日本熟妇午夜| 黄色日韩在线| 国产精品一区二区在线观看99 | 国产真实伦视频高清在线观看| 午夜日本视频在线| 神马国产精品三级电影在线观看| 亚洲精品视频女| av播播在线观看一区| 亚洲乱码一区二区免费版| 免费看a级黄色片| 亚洲精品乱码久久久久久按摩| 国产精品国产三级专区第一集| 纵有疾风起免费观看全集完整版 | 色吧在线观看| 黑人高潮一二区| 亚洲av福利一区| 一级a做视频免费观看| or卡值多少钱| 搡老妇女老女人老熟妇| 91久久精品国产一区二区成人| 国产精品久久视频播放| 久久6这里有精品| 卡戴珊不雅视频在线播放| 天天躁日日操中文字幕| 午夜老司机福利剧场| 插阴视频在线观看视频| 国产欧美另类精品又又久久亚洲欧美| 午夜日本视频在线| 91aial.com中文字幕在线观看| av国产免费在线观看| 久久久久精品久久久久真实原创| 国内揄拍国产精品人妻在线| 国产伦精品一区二区三区视频9| 成人国产麻豆网| 我的女老师完整版在线观看| 国产精品国产三级国产av玫瑰| 有码 亚洲区| 噜噜噜噜噜久久久久久91| 欧美激情在线99| 免费观看的影片在线观看| 亚洲最大成人手机在线| 水蜜桃什么品种好| 成人av在线播放网站| 人体艺术视频欧美日本| 九草在线视频观看| 欧美区成人在线视频| 国产av国产精品国产| 午夜激情久久久久久久| a级毛片免费高清观看在线播放| 久久久精品94久久精品| 国产精品女同一区二区软件| 91久久精品国产一区二区成人| av卡一久久| 精品欧美国产一区二区三| 国产片特级美女逼逼视频| 日韩一区二区三区影片| 中文字幕制服av| 国产伦一二天堂av在线观看| 伊人久久精品亚洲午夜| www.av在线官网国产| 成年版毛片免费区| 亚洲成色77777| 三级国产精品欧美在线观看| 亚洲av国产av综合av卡| 哪个播放器可以免费观看大片| 久久精品夜夜夜夜夜久久蜜豆| 亚洲av.av天堂| 国产一区二区亚洲精品在线观看| 视频中文字幕在线观看| 欧美成人一区二区免费高清观看| 成年人午夜在线观看视频 | 国产色爽女视频免费观看| 可以在线观看毛片的网站| 亚洲,欧美,日韩| 大香蕉久久网| 麻豆久久精品国产亚洲av| 久久99蜜桃精品久久| 亚洲av.av天堂| 91久久精品国产一区二区三区| 91久久精品国产一区二区成人| 毛片女人毛片| 天堂俺去俺来也www色官网 | 国产午夜精品论理片| 国产精品一区二区三区四区免费观看| 人人妻人人澡人人爽人人夜夜 | 热99在线观看视频| 久久人人爽人人爽人人片va| 日日干狠狠操夜夜爽| 亚洲欧美清纯卡通| 韩国高清视频一区二区三区| 色尼玛亚洲综合影院| 可以在线观看毛片的网站| 亚洲av中文字字幕乱码综合| 国产成人精品福利久久| 亚洲欧美精品自产自拍| 亚洲精品日韩av片在线观看| 亚洲av男天堂| 噜噜噜噜噜久久久久久91| 91久久精品国产一区二区成人| 老司机影院成人| 女人被狂操c到高潮| 亚洲图色成人| 日韩视频在线欧美| 国产精品不卡视频一区二区| 国产精品久久久久久久电影| 久久99精品国语久久久| 国产精品一区二区三区四区久久| 视频中文字幕在线观看| 午夜精品在线福利| 成年av动漫网址| 秋霞伦理黄片| 成人亚洲欧美一区二区av| 国产av在哪里看| 亚洲综合色惰| 久久久精品94久久精品| 美女内射精品一级片tv| 人妻少妇偷人精品九色| 亚洲av不卡在线观看| 夜夜爽夜夜爽视频| 国产精品.久久久| 亚洲乱码一区二区免费版| 色吧在线观看| 91在线精品国自产拍蜜月| 在现免费观看毛片| 18禁动态无遮挡网站| 免费人成在线观看视频色| h日本视频在线播放| 只有这里有精品99| 九色成人免费人妻av| 男女视频在线观看网站免费| 午夜视频国产福利| 国产高清不卡午夜福利| 五月伊人婷婷丁香| 乱人视频在线观看| 一本一本综合久久| 国产久久久一区二区三区| 九草在线视频观看| 国产女主播在线喷水免费视频网站 | 久久久午夜欧美精品| 亚洲欧美成人综合另类久久久| 男女国产视频网站| 春色校园在线视频观看| 日本三级黄在线观看| 人妻制服诱惑在线中文字幕| 只有这里有精品99| 久久久久久国产a免费观看| 免费观看的影片在线观看| 内地一区二区视频在线| 亚洲精品一二三| 肉色欧美久久久久久久蜜桃 | 一区二区三区高清视频在线| 日韩不卡一区二区三区视频在线| 淫秽高清视频在线观看| 免费观看的影片在线观看| 蜜桃久久精品国产亚洲av| av在线亚洲专区| 国产精品综合久久久久久久免费| 亚洲美女视频黄频| 国产精品女同一区二区软件| 亚洲成人久久爱视频| 午夜精品一区二区三区免费看| 在线a可以看的网站| 亚洲av成人精品一二三区| 国产黄片视频在线免费观看| 国产精品美女特级片免费视频播放器| 内地一区二区视频在线| 人妻一区二区av| 欧美日韩在线观看h| 日韩欧美精品免费久久| 成人一区二区视频在线观看| av天堂中文字幕网| 亚洲国产精品sss在线观看| 男女边吃奶边做爰视频| 五月天丁香电影| 直男gayav资源| 一个人看的www免费观看视频| 国产午夜精品久久久久久一区二区三区| 亚洲av.av天堂| 日韩三级伦理在线观看| 国产黄片视频在线免费观看| 国产成人aa在线观看| 国产69精品久久久久777片| a级毛色黄片| 别揉我奶头 嗯啊视频| 国产高清三级在线| 久久久久久久久久人人人人人人| 午夜日本视频在线| 一边亲一边摸免费视频| 2021少妇久久久久久久久久久| 亚洲国产精品国产精品| 波野结衣二区三区在线| 久久精品久久久久久噜噜老黄| 听说在线观看完整版免费高清| 成人av在线播放网站| 欧美日韩精品成人综合77777| 91久久精品国产一区二区三区| 国产亚洲精品久久久com| 日日啪夜夜爽| 精品酒店卫生间| 美女大奶头视频| or卡值多少钱| 美女高潮的动态| 免费av观看视频| 国产爱豆传媒在线观看| 天堂√8在线中文| 免费观看的影片在线观看| 观看免费一级毛片| 精品国产一区二区三区久久久樱花 | 国产熟女欧美一区二区| 国产一区二区在线观看日韩| 国产黄片视频在线免费观看| 成人二区视频| 色5月婷婷丁香| 街头女战士在线观看网站| 国产高清国产精品国产三级 | 午夜福利在线观看免费完整高清在| 国产不卡一卡二| 最近中文字幕高清免费大全6| 啦啦啦啦在线视频资源| 亚洲精品一二三| 日日啪夜夜撸| 亚洲最大成人av| 少妇人妻精品综合一区二区| 国产成人精品一,二区| 我的老师免费观看完整版| 欧美精品国产亚洲| 午夜福利视频1000在线观看| 丝瓜视频免费看黄片| 在线a可以看的网站| 亚洲国产精品专区欧美| av卡一久久| 成人美女网站在线观看视频| 国产高清不卡午夜福利| 草草在线视频免费看| 91久久精品国产一区二区成人| 亚洲精品456在线播放app| 国产成人一区二区在线| 国产一区二区三区av在线| 免费av毛片视频| 少妇猛男粗大的猛烈进出视频 | 国产淫片久久久久久久久| 午夜精品一区二区三区免费看| 身体一侧抽搐| 日本猛色少妇xxxxx猛交久久| 成人av在线播放网站| 99热这里只有是精品50| 精品国产露脸久久av麻豆 | 激情 狠狠 欧美| 色视频www国产| 欧美高清成人免费视频www| 日本与韩国留学比较| 一级二级三级毛片免费看| 男人狂女人下面高潮的视频| 国产毛片a区久久久久| 日韩不卡一区二区三区视频在线| 色播亚洲综合网| 晚上一个人看的免费电影| 精品少妇黑人巨大在线播放| 国产不卡一卡二| 日韩av在线大香蕉| 精品久久久久久久久久久久久| 欧美日韩一区二区视频在线观看视频在线 | 亚洲av一区综合| 韩国高清视频一区二区三区| 成人亚洲精品一区在线观看 | 偷拍熟女少妇极品色| 极品教师在线视频| 欧美激情久久久久久爽电影| 99热网站在线观看| 国产精品嫩草影院av在线观看| 欧美潮喷喷水| 只有这里有精品99| 少妇裸体淫交视频免费看高清| 亚洲精品国产av蜜桃| av天堂中文字幕网| 久久久久久久久久黄片| 51国产日韩欧美| 久久久久免费精品人妻一区二区| 美女大奶头视频| 亚洲国产精品成人综合色| 天堂影院成人在线观看| 国产午夜福利久久久久久| 国产精品一区二区三区四区久久| 国产中年淑女户外野战色| 日本熟妇午夜| 亚洲国产欧美在线一区| 一边亲一边摸免费视频| 日日摸夜夜添夜夜爱| 亚洲欧美一区二区三区国产| 久久久a久久爽久久v久久| 国产日韩欧美在线精品| 亚洲精品一区蜜桃| 熟妇人妻不卡中文字幕| 中文字幕亚洲精品专区| 99久国产av精品| 免费观看av网站的网址| 久久久久久伊人网av| 免费黄色在线免费观看| 免费看光身美女| 亚洲自偷自拍三级| 非洲黑人性xxxx精品又粗又长| 特级一级黄色大片| 亚洲国产精品专区欧美| 精品久久久精品久久久| 久久久欧美国产精品| 久久久久精品久久久久真实原创| 一级毛片我不卡| 在线播放无遮挡| 亚洲av成人精品一二三区| 最近2019中文字幕mv第一页| 欧美激情国产日韩精品一区| 亚洲熟妇中文字幕五十中出| 欧美极品一区二区三区四区| av在线蜜桃| 色播亚洲综合网| 国产又色又爽无遮挡免| 国产成人91sexporn| 人妻少妇偷人精品九色| 白带黄色成豆腐渣| 亚洲国产欧美在线一区| 中文字幕亚洲精品专区| 国内少妇人妻偷人精品xxx网站| 国精品久久久久久国模美| 日韩视频在线欧美| 国产 一区精品| 亚洲欧美清纯卡通| 日本熟妇午夜| 国产一区二区亚洲精品在线观看| 精品99又大又爽又粗少妇毛片| 久久久亚洲精品成人影院| 欧美成人一区二区免费高清观看| av专区在线播放| 国产 亚洲一区二区三区 | 亚洲精品国产av成人精品| 亚洲人成网站在线观看播放| 亚洲怡红院男人天堂| 久99久视频精品免费| 人人妻人人澡人人爽人人夜夜 | 男插女下体视频免费在线播放| 人妻一区二区av| 日韩三级伦理在线观看| 欧美丝袜亚洲另类| 老司机影院毛片| 一级a做视频免费观看| 成年av动漫网址| 亚洲精品亚洲一区二区| 精品久久久久久久末码| 国产精品不卡视频一区二区| av免费在线看不卡| 嘟嘟电影网在线观看| 欧美精品一区二区大全| 亚洲aⅴ乱码一区二区在线播放| 久久这里有精品视频免费| 日韩制服骚丝袜av| 一级黄片播放器| 在线a可以看的网站| 在线观看美女被高潮喷水网站| 国产免费又黄又爽又色| av在线蜜桃| 成人漫画全彩无遮挡| 国产成人a区在线观看| 日韩中字成人| 韩国av在线不卡| 国产免费福利视频在线观看| 国产精品日韩av在线免费观看| 熟妇人妻不卡中文字幕| 男女边摸边吃奶| 深爱激情五月婷婷| 麻豆乱淫一区二区| 看十八女毛片水多多多| 久久久成人免费电影| 一级毛片我不卡| 国产激情偷乱视频一区二区| 国产一区二区在线观看日韩| 午夜精品在线福利| kizo精华| 国产黄a三级三级三级人| 久久精品国产亚洲av天美| 2022亚洲国产成人精品| 欧美xxxx黑人xx丫x性爽| 黄色配什么色好看| 18禁在线播放成人免费| 老师上课跳d突然被开到最大视频| 国产三级在线视频| 菩萨蛮人人尽说江南好唐韦庄| 日韩一区二区三区影片| 国产精品一区二区在线观看99 | 亚洲性久久影院| 精品国产三级普通话版| 午夜激情福利司机影院| ponron亚洲| 亚洲va在线va天堂va国产| 小蜜桃在线观看免费完整版高清| 亚洲一级一片aⅴ在线观看| 国产视频内射| 纵有疾风起免费观看全集完整版 | 久久韩国三级中文字幕| 亚洲丝袜综合中文字幕| 最近最新中文字幕免费大全7| 美女高潮的动态| 亚洲精品aⅴ在线观看| 亚洲精品视频女| 精品欧美国产一区二区三| 国产黄片美女视频| 搡老妇女老女人老熟妇| av在线亚洲专区| 精品午夜福利在线看| av在线老鸭窝| 男人舔女人下体高潮全视频| 久99久视频精品免费| 国产伦精品一区二区三区四那| 国产亚洲91精品色在线| 午夜久久久久精精品| 婷婷色综合大香蕉| 超碰97精品在线观看| 人体艺术视频欧美日本| 精品久久久久久久末码| 国产白丝娇喘喷水9色精品| 国产高清有码在线观看视频| 中文字幕av在线有码专区| 久久久久久九九精品二区国产| 成年人午夜在线观看视频 | 欧美三级亚洲精品| videossex国产| 久久久久久久久久人人人人人人| 久久午夜福利片| av福利片在线观看| 久久韩国三级中文字幕| 日韩成人伦理影院| 国产精品一及| 国产在视频线在精品| 日韩中字成人| 69人妻影院| 中文字幕人妻熟人妻熟丝袜美| 日产精品乱码卡一卡2卡三| 久久久久性生活片| 国产精品国产三级专区第一集| 毛片一级片免费看久久久久| 一级爰片在线观看| 免费av毛片视频| 在线免费十八禁| 欧美激情久久久久久爽电影| 亚洲av成人av| 国产色婷婷99| 少妇丰满av| 如何舔出高潮| 男女边摸边吃奶| 亚洲精品成人av观看孕妇| 插逼视频在线观看| 国产亚洲精品久久久com| 人体艺术视频欧美日本| 国产黄色小视频在线观看| 老师上课跳d突然被开到最大视频| 97人妻精品一区二区三区麻豆| 国产人妻一区二区三区在| 在线观看av片永久免费下载| 亚洲高清免费不卡视频| h日本视频在线播放| 久久97久久精品| 岛国毛片在线播放|