• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    ARTICLE Photoelectron Spectroscopy and Density Functional Calculations of TiGen?(n=7?12)Clusters?

    2016-04-08 06:36:04XiaojiaoDengXiangyuKongXilingXuHongguangXuWeijunZhengBeijingNationalLaboratoryforMolecularSciencesStateKeyLaboratoryofMolecularReactionDynamicsInstituteofChemistryChineseAcademyofSciencesBeijing100190ChinaDatedReceiv
    CHINESE JOURNAL OF CHEMICAL PHYSICS 2016年1期

    Xiao-jiao Deng,Xiang-yu Kong,Xi-ling Xu,Hong-guang Xu?,Wei-jun Zheng?Beijing National Laboratory for Molecular Sciences,State Key Laboratory of Molecular Reaction Dynamics,Institute of Chemistry,Chinese Academy of Sciences,Beijing 100190,China(Dated:Received on November 15,2015;Accepted on December 29,2015)

    ?

    ARTICLE Photoelectron Spectroscopy and Density Functional Calculations of TiGen?(n=7?12)Clusters?

    Xiao-jiao Deng,Xiang-yu Kong,Xi-ling Xu,Hong-guang Xu?,Wei-jun Zheng?
    Beijing National Laboratory for Molecular Sciences,State Key Laboratory of Molecular Reaction Dynamics,Institute of Chemistry,Chinese Academy of Sciences,Beijing 100190,China
    (Dated:Received on November 15,2015;Accepted on December 29,2015)

    The growth pattern and electronic properties of TiGen?(n=7?12)clusters were investigated using anion photoelectron spectroscopy and density functional theory calculations.For both anionic and neutral TiGenclusters,a half-encapsulated boat-shaped structure appears at n=8,and the boat-shaped structure is gradually covered by the additional Ge atoms to form Gencage at n=9?11.TiGe12?cluster has a distorted hexagonal prism cage structure. According to the natural population analysis,the electron transfers from the Genframework to the Ti atom for TiGen?/0clusters at n=8?12,implying that the electron transfer pattern is related to the structural evolution.

    Key words:Photoelectron spectroscopy,Density functional theory,Germanium clusters

    ?Part of the special issue for“the Chinese Chemical Society’s 14th National Chemical Dynamics Symposium”.

    ?Authors to whom correspondence should be addressed.E-mail: xuhong@iccas.ac.cn,zhengwj@iccas.ac.cn,Tel.:+86-10-62635054, FAX:+86-10-62563167

    I.INTRODUCTION

    Experimental and theoretical studies suggested that the doping of transition metals(TMs)can stabilize the cage structures of germanium-based clusters and tailor their properties[1?5].Ti-doped germanium clusters have attracted much attention because they may be used to produce cluster-assembled materials of special electronic and magnetic properties[6].It has been proposed that Ti-Ge binary alloys may be developed for dental materials[7].It has also been found that strain-released hybrid multiplayer Ge-Ti nanomembranes can form anode materials with both high conductivity and high storage capacity,therefore, enhance the performance of lithium batteries[8].Investigating the structural and electronic properties of Ti-doped germanium clusters may provide valuable information for developing cluster-assembled materials as well as their applications in electronics,biomedicine, and energy storage.Kumar and Kawazoe conducted theoretical calculations on a number of TM-doped germanium clusters and predicted TiGe16cluster to be a Frank-Kasper polyhedron structure with a large gap between its highest-occupied-orbital(HOMO)and lowest-unoccupied-orbital(LUMO)[9].In addition to the TiGe16cluster,the density functional theory (DFT)calculations of Bandyopadhyay et al.on TiGen(n=14?20)suggested that TiGe18cluster also has enhanced stability[10].The ground state structure of TiGe12cluster is proposed to be a remarkably stable pseudoicosahedron by Tang et al.[11].More recently, the DFT calculations of TiGen(n=1?20)clusters of Kumar et al.suggested that the Ti atom is encapsulated in the Gencage when n is larger than 9 and the most stable structure of TiGe12cluster is a relaxed hexagon[12].Compared with the theoretical studies of TiGenclusters,the experimental investigation of TiGenclusters is quite rare except that Nakajima and coworkers investigated TiGenclusters using mass spectrometry and anion photoelectron spectroscopy,and probed their stability via their reactivity to H2O adsorption[2,13].

    Previously,we have investigated the structural,electronic and magnetic properties of small size TiGen?(n=2?6)clusters using anion photoelectron spectroscopy and DFT calculations[14].The results displayed that the most stable structures of these small clusters can be considered as a Ti atom substituting one of the Ge atoms in the corresponding Gen+1cluster or a Ti atom capping a Gencluster,and the Ti atom is inclined to interact with more Ge atoms.In order to get more information regarding the structural evolution and electronic properties of larger TiGenclusters,in this work,we investigated the TiGen?(n=7?12)clusters using mass-selected anion photoelectron spectroscopy experiments combined with DFT calculations.

    II.EXPERIMENTAL AND THEORETICAL METHODS

    The experiments were conducted on a home-built apparatus equipped with a laser vaporization supersonic cluster source,a time-of- fl ight mass spectrometer,and a magnetic-bottle photoelectron spectrometer,which hasbeen described elsewhere[15].The TiGen?(n=7?12) cluster anions were generated in the laser vaporization source by laser ablation of a rotating translating disk target(13 mm diameter,Ti:Ge mole ratio 1:4)with the second harmonic of a nanosecond Nd:YAG laser (Continuum Surelite II-10).The typical laser power used in this work is about 10 mJ/pulse.Helium gas with~4 atm backing pressure was allowed to expand through a pulsed valve(General Valve Series 9)into the source to cool the formed clusters.The generated cluster anions were mass-analyzed with the time-of- fl ight mass spectrometer.The cluster anions of interest were selected with a mass gate,decelerated by a momentum decelerator,and crossed with the beam of another Nd:YAG laser(Continuum Surelite II-10,266 nm)at the photodetachment region.The electrons from photodetachment were energy-analyzed by the magneticbottle photoelectron spectrometer.The photoelectron spectra were calibrated with the spectra of Cu?and Pb?taken at similar conditions.The resolution of the magnetic-bottle photoelectron spectrometer was about 40 meV at electron kinetic energy of 1 eV.

    FortheTiGen?/0clusters,geometryoptimizations were performed using DFT with Becke’s threeparameter and Lee-Yang-Parr’s gradient-corrected correlation hybrid functional(B3LYP)[16?18]and 6-311+G(d)basis sets as implemented in the Gaussian 03 program package[19].For all clusters,a large amount of initial structures were taken into accounts at all possible spin states.These initial structures were constructed by Ti-capping or Ti-substituting of pure Genclusters or based on the structures of TM-doped Genclusters reported in the literature[12,20?27].All geometries were optimized without any symmetry constraint.Harmonic vibrational frequencies were calculated to make sure that the structures correspond to real local minima, and the zero-point vibrational energy corrections were included for the relative energies of isomers.The natural population analysis(NPA)of TiGen?/0(n=7?12) clusters were conducted with the nature bond orbital (NBO)version 3.1 program[28?34]implemented in the Gaussian 03 program package.

    III.RESULTS

    A.Experimental results

    The photoelectron spectra of the TiGen?(n=7?12) clusters taken with 266 nm photons are shown in Fig.1, and the vertical detachment energies(VDEs)and adiabatic detachment energies(ADEs)of these clusters estimated from photoelectron spectra are listed in Table I. The VDEs were estimated from the maxima of the fi rst peaks.The ADE of each cluster was determined by drawing a straight line along the leading edge of the fi rst peak to cross the baseline of spectrum and adding the instrument resolution to electron binding energy(EBE)

    FIG.1 Photoelectron spectra of TiGen?(n=7?12)clusters recorded with 266 nm photons.

    value at the crossing point.Our spectra are in agreement with previous measurement of TiGen?(n=7?17) reported by Nakijima and coworkers[2]except that our experimental spectra show better resolution.

    FIG.2 Low-lying isomers of TiGen?(n=7?12)clusters.The relative energies to the most stable isomers are shown.

    As shown in Fig.1,there are four resolved peaks centered at 2.97,3.47,3.84,and 4.04 eV,and an unresolved peak over 4.27 eV in the spectrum of TiGe7?.With respect to the spectrum of TiGe8?,four peaks centered at 3.32,3.70,3.91,and 4.27 eV and a shoulder at 3.53 eV can be observed.As for TiGe9?,it has two major peaks centered at 3.15 and 3.91 eV,as well as two barely noticeable peaks at 3.40 and 4.37 eV.TiGe10?has a major peak centered at 3.35 eV,a shoulder at 3.12 eV,a broad peak at 3.96 eV,and the onset of a high EBE peak above 4.3 eV.The spectral features of TiGe11?are very broad with three barely discernible peaks centered at 3.5,3.7,and 3.9 eV respectively.The spectral features of TiGe12?are also very broad.It has a major peak centered at~3.8 eV and a shoulder at~3.5 eV.

    B.Theoretical results

    Thetypicallow-lyingisomersfortheTiGen?(n=7?12)clusters obtained from the DFT calculations are presented in Fig.2 with the most stable ones on the left.Their theoretical VDEs and ADEs are summarized in Table II.The VDE is de fi ned as the energy di ff erence between the neutral and anion both at the equilibrium structure of the anion,whereas the ADE is the energy di ff erence between the neutral and the anion with the neutral relaxed to the nearest local minimum using the anionic structure as initial structure.The Cartesian coordinates of the low-lying isomers are available in the supplementary material.

    With respect to TiGe7?,isomer 7A can be regarded as a Ge atom capping the TiGe6pentagonal bipyramid with the Ti atom at the vertex,and its calculated VDE (2.70 eV)is in reasonable agreement with the experimental value(2.97 eV).Isomers 7B and 7C are much less stable than 7A by 0.50 and 0.64 eV in energy,respectively.Thus,we suggest that 7A is the dominant structure observed in our experiments.

    The most stable isomer(8A)of TiGe8?can be viewed as a half-endohedral structure with the Ti atom locating in a boat-shaped Ge8framework,and its theoretical VDEs of 8A(3.15 eV)is in agreement with the experimental value(3.32 eV).Isomer 8B can be seen as two Ge atoms capping on a TiGe6pentagonal bipyramid. The energies of 8B and 8C are much higher than that of 8A by 0.57 and 0.66 eV,respectively.Therefore,we suggest that 8A is the major structure contributed to the experimental spectrum.

    For TiGe9?,the most stable isomer 9A can be viewed as a Ge atom capping the boat-shaped structure of TiGe8?(8A).Isomer 9B can be obtained by connecting a Ge3triangular to a TiGe6pentagonal bipyramid,and its energy is higher than 9A by 0.21 eV.Isomer 9C is less stable than isomer 9A by 0.50 eV,thus the existence of 9C can be ruled out.The theoretical VDEs of isomers 9A and 9B are 2.97 and 3.31 eV,respectively, both close to the experimental value(3.15 eV).Therefore,isomer 9A is suggested to be the most probable one detected in our experiments,but the existence ofisomer 9B cannot be ruled out.

    TABLE II Relative energies,VDEs and ADEs of the low energy isomers of the TiGen?(n=7?12)obtained by DFT calculations.Multiplicities are 2.

    As for TiGe10?,the structures of isomers 10A and 10B can be described as two Ge atoms connecting to the di ff erent locations of the boat-shaped structure of TiGe8?(8A),and isomer 10B is higher than isomer 10A in energy by only 0.15 eV.The calculated VDE of isomer 10A(3.20 eV)is in good agreement with the experimental value(3.12 eV).That of isomer 10B is calculated to be 3.38 eV.Isomer 10C is much less stable than 10A by 0.56 eV in energy.Thus,we suggest that isomer 10A is the major species in our experiments and isomer 10B may contribute to the higher EBE peaks in the experimental spectrum.

    For TiGe11?,both isomers 11A and 11B can be regarded as three Ge atoms connecting to the top of the boat-shaped structure of TiGe8?(8A).The calculated VDE of 11A(3.80 eV)is in reasonable agreement with the experimental value(3.5 eV).Isomer 11B is higher in energy than isomer 11A by 0.25 eV and its theoretical VDE(3.04 eV)is much lower than the experimental value.Isomer 11C is less stable than 11A by 0.32 eV. Therefore,isomer 11A is the most likely structure of TiGe11?in our experiments.

    The most stable structure of TiGe12?(12A)is a distorted hexagonal prism structure with the Ti atom at the center.Isomer 12B can be seen as four Ge atoms connecting to the top of boat-shaped structure of TiGe8?(8A).The calculated VDEs of 12A(3.43 eV), 12B(3.40 eV)and 12C(3.40 eV)are all consistent with the experimental value(3.5 eV).Isomer 12B is higher than that isomer 12A by only 0.10 eV while isomer 12C is higher than 12A by 0.24 eV.Therefore,we suggest that 12A is the dominant structure observed in our experiments,but the existence of 12B cannot be ruled out.

    We have also investigated the structures of neutral TiGen(n=7?12)clusters and displayed them in Fig.3. It can be seen that the most stable structures of the neutral TiGen(n=7?12)clusters are similar to those of the TiGen?anions,except that those of TiGe11and TiGe12are di ff erent from their anionic counterparts.The most stable structure of neutral TiGe11cluster(11A′)is similar to the second stable structure of TiGe11?anion(11B).For neutral TiGe12,the most stable structure(12A′)is similar to the second stable structure of TiGe12?anion(12B),while the second stable structure(12B′)is similar to the most stable one of TiGe12?anion(12A).Isomer 12B′is higher in energy than 12A′by only 0.08 eV.The most stable structures of the neutral TiGen(n=7?12)clusters found in this work are slightly di ff erent from those reported in Ref.[12].In Ref.[12],the ground state structure of TiGe8can be seen as a Ge atom capping a TiGe7hexagonal bipyramid,which is di ff erent from the half-encapsulated boatshaped structure in this work.We found that the most stable structures of TiGen(n=9?12)clusters are all derived from the boat-shaped structure of TiGe8.In Ref.[12],the ground structures of TiGe9and TiGe10can also be seen as deriving from the boat-shaped structure of TiGe8,but they are slightly distorted compared with the most stable structures in this work.While the ground structure of TiGe11in Ref.[12]can be described as a basket-shaped structure.Also,the ground state structure of neutral TiGe12reported previously is a distorted hexagonal prism,which is similar to the most stable structure of anionic TiGe12?(12A)and the second stable structure of neutral TiGe12(12B′)in this work.Such di ff erent results are probably because we used a larger basis set in this work.

    IV.DISCUSSION

    As shown in Fig.3,the Ti atom is half-encapsulated by a boat-shaped Ge8framework at n=8,and the opening of the boat-shaped structure is gradually covered by the additional Ge atoms to form Gencage from n=9 to 11.At n=8?12,the endohedral structures of both anionic and neutral TiGenclusters are more stable than their exohedral structures.For anionic and neutral TiGe12cluster,the Ti atom is completely encapsulated by the Ge12cage,in which the anionic TiGe12has a distorted hexagonal prism cage structure while the neutral TiGe12has a Ge4capped boat-shaped structure. The structural evolution found in this work agrees with the adsorption reactivity of neutral TiGen(n=7?16) towards H2O[2],in which the reactivity generally decreases with an increasing number of Ge atoms fromn=7?11,and the relative reactivity is lost at n=12.

    We also investigated the electronic and magnetic properties of the most stable structures of anionic and neutral TiGen(n=7?12)clusters using NPA.As shown in Table III,for both anionic and neutral TiGenclusters size with n=8?12,the negative charge on Ti atom increases signi fi cantly,suggesting that there is more electron transfer from the Ge atoms to the Ti atom.This also indicates that the electron transfer from the Genframework to the Ti atom is strongly related to the structural evolution of TiGenclusters,especially related to the formation of endohedral structures.In addition,this electron transfer pattern is similar to those of CoGen?/0(n=2?11)[26]and VGen?/0(n=3?12) [27]clusters,but di ff erent from those of the CuGen(n=2?13)[20],and NiGen(n=1?20)[32]clusters,in which the electron transfers from the Cu or Ni atom to the Genframework.As shown in Table III,the total magnetic moments of the anion TiGen?(n=7?12) clusters are 1μB.As for the neutral TiGenclusters, our calculations show that the multiplicities of the most stable isomers of TiGe7to TiGe10are 3,while those of TiGe11and TiGe12are 1;thus,the total magnetic moments are 2μBfor sizes of n=7?10,and 0μBfor n=11 and 12.The magnetic moment of TiGe11and TiGe12quench is possibly because there are more electrons transfer from the Ge atoms to the Ti atom andBstronger connection between the Ge atoms and Ti atom. For both anionic and neutral TiGen(n=7?12)clusters, the total magnetic moments are contributed by both Ti and Ge atoms.

    V.CONCLUSION

    The structural,electronic and magnetic properties of anionic and neutral TiGen(n=7?12)clusters were investigated using anion photoelectron spectroscopy in combination with density functional theory calculations.A half-endohedral boat-shaped structure emerged at n=8,then the opening of the boat-shaped structure is gradually capped by the additional Ge atoms to form Gencage at n=9?11.TiGe12?cluster has a distorted hexagonal prism cage structure.The electron transfer from the Gencage to the Ti atom increases at n=8?12,suggesting that the electron transfer pattern is related to the structural evolution,especially to the formation of endohedral structure.For both anionic and neutral TiGen(n=7?12)clusters,the total magnetic moments are contributed by both Ti and Ge atoms.

    Supplementary materials:The Cartesian coordinates of the low-lying isomers are available.

    VI.ACKNOWLEDGMENTS

    Wei-jun Zheng acknowledges the Knowledge Innovation Program of the Chinese Academy of Sciences (No.KJCX2-EW-H01)and Hong-guang Xu acknowledges the National Natural Science Foundation of China (No.21103202)for fi nancial support.The theoretical calculations were conducted on the ScGrid and Deep-Comp 7000 of the Supercomputing Center,Computer Network Information Center of the Chinese Academy of Sciences.

    [1]X.Zhang,G.L.Li,and Z.Gao,Rapid Commun.Mass Spectrom.15,1573(2001).

    [2]J.Atobe,K.Koyasu,S.Furuse,and A.Nakajima,Phys. Chem.Chem.Phys.14,9403(2012).

    [3]J.Wang and J.G.Han,J.Phys.Chem.B 110,7820 (2006).

    [4]W.J.Zhao and Y.X.Wang,Chem.Phys.352,291 (2008).

    [5]G.L.Li,X.Zhang,Z.C.Tang,and Z.Gao,Chem. Phys.Lett.359,203(2002).

    [6]X.R.Li,Y.D.Ma,Y.Dai,and B.B.Huang,J.Mater. Chem.C 1,4565(2013).

    [7]W.J.Lin,B.L.Wang,K.J.Qiu,F.Y.Zhou,L.Li, J.P.Lin,Y.B.Wang,and Y.F.Zheng,J.Biomed. Mater.Res.Part B 100B,2239(2012).

    [8]C.L.Yan,W.Xi,W.P.Si,J.W.Deng,and O.G. Schmidt,Adv.Mater.25,539(2013).

    [9]V.Kumar and Y.Kawazoe,Phys.Rev.Lett.88,235504 (2002).

    [10]D.Bandyopadhyay,P.Kaur,and P.Sen,J.Phys. Chem.A 114,12986(2010).

    [11]C.M.Tang,M.Y.Liu,W.H.Zhu,and K.M.Deng, Comput.Theor.Chem.969,56(2011).

    [12]M.Kumar,N.Bhattacharyya,and D.Bandyopadhyay, J.Mol.Model.18,405(2012).

    [13]S.Furuse,K.Koyasu,J.Atobe,and A.Nakajima,J. Chem.Phys.129,064311(2008).

    [14]X.J.Deng,X.Y.Kong,X.L.Xu,H.G.Xu,and W. J.Zheng,RSC Adv.4,25963(2014).

    [15]H.G.Xu,Z.G.Zhang,Y.Feng,J.Y.Yuan,Y.C. Zhao,and W.J.Zheng,Chem.Phys.Lett.487,204 (2010).

    [16]C.T.Lee,W.T.Yang,and R.G.Parr,Phys.Rev.B 37,785(1988).

    [17]A.J.H.Wachters,J.Chem.Phys.52,1033(1970).

    [18]A.D.Becke,J.Chem.Phys.98,5648(1993).

    [19]M.J.Frisch,G.W.Trucks,H.B.Schlegel,G.E.Scuseria,M.A.Robb,J.R.Cheeseman,J.A.Montgomery Jr.,T.Vreven,K.N.Kudin,J.C.Burant,J.M.Millam, S.S.Iyengar,J.Tomasi,V.Barone,B.Mennucci,M. Cossi,G.Scalmani,N.Rega,G.A.Petersson,H.Nakatsuji,M.Hada,M.Ehara,K.Toyota,R.Fukuda,J. Hasegawa,M.Ishida,T.Nakajima,Y.Honda,O.Kitao, H.Nakai,M.Klene,X.Li,J.E.Knox,H.P.Hratchian, J.B.Cross,V.Bakken,C.Adamo,J.Jaramillo,R. Gomperts,R.E.Stratmann,O.Yazyev,A.J.Austin, R.Cammi,C.Pomelli,J.W.Ochterski,P.Y.Ayala, K.Morokuma,G.A.Voth,P.Salvador,J.J.Dannenberg,V.G.Zakrzewski,S.Dapprich,A.D.Daniels,M. C.Strain,¨O.Farkas,D.K.Malick,A.D.Rabuck,K. Raghavachari,J.B.Foresman,J.V.Ortiz,Q.Cui,A. G.Baboul,S.Cli ff ord,J.Cioslowski,B.B.Stefanov,G. Liu,A.Liashenko,P.Piskorz,I.Komaromi,R.L.Martin,D.J.Fox,T.Keith,M.A.Al-Laham,C.Y.Peng, A.Nanayakkara,M.Challacombe,P.M.W.Gill,B. Johnson,W.Chen,M.W.Wong,C.Gonzalez,and J. A.Pople,Gaussian 03,Pittsburgh,PA:Gaussian,Inc., (2004).

    [20]J.Wang and J.G.Han,J.Chem.Phys.123,244303 (2005).

    [21]J.Wang and J.G.Han,J.Phys.Chem.A 110,12670 (2006).

    [22]Q.Jing,F.Y.Tian,and Y.X.Wang,J.Chem.Phys. 128,124319(2008).

    [23]W.J.ZhaoandY.X.Wang,J.Mol.Struct.: THEOCHEM 901,18(2009).

    [24]N.Kapila,V.K.Jindal,and H.Sharma,Physica B 406,4612(2011).

    [25]D.Bandyopadhyay,J.Mol.Model.18,3887(2012).

    [26]X.J.Deng,X.Y.Kong,X.L.Xu,H.G.Xu,and W. J.Zheng,ChemPhysChem 15,3987(2014).

    [27]X.J.Deng,X.Y.Kong,H.G.Xu,X.L.Xu,G.Feng, and W.J.Zheng,J.Phys.Chem.C 119,11048(2015).

    [28]J.P.Foster and F.Weinhold,J.Am.Chem.Soc.102, 7211(1980).

    [29]A.E.Reed and F.Weinhold,J.Chem.Phys.78,4066 (1983).

    [30]A.E.Reed and F.Weinhold,J.Chem.Phys.83,1736 (1985).

    [31]A.E.Reed,R.B.Weinstock,and F.Weinhold,J. Chem.Phys.83,735(1985).

    [32]A.E.Reed,L.A.Curtiss,and F.Weinhold,Chem.Rev. 88,899(1988).

    [33]F.Weinhold and J.E.Carpenter,The Structure of Small Molecules and Ions,R.Naaman and Z.Vager, Eds.,227(1988).

    [34]J.E.Carpenter and F.Weinhold,J.Mol.Struct. THEOCHEM 169,41(1988).

    久久精品国产亚洲av香蕉五月| 天美传媒精品一区二区| 少妇人妻精品综合一区二区 | 亚洲成av人片在线播放无| 国内精品美女久久久久久| av欧美777| 久久精品综合一区二区三区| 亚洲av一区综合| 久久久久久久久久成人| 看免费av毛片| 十八禁国产超污无遮挡网站| 午夜精品一区二区三区免费看| 国产精品亚洲美女久久久| 我的老师免费观看完整版| 久久人人精品亚洲av| 久久国产乱子免费精品| 九九久久精品国产亚洲av麻豆| 亚洲精品色激情综合| 中文字幕高清在线视频| 免费黄网站久久成人精品 | 91字幕亚洲| av国产免费在线观看| 国产精品免费一区二区三区在线| 精品午夜福利在线看| 制服丝袜大香蕉在线| 欧美日韩乱码在线| 一个人观看的视频www高清免费观看| 两个人视频免费观看高清| 欧美成人一区二区免费高清观看| 久久久久九九精品影院| 日韩有码中文字幕| 亚洲成a人片在线一区二区| 人妻久久中文字幕网| 尤物成人国产欧美一区二区三区| 高潮久久久久久久久久久不卡| 国产精品电影一区二区三区| 欧美日韩国产亚洲二区| 又紧又爽又黄一区二区| 免费av毛片视频| 国产精品久久视频播放| 亚洲欧美日韩高清在线视频| 国产三级中文精品| 国产私拍福利视频在线观看| 天天躁日日操中文字幕| 国产麻豆成人av免费视频| 精品久久久久久久久久免费视频| 国产精品综合久久久久久久免费| 俄罗斯特黄特色一大片| 很黄的视频免费| 在线国产一区二区在线| 亚洲精品日韩av片在线观看| 老鸭窝网址在线观看| 别揉我奶头 嗯啊视频| 成年版毛片免费区| 久久精品国产亚洲av香蕉五月| 性插视频无遮挡在线免费观看| 精品日产1卡2卡| 欧美精品啪啪一区二区三区| 日韩欧美一区二区三区在线观看| 青草久久国产| 日本一本二区三区精品| 成人特级黄色片久久久久久久| 国内揄拍国产精品人妻在线| 天堂√8在线中文| 床上黄色一级片| 日日干狠狠操夜夜爽| 日本一二三区视频观看| 亚洲一区高清亚洲精品| 又爽又黄a免费视频| 精品国内亚洲2022精品成人| 国产亚洲精品综合一区在线观看| 欧美精品啪啪一区二区三区| 欧美日韩综合久久久久久 | 日日摸夜夜添夜夜添av毛片 | 免费av不卡在线播放| 三级国产精品欧美在线观看| 日本与韩国留学比较| 久久婷婷人人爽人人干人人爱| 波多野结衣高清作品| 超碰av人人做人人爽久久| 青草久久国产| 欧美高清性xxxxhd video| .国产精品久久| 69av精品久久久久久| 男人狂女人下面高潮的视频| 免费av不卡在线播放| 色综合亚洲欧美另类图片| 亚洲精品影视一区二区三区av| 亚洲久久久久久中文字幕| 国产乱人伦免费视频| 久久这里只有精品中国| 一边摸一边抽搐一进一小说| 99热精品在线国产| 欧美又色又爽又黄视频| 久久久久久久精品吃奶| 国产色爽女视频免费观看| 精品国产亚洲在线| 十八禁网站免费在线| 好男人在线观看高清免费视频| 精品一区二区三区av网在线观看| 中文字幕高清在线视频| 18禁黄网站禁片午夜丰满| 精品人妻一区二区三区麻豆 | 欧美精品啪啪一区二区三区| 国产三级中文精品| 免费av毛片视频| 成人特级av手机在线观看| 午夜精品在线福利| 亚洲人成网站在线播| 人人妻人人看人人澡| 国产精品98久久久久久宅男小说| av在线观看视频网站免费| 一二三四社区在线视频社区8| 色播亚洲综合网| 亚洲欧美激情综合另类| 国产综合懂色| 国产午夜精品论理片| 午夜福利高清视频| 亚洲av免费在线观看| 嫁个100分男人电影在线观看| 美女高潮的动态| 夜夜躁狠狠躁天天躁| 波多野结衣高清作品| 国产黄a三级三级三级人| 欧美在线一区亚洲| 亚洲精华国产精华精| 无人区码免费观看不卡| 亚洲精品456在线播放app | 久久久精品大字幕| 国产精品99久久久久久久久| 精品一区二区三区人妻视频| 亚洲片人在线观看| 国产精品女同一区二区软件 | xxxwww97欧美| 日韩大尺度精品在线看网址| 亚洲经典国产精华液单 | 国产精品久久久久久久久免 | 成人特级av手机在线观看| 无人区码免费观看不卡| 中文字幕高清在线视频| 99久久精品热视频| 精品无人区乱码1区二区| 少妇熟女aⅴ在线视频| 九九久久精品国产亚洲av麻豆| 亚洲成av人片免费观看| 欧美激情国产日韩精品一区| 久久久久久久久久黄片| 国产成人欧美在线观看| 成年女人看的毛片在线观看| 黄色视频,在线免费观看| 亚洲男人的天堂狠狠| 又黄又爽又免费观看的视频| 丁香欧美五月| 久久午夜亚洲精品久久| 国产探花极品一区二区| 丰满人妻一区二区三区视频av| 亚洲人成电影免费在线| 国产精品98久久久久久宅男小说| 亚洲av电影在线进入| 国产精品伦人一区二区| 国产高清视频在线播放一区| 欧美激情在线99| 国产 一区 欧美 日韩| 91午夜精品亚洲一区二区三区 | 精品日产1卡2卡| 国内精品一区二区在线观看| 丰满人妻一区二区三区视频av| 少妇人妻精品综合一区二区 | 美女xxoo啪啪120秒动态图 | www日本黄色视频网| 色哟哟哟哟哟哟| 9191精品国产免费久久| 国产视频一区二区在线看| 亚洲真实伦在线观看| АⅤ资源中文在线天堂| 色精品久久人妻99蜜桃| 人妻久久中文字幕网| 成人永久免费在线观看视频| 成人毛片a级毛片在线播放| 国产私拍福利视频在线观看| av视频在线观看入口| 国产单亲对白刺激| 在线观看舔阴道视频| 国产高清视频在线播放一区| 有码 亚洲区| 91麻豆av在线| 91午夜精品亚洲一区二区三区 | 熟女人妻精品中文字幕| 欧美不卡视频在线免费观看| 欧美一区二区国产精品久久精品| 黄色丝袜av网址大全| 午夜福利高清视频| 高清毛片免费观看视频网站| 黄色配什么色好看| or卡值多少钱| 午夜精品一区二区三区免费看| 一区二区三区高清视频在线| 99热只有精品国产| 午夜福利视频1000在线观看| 免费黄网站久久成人精品 | 亚洲五月天丁香| 99久久精品一区二区三区| 日韩中字成人| 十八禁人妻一区二区| 国产色婷婷99| 久久婷婷人人爽人人干人人爱| 日韩 亚洲 欧美在线| 看十八女毛片水多多多| 九九热线精品视视频播放| 亚洲精品乱码久久久v下载方式| 欧美一区二区精品小视频在线| 国产高清有码在线观看视频| 欧美潮喷喷水| 国产精品一及| 欧美丝袜亚洲另类 | 人人妻,人人澡人人爽秒播| a级毛片a级免费在线| 亚洲人与动物交配视频| 亚洲国产日韩欧美精品在线观看| 日本精品一区二区三区蜜桃| 性欧美人与动物交配| 精品国产亚洲在线| 天天躁日日操中文字幕| 欧美绝顶高潮抽搐喷水| 午夜福利免费观看在线| 中出人妻视频一区二区| 看十八女毛片水多多多| 久久久久久大精品| 天堂网av新在线| 欧美在线黄色| 亚洲成a人片在线一区二区| 日本黄色视频三级网站网址| 亚洲黑人精品在线| 两性午夜刺激爽爽歪歪视频在线观看| 淫秽高清视频在线观看| 免费观看精品视频网站| 亚洲综合色惰| 亚洲人成网站在线播| 欧美日韩综合久久久久久 | 亚洲国产精品成人综合色| 免费在线观看日本一区| 欧美午夜高清在线| 性欧美人与动物交配| 1000部很黄的大片| 午夜福利在线观看吧| 国产熟女xx| 美女高潮喷水抽搐中文字幕| 黄色丝袜av网址大全| 村上凉子中文字幕在线| 亚洲人与动物交配视频| 亚洲经典国产精华液单 | 成人无遮挡网站| 欧美潮喷喷水| 国产高清视频在线观看网站| 国产av一区在线观看免费| 色在线成人网| 在线看三级毛片| 亚洲中文字幕一区二区三区有码在线看| 成人午夜高清在线视频| 国产精品亚洲美女久久久| 少妇的逼好多水| 亚洲精品乱码久久久v下载方式| av中文乱码字幕在线| 亚洲成av人片免费观看| 熟女电影av网| 亚洲精品久久国产高清桃花| 亚洲色图av天堂| 俄罗斯特黄特色一大片| 欧美高清成人免费视频www| 99热只有精品国产| 午夜久久久久精精品| 91av网一区二区| 国产麻豆成人av免费视频| 中文亚洲av片在线观看爽| 精品免费久久久久久久清纯| 国产熟女xx| 有码 亚洲区| 国产aⅴ精品一区二区三区波| 日韩中字成人| 美女高潮的动态| 午夜福利高清视频| 99在线视频只有这里精品首页| 国产乱人伦免费视频| 亚洲精品粉嫩美女一区| 人妻久久中文字幕网| 99国产极品粉嫩在线观看| 在现免费观看毛片| 全区人妻精品视频| 俺也久久电影网| 国产精品一区二区三区四区免费观看 | 国产一区二区亚洲精品在线观看| 好男人在线观看高清免费视频| 亚洲三级黄色毛片| 成年女人看的毛片在线观看| 麻豆国产97在线/欧美| 99久久精品国产亚洲精品| 国产探花极品一区二区| 久久婷婷人人爽人人干人人爱| 成人无遮挡网站| 日日摸夜夜添夜夜添小说| 午夜免费成人在线视频| 18美女黄网站色大片免费观看| 日日夜夜操网爽| 国产真实伦视频高清在线观看 | 麻豆国产av国片精品| 欧美高清成人免费视频www| 精华霜和精华液先用哪个| 久久九九热精品免费| 色5月婷婷丁香| 高清日韩中文字幕在线| 国产中年淑女户外野战色| 午夜两性在线视频| 国模一区二区三区四区视频| 亚洲专区国产一区二区| 最近最新免费中文字幕在线| 国产精品国产高清国产av| 天堂动漫精品| 一级黄片播放器| 12—13女人毛片做爰片一| 桃红色精品国产亚洲av| 熟女电影av网| 99国产精品一区二区蜜桃av| 国产精品电影一区二区三区| 欧美精品国产亚洲| 亚洲在线观看片| 久久久久久久久大av| 亚洲久久久久久中文字幕| 五月伊人婷婷丁香| 国产v大片淫在线免费观看| 国产av在哪里看| 热99re8久久精品国产| 成人毛片a级毛片在线播放| 男人和女人高潮做爰伦理| 国产亚洲精品久久久久久毛片| 亚洲国产精品成人综合色| 欧美潮喷喷水| 99久久精品热视频| 狂野欧美白嫩少妇大欣赏| 又紧又爽又黄一区二区| 18禁裸乳无遮挡免费网站照片| 国产精品98久久久久久宅男小说| 午夜福利在线观看吧| 一个人看的www免费观看视频| 女人十人毛片免费观看3o分钟| 国产伦在线观看视频一区| 一个人免费在线观看的高清视频| 在线播放无遮挡| 成人特级av手机在线观看| 国产精品野战在线观看| 一个人免费在线观看的高清视频| 韩国av一区二区三区四区| 国产精品爽爽va在线观看网站| 麻豆一二三区av精品| 有码 亚洲区| 窝窝影院91人妻| 99在线人妻在线中文字幕| 国产高清三级在线| 天堂√8在线中文| 国产色婷婷99| 一二三四社区在线视频社区8| 精品一区二区三区av网在线观看| АⅤ资源中文在线天堂| 午夜视频国产福利| 我要看日韩黄色一级片| 免费人成视频x8x8入口观看| 看片在线看免费视频| 亚洲熟妇熟女久久| 国产欧美日韩精品一区二区| 一个人免费在线观看的高清视频| 91狼人影院| 俄罗斯特黄特色一大片| 国产探花极品一区二区| 免费人成视频x8x8入口观看| 免费av不卡在线播放| 日本 欧美在线| 亚洲性夜色夜夜综合| av黄色大香蕉| 88av欧美| 天堂av国产一区二区熟女人妻| 亚洲精品粉嫩美女一区| 国产伦精品一区二区三区四那| 国产av在哪里看| 麻豆国产av国片精品| 1000部很黄的大片| 中文字幕精品亚洲无线码一区| 此物有八面人人有两片| 久久久久性生活片| 久久国产乱子伦精品免费另类| 国产单亲对白刺激| 久久亚洲精品不卡| 日韩欧美国产在线观看| www.999成人在线观看| 精品国内亚洲2022精品成人| 国产精品爽爽va在线观看网站| 亚洲午夜理论影院| 日日干狠狠操夜夜爽| 老熟妇乱子伦视频在线观看| 久久久久国内视频| 国内精品美女久久久久久| 中国美女看黄片| 成人高潮视频无遮挡免费网站| а√天堂www在线а√下载| 成人国产综合亚洲| 一本久久中文字幕| 一进一出抽搐gif免费好疼| 18禁黄网站禁片午夜丰满| 午夜福利在线在线| 国产精品久久久久久久久免 | 国产人妻一区二区三区在| 国内少妇人妻偷人精品xxx网站| 熟女人妻精品中文字幕| 亚洲美女黄片视频| 欧洲精品卡2卡3卡4卡5卡区| 亚洲精品色激情综合| 99热精品在线国产| 99国产综合亚洲精品| 老司机深夜福利视频在线观看| 狠狠狠狠99中文字幕| 天天一区二区日本电影三级| 欧美性猛交╳xxx乱大交人| 日韩欧美在线乱码| 欧美成人性av电影在线观看| 麻豆成人av在线观看| 欧美乱妇无乱码| 国产爱豆传媒在线观看| 国产亚洲欧美98| 欧美日本亚洲视频在线播放| 国产成人aa在线观看| 久久国产精品影院| 欧美午夜高清在线| 制服丝袜大香蕉在线| 国产精品人妻久久久久久| 成年女人永久免费观看视频| 日本一本二区三区精品| 亚洲综合色惰| 亚洲国产精品久久男人天堂| 一a级毛片在线观看| 蜜桃亚洲精品一区二区三区| 神马国产精品三级电影在线观看| 精品乱码久久久久久99久播| 美女cb高潮喷水在线观看| 变态另类成人亚洲欧美熟女| 欧美成人性av电影在线观看| 两性午夜刺激爽爽歪歪视频在线观看| 综合色av麻豆| 可以在线观看毛片的网站| 91麻豆精品激情在线观看国产| 成熟少妇高潮喷水视频| www日本黄色视频网| 91麻豆av在线| 久久精品久久久久久噜噜老黄 | 免费看美女性在线毛片视频| 美女被艹到高潮喷水动态| 亚洲国产欧洲综合997久久,| 直男gayav资源| 一区福利在线观看| 亚洲人成网站在线播| 在线观看一区二区三区| 精品99又大又爽又粗少妇毛片 | 在线免费观看的www视频| 国内久久婷婷六月综合欲色啪| 亚洲乱码一区二区免费版| 久99久视频精品免费| 成年女人看的毛片在线观看| 欧美成人一区二区免费高清观看| 国产精品乱码一区二三区的特点| 免费高清视频大片| 男女那种视频在线观看| 国内揄拍国产精品人妻在线| 亚洲欧美精品综合久久99| 国产三级在线视频| 美女 人体艺术 gogo| 久久久久久九九精品二区国产| 国产精品嫩草影院av在线观看 | 91狼人影院| 噜噜噜噜噜久久久久久91| 国产在线男女| 欧美一区二区国产精品久久精品| 窝窝影院91人妻| 国产国拍精品亚洲av在线观看| 精品一区二区三区av网在线观看| 久久精品国产清高在天天线| 丰满人妻熟妇乱又伦精品不卡| 热99在线观看视频| 精品午夜福利视频在线观看一区| 亚洲欧美日韩无卡精品| 久久久久性生活片| 久久久久亚洲av毛片大全| 国产中年淑女户外野战色| 91字幕亚洲| 国产麻豆成人av免费视频| 欧美一区二区精品小视频在线| 男插女下体视频免费在线播放| 亚洲国产高清在线一区二区三| 男人的好看免费观看在线视频| 亚洲专区国产一区二区| 18禁黄网站禁片午夜丰满| 精品久久久久久久久亚洲 | 日本成人三级电影网站| 亚洲成人久久爱视频| 日韩中字成人| 精品国内亚洲2022精品成人| 69人妻影院| 亚洲 欧美 日韩 在线 免费| 国产亚洲欧美98| 香蕉av资源在线| 国产精品人妻久久久久久| 久久亚洲真实| 久久精品人妻少妇| 欧美高清性xxxxhd video| 精品久久久久久久久av| 少妇高潮的动态图| 99精品久久久久人妻精品| 亚洲成人中文字幕在线播放| 人妻丰满熟妇av一区二区三区| 免费看美女性在线毛片视频| 一区二区三区激情视频| 成年免费大片在线观看| 欧美黄色片欧美黄色片| 久久久久久久久久成人| 欧美成狂野欧美在线观看| 久久国产乱子伦精品免费另类| 国产又黄又爽又无遮挡在线| 美女xxoo啪啪120秒动态图 | 日本撒尿小便嘘嘘汇集6| 色综合亚洲欧美另类图片| 午夜免费男女啪啪视频观看 | 国产高清有码在线观看视频| 国内精品美女久久久久久| 免费看日本二区| 日本精品一区二区三区蜜桃| 天天一区二区日本电影三级| 99在线视频只有这里精品首页| av国产免费在线观看| 日韩大尺度精品在线看网址| 欧美激情在线99| 久久久久久九九精品二区国产| 亚洲人成网站在线播| 成年女人永久免费观看视频| 国语自产精品视频在线第100页| 熟女人妻精品中文字幕| 久久精品国产亚洲av香蕉五月| 真人做人爱边吃奶动态| 一区二区三区免费毛片| 日本五十路高清| 久久人妻av系列| 制服丝袜大香蕉在线| 不卡一级毛片| 欧美另类亚洲清纯唯美| 久久久久久久午夜电影| av福利片在线观看| 99热这里只有是精品在线观看 | 国产熟女xx| 国产精华一区二区三区| 亚洲真实伦在线观看| 丰满人妻熟妇乱又伦精品不卡| 亚州av有码| 在线国产一区二区在线| 免费人成视频x8x8入口观看| 97碰自拍视频| 国产又黄又爽又无遮挡在线| 午夜亚洲福利在线播放| 我的老师免费观看完整版| 欧美另类亚洲清纯唯美| 老熟妇乱子伦视频在线观看| 美女 人体艺术 gogo| 高清日韩中文字幕在线| 特级一级黄色大片| 最近在线观看免费完整版| 国产不卡一卡二| 成人精品一区二区免费| 18禁裸乳无遮挡免费网站照片| 亚洲成人精品中文字幕电影| 看免费av毛片| 亚洲五月天丁香| av中文乱码字幕在线| 99热这里只有是精品50| 亚洲av熟女| 好男人电影高清在线观看| 国产av一区在线观看免费| 欧美性猛交╳xxx乱大交人| 欧美日韩黄片免| 亚洲av电影不卡..在线观看| 90打野战视频偷拍视频| 亚洲成人免费电影在线观看| 亚洲欧美精品综合久久99| 国产亚洲欧美在线一区二区| 日本成人三级电影网站| 免费看日本二区| 国产亚洲欧美在线一区二区| 国产亚洲精品久久久久久毛片| 久久草成人影院| 国产三级黄色录像| 精品不卡国产一区二区三区| 欧美黄色淫秽网站| 国产国拍精品亚洲av在线观看| .国产精品久久| 首页视频小说图片口味搜索| АⅤ资源中文在线天堂| 变态另类成人亚洲欧美熟女| 国产成人欧美在线观看| 国产亚洲欧美在线一区二区| 亚洲成人免费电影在线观看| 精品日产1卡2卡| 噜噜噜噜噜久久久久久91| 国产一级毛片七仙女欲春2| 欧美极品一区二区三区四区| 亚洲狠狠婷婷综合久久图片| 身体一侧抽搐| 日本在线视频免费播放| 观看美女的网站| 久久精品人妻少妇| 亚洲在线自拍视频| 天天躁日日操中文字幕| 色在线成人网|