• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    ARTICLE Photoelectron Spectroscopy and Density Functional Calculations of TiGen?(n=7?12)Clusters?

    2016-04-08 06:36:04XiaojiaoDengXiangyuKongXilingXuHongguangXuWeijunZhengBeijingNationalLaboratoryforMolecularSciencesStateKeyLaboratoryofMolecularReactionDynamicsInstituteofChemistryChineseAcademyofSciencesBeijing100190ChinaDatedReceiv
    CHINESE JOURNAL OF CHEMICAL PHYSICS 2016年1期

    Xiao-jiao Deng,Xiang-yu Kong,Xi-ling Xu,Hong-guang Xu?,Wei-jun Zheng?Beijing National Laboratory for Molecular Sciences,State Key Laboratory of Molecular Reaction Dynamics,Institute of Chemistry,Chinese Academy of Sciences,Beijing 100190,China(Dated:Received on November 15,2015;Accepted on December 29,2015)

    ?

    ARTICLE Photoelectron Spectroscopy and Density Functional Calculations of TiGen?(n=7?12)Clusters?

    Xiao-jiao Deng,Xiang-yu Kong,Xi-ling Xu,Hong-guang Xu?,Wei-jun Zheng?
    Beijing National Laboratory for Molecular Sciences,State Key Laboratory of Molecular Reaction Dynamics,Institute of Chemistry,Chinese Academy of Sciences,Beijing 100190,China
    (Dated:Received on November 15,2015;Accepted on December 29,2015)

    The growth pattern and electronic properties of TiGen?(n=7?12)clusters were investigated using anion photoelectron spectroscopy and density functional theory calculations.For both anionic and neutral TiGenclusters,a half-encapsulated boat-shaped structure appears at n=8,and the boat-shaped structure is gradually covered by the additional Ge atoms to form Gencage at n=9?11.TiGe12?cluster has a distorted hexagonal prism cage structure. According to the natural population analysis,the electron transfers from the Genframework to the Ti atom for TiGen?/0clusters at n=8?12,implying that the electron transfer pattern is related to the structural evolution.

    Key words:Photoelectron spectroscopy,Density functional theory,Germanium clusters

    ?Part of the special issue for“the Chinese Chemical Society’s 14th National Chemical Dynamics Symposium”.

    ?Authors to whom correspondence should be addressed.E-mail: xuhong@iccas.ac.cn,zhengwj@iccas.ac.cn,Tel.:+86-10-62635054, FAX:+86-10-62563167

    I.INTRODUCTION

    Experimental and theoretical studies suggested that the doping of transition metals(TMs)can stabilize the cage structures of germanium-based clusters and tailor their properties[1?5].Ti-doped germanium clusters have attracted much attention because they may be used to produce cluster-assembled materials of special electronic and magnetic properties[6].It has been proposed that Ti-Ge binary alloys may be developed for dental materials[7].It has also been found that strain-released hybrid multiplayer Ge-Ti nanomembranes can form anode materials with both high conductivity and high storage capacity,therefore, enhance the performance of lithium batteries[8].Investigating the structural and electronic properties of Ti-doped germanium clusters may provide valuable information for developing cluster-assembled materials as well as their applications in electronics,biomedicine, and energy storage.Kumar and Kawazoe conducted theoretical calculations on a number of TM-doped germanium clusters and predicted TiGe16cluster to be a Frank-Kasper polyhedron structure with a large gap between its highest-occupied-orbital(HOMO)and lowest-unoccupied-orbital(LUMO)[9].In addition to the TiGe16cluster,the density functional theory (DFT)calculations of Bandyopadhyay et al.on TiGen(n=14?20)suggested that TiGe18cluster also has enhanced stability[10].The ground state structure of TiGe12cluster is proposed to be a remarkably stable pseudoicosahedron by Tang et al.[11].More recently, the DFT calculations of TiGen(n=1?20)clusters of Kumar et al.suggested that the Ti atom is encapsulated in the Gencage when n is larger than 9 and the most stable structure of TiGe12cluster is a relaxed hexagon[12].Compared with the theoretical studies of TiGenclusters,the experimental investigation of TiGenclusters is quite rare except that Nakajima and coworkers investigated TiGenclusters using mass spectrometry and anion photoelectron spectroscopy,and probed their stability via their reactivity to H2O adsorption[2,13].

    Previously,we have investigated the structural,electronic and magnetic properties of small size TiGen?(n=2?6)clusters using anion photoelectron spectroscopy and DFT calculations[14].The results displayed that the most stable structures of these small clusters can be considered as a Ti atom substituting one of the Ge atoms in the corresponding Gen+1cluster or a Ti atom capping a Gencluster,and the Ti atom is inclined to interact with more Ge atoms.In order to get more information regarding the structural evolution and electronic properties of larger TiGenclusters,in this work,we investigated the TiGen?(n=7?12)clusters using mass-selected anion photoelectron spectroscopy experiments combined with DFT calculations.

    II.EXPERIMENTAL AND THEORETICAL METHODS

    The experiments were conducted on a home-built apparatus equipped with a laser vaporization supersonic cluster source,a time-of- fl ight mass spectrometer,and a magnetic-bottle photoelectron spectrometer,which hasbeen described elsewhere[15].The TiGen?(n=7?12) cluster anions were generated in the laser vaporization source by laser ablation of a rotating translating disk target(13 mm diameter,Ti:Ge mole ratio 1:4)with the second harmonic of a nanosecond Nd:YAG laser (Continuum Surelite II-10).The typical laser power used in this work is about 10 mJ/pulse.Helium gas with~4 atm backing pressure was allowed to expand through a pulsed valve(General Valve Series 9)into the source to cool the formed clusters.The generated cluster anions were mass-analyzed with the time-of- fl ight mass spectrometer.The cluster anions of interest were selected with a mass gate,decelerated by a momentum decelerator,and crossed with the beam of another Nd:YAG laser(Continuum Surelite II-10,266 nm)at the photodetachment region.The electrons from photodetachment were energy-analyzed by the magneticbottle photoelectron spectrometer.The photoelectron spectra were calibrated with the spectra of Cu?and Pb?taken at similar conditions.The resolution of the magnetic-bottle photoelectron spectrometer was about 40 meV at electron kinetic energy of 1 eV.

    FortheTiGen?/0clusters,geometryoptimizations were performed using DFT with Becke’s threeparameter and Lee-Yang-Parr’s gradient-corrected correlation hybrid functional(B3LYP)[16?18]and 6-311+G(d)basis sets as implemented in the Gaussian 03 program package[19].For all clusters,a large amount of initial structures were taken into accounts at all possible spin states.These initial structures were constructed by Ti-capping or Ti-substituting of pure Genclusters or based on the structures of TM-doped Genclusters reported in the literature[12,20?27].All geometries were optimized without any symmetry constraint.Harmonic vibrational frequencies were calculated to make sure that the structures correspond to real local minima, and the zero-point vibrational energy corrections were included for the relative energies of isomers.The natural population analysis(NPA)of TiGen?/0(n=7?12) clusters were conducted with the nature bond orbital (NBO)version 3.1 program[28?34]implemented in the Gaussian 03 program package.

    III.RESULTS

    A.Experimental results

    The photoelectron spectra of the TiGen?(n=7?12) clusters taken with 266 nm photons are shown in Fig.1, and the vertical detachment energies(VDEs)and adiabatic detachment energies(ADEs)of these clusters estimated from photoelectron spectra are listed in Table I. The VDEs were estimated from the maxima of the fi rst peaks.The ADE of each cluster was determined by drawing a straight line along the leading edge of the fi rst peak to cross the baseline of spectrum and adding the instrument resolution to electron binding energy(EBE)

    FIG.1 Photoelectron spectra of TiGen?(n=7?12)clusters recorded with 266 nm photons.

    value at the crossing point.Our spectra are in agreement with previous measurement of TiGen?(n=7?17) reported by Nakijima and coworkers[2]except that our experimental spectra show better resolution.

    FIG.2 Low-lying isomers of TiGen?(n=7?12)clusters.The relative energies to the most stable isomers are shown.

    As shown in Fig.1,there are four resolved peaks centered at 2.97,3.47,3.84,and 4.04 eV,and an unresolved peak over 4.27 eV in the spectrum of TiGe7?.With respect to the spectrum of TiGe8?,four peaks centered at 3.32,3.70,3.91,and 4.27 eV and a shoulder at 3.53 eV can be observed.As for TiGe9?,it has two major peaks centered at 3.15 and 3.91 eV,as well as two barely noticeable peaks at 3.40 and 4.37 eV.TiGe10?has a major peak centered at 3.35 eV,a shoulder at 3.12 eV,a broad peak at 3.96 eV,and the onset of a high EBE peak above 4.3 eV.The spectral features of TiGe11?are very broad with three barely discernible peaks centered at 3.5,3.7,and 3.9 eV respectively.The spectral features of TiGe12?are also very broad.It has a major peak centered at~3.8 eV and a shoulder at~3.5 eV.

    B.Theoretical results

    Thetypicallow-lyingisomersfortheTiGen?(n=7?12)clusters obtained from the DFT calculations are presented in Fig.2 with the most stable ones on the left.Their theoretical VDEs and ADEs are summarized in Table II.The VDE is de fi ned as the energy di ff erence between the neutral and anion both at the equilibrium structure of the anion,whereas the ADE is the energy di ff erence between the neutral and the anion with the neutral relaxed to the nearest local minimum using the anionic structure as initial structure.The Cartesian coordinates of the low-lying isomers are available in the supplementary material.

    With respect to TiGe7?,isomer 7A can be regarded as a Ge atom capping the TiGe6pentagonal bipyramid with the Ti atom at the vertex,and its calculated VDE (2.70 eV)is in reasonable agreement with the experimental value(2.97 eV).Isomers 7B and 7C are much less stable than 7A by 0.50 and 0.64 eV in energy,respectively.Thus,we suggest that 7A is the dominant structure observed in our experiments.

    The most stable isomer(8A)of TiGe8?can be viewed as a half-endohedral structure with the Ti atom locating in a boat-shaped Ge8framework,and its theoretical VDEs of 8A(3.15 eV)is in agreement with the experimental value(3.32 eV).Isomer 8B can be seen as two Ge atoms capping on a TiGe6pentagonal bipyramid. The energies of 8B and 8C are much higher than that of 8A by 0.57 and 0.66 eV,respectively.Therefore,we suggest that 8A is the major structure contributed to the experimental spectrum.

    For TiGe9?,the most stable isomer 9A can be viewed as a Ge atom capping the boat-shaped structure of TiGe8?(8A).Isomer 9B can be obtained by connecting a Ge3triangular to a TiGe6pentagonal bipyramid,and its energy is higher than 9A by 0.21 eV.Isomer 9C is less stable than isomer 9A by 0.50 eV,thus the existence of 9C can be ruled out.The theoretical VDEs of isomers 9A and 9B are 2.97 and 3.31 eV,respectively, both close to the experimental value(3.15 eV).Therefore,isomer 9A is suggested to be the most probable one detected in our experiments,but the existence ofisomer 9B cannot be ruled out.

    TABLE II Relative energies,VDEs and ADEs of the low energy isomers of the TiGen?(n=7?12)obtained by DFT calculations.Multiplicities are 2.

    As for TiGe10?,the structures of isomers 10A and 10B can be described as two Ge atoms connecting to the di ff erent locations of the boat-shaped structure of TiGe8?(8A),and isomer 10B is higher than isomer 10A in energy by only 0.15 eV.The calculated VDE of isomer 10A(3.20 eV)is in good agreement with the experimental value(3.12 eV).That of isomer 10B is calculated to be 3.38 eV.Isomer 10C is much less stable than 10A by 0.56 eV in energy.Thus,we suggest that isomer 10A is the major species in our experiments and isomer 10B may contribute to the higher EBE peaks in the experimental spectrum.

    For TiGe11?,both isomers 11A and 11B can be regarded as three Ge atoms connecting to the top of the boat-shaped structure of TiGe8?(8A).The calculated VDE of 11A(3.80 eV)is in reasonable agreement with the experimental value(3.5 eV).Isomer 11B is higher in energy than isomer 11A by 0.25 eV and its theoretical VDE(3.04 eV)is much lower than the experimental value.Isomer 11C is less stable than 11A by 0.32 eV. Therefore,isomer 11A is the most likely structure of TiGe11?in our experiments.

    The most stable structure of TiGe12?(12A)is a distorted hexagonal prism structure with the Ti atom at the center.Isomer 12B can be seen as four Ge atoms connecting to the top of boat-shaped structure of TiGe8?(8A).The calculated VDEs of 12A(3.43 eV), 12B(3.40 eV)and 12C(3.40 eV)are all consistent with the experimental value(3.5 eV).Isomer 12B is higher than that isomer 12A by only 0.10 eV while isomer 12C is higher than 12A by 0.24 eV.Therefore,we suggest that 12A is the dominant structure observed in our experiments,but the existence of 12B cannot be ruled out.

    We have also investigated the structures of neutral TiGen(n=7?12)clusters and displayed them in Fig.3. It can be seen that the most stable structures of the neutral TiGen(n=7?12)clusters are similar to those of the TiGen?anions,except that those of TiGe11and TiGe12are di ff erent from their anionic counterparts.The most stable structure of neutral TiGe11cluster(11A′)is similar to the second stable structure of TiGe11?anion(11B).For neutral TiGe12,the most stable structure(12A′)is similar to the second stable structure of TiGe12?anion(12B),while the second stable structure(12B′)is similar to the most stable one of TiGe12?anion(12A).Isomer 12B′is higher in energy than 12A′by only 0.08 eV.The most stable structures of the neutral TiGen(n=7?12)clusters found in this work are slightly di ff erent from those reported in Ref.[12].In Ref.[12],the ground state structure of TiGe8can be seen as a Ge atom capping a TiGe7hexagonal bipyramid,which is di ff erent from the half-encapsulated boatshaped structure in this work.We found that the most stable structures of TiGen(n=9?12)clusters are all derived from the boat-shaped structure of TiGe8.In Ref.[12],the ground structures of TiGe9and TiGe10can also be seen as deriving from the boat-shaped structure of TiGe8,but they are slightly distorted compared with the most stable structures in this work.While the ground structure of TiGe11in Ref.[12]can be described as a basket-shaped structure.Also,the ground state structure of neutral TiGe12reported previously is a distorted hexagonal prism,which is similar to the most stable structure of anionic TiGe12?(12A)and the second stable structure of neutral TiGe12(12B′)in this work.Such di ff erent results are probably because we used a larger basis set in this work.

    IV.DISCUSSION

    As shown in Fig.3,the Ti atom is half-encapsulated by a boat-shaped Ge8framework at n=8,and the opening of the boat-shaped structure is gradually covered by the additional Ge atoms to form Gencage from n=9 to 11.At n=8?12,the endohedral structures of both anionic and neutral TiGenclusters are more stable than their exohedral structures.For anionic and neutral TiGe12cluster,the Ti atom is completely encapsulated by the Ge12cage,in which the anionic TiGe12has a distorted hexagonal prism cage structure while the neutral TiGe12has a Ge4capped boat-shaped structure. The structural evolution found in this work agrees with the adsorption reactivity of neutral TiGen(n=7?16) towards H2O[2],in which the reactivity generally decreases with an increasing number of Ge atoms fromn=7?11,and the relative reactivity is lost at n=12.

    We also investigated the electronic and magnetic properties of the most stable structures of anionic and neutral TiGen(n=7?12)clusters using NPA.As shown in Table III,for both anionic and neutral TiGenclusters size with n=8?12,the negative charge on Ti atom increases signi fi cantly,suggesting that there is more electron transfer from the Ge atoms to the Ti atom.This also indicates that the electron transfer from the Genframework to the Ti atom is strongly related to the structural evolution of TiGenclusters,especially related to the formation of endohedral structures.In addition,this electron transfer pattern is similar to those of CoGen?/0(n=2?11)[26]and VGen?/0(n=3?12) [27]clusters,but di ff erent from those of the CuGen(n=2?13)[20],and NiGen(n=1?20)[32]clusters,in which the electron transfers from the Cu or Ni atom to the Genframework.As shown in Table III,the total magnetic moments of the anion TiGen?(n=7?12) clusters are 1μB.As for the neutral TiGenclusters, our calculations show that the multiplicities of the most stable isomers of TiGe7to TiGe10are 3,while those of TiGe11and TiGe12are 1;thus,the total magnetic moments are 2μBfor sizes of n=7?10,and 0μBfor n=11 and 12.The magnetic moment of TiGe11and TiGe12quench is possibly because there are more electrons transfer from the Ge atoms to the Ti atom andBstronger connection between the Ge atoms and Ti atom. For both anionic and neutral TiGen(n=7?12)clusters, the total magnetic moments are contributed by both Ti and Ge atoms.

    V.CONCLUSION

    The structural,electronic and magnetic properties of anionic and neutral TiGen(n=7?12)clusters were investigated using anion photoelectron spectroscopy in combination with density functional theory calculations.A half-endohedral boat-shaped structure emerged at n=8,then the opening of the boat-shaped structure is gradually capped by the additional Ge atoms to form Gencage at n=9?11.TiGe12?cluster has a distorted hexagonal prism cage structure.The electron transfer from the Gencage to the Ti atom increases at n=8?12,suggesting that the electron transfer pattern is related to the structural evolution,especially to the formation of endohedral structure.For both anionic and neutral TiGen(n=7?12)clusters,the total magnetic moments are contributed by both Ti and Ge atoms.

    Supplementary materials:The Cartesian coordinates of the low-lying isomers are available.

    VI.ACKNOWLEDGMENTS

    Wei-jun Zheng acknowledges the Knowledge Innovation Program of the Chinese Academy of Sciences (No.KJCX2-EW-H01)and Hong-guang Xu acknowledges the National Natural Science Foundation of China (No.21103202)for fi nancial support.The theoretical calculations were conducted on the ScGrid and Deep-Comp 7000 of the Supercomputing Center,Computer Network Information Center of the Chinese Academy of Sciences.

    [1]X.Zhang,G.L.Li,and Z.Gao,Rapid Commun.Mass Spectrom.15,1573(2001).

    [2]J.Atobe,K.Koyasu,S.Furuse,and A.Nakajima,Phys. Chem.Chem.Phys.14,9403(2012).

    [3]J.Wang and J.G.Han,J.Phys.Chem.B 110,7820 (2006).

    [4]W.J.Zhao and Y.X.Wang,Chem.Phys.352,291 (2008).

    [5]G.L.Li,X.Zhang,Z.C.Tang,and Z.Gao,Chem. Phys.Lett.359,203(2002).

    [6]X.R.Li,Y.D.Ma,Y.Dai,and B.B.Huang,J.Mater. Chem.C 1,4565(2013).

    [7]W.J.Lin,B.L.Wang,K.J.Qiu,F.Y.Zhou,L.Li, J.P.Lin,Y.B.Wang,and Y.F.Zheng,J.Biomed. Mater.Res.Part B 100B,2239(2012).

    [8]C.L.Yan,W.Xi,W.P.Si,J.W.Deng,and O.G. Schmidt,Adv.Mater.25,539(2013).

    [9]V.Kumar and Y.Kawazoe,Phys.Rev.Lett.88,235504 (2002).

    [10]D.Bandyopadhyay,P.Kaur,and P.Sen,J.Phys. Chem.A 114,12986(2010).

    [11]C.M.Tang,M.Y.Liu,W.H.Zhu,and K.M.Deng, Comput.Theor.Chem.969,56(2011).

    [12]M.Kumar,N.Bhattacharyya,and D.Bandyopadhyay, J.Mol.Model.18,405(2012).

    [13]S.Furuse,K.Koyasu,J.Atobe,and A.Nakajima,J. Chem.Phys.129,064311(2008).

    [14]X.J.Deng,X.Y.Kong,X.L.Xu,H.G.Xu,and W. J.Zheng,RSC Adv.4,25963(2014).

    [15]H.G.Xu,Z.G.Zhang,Y.Feng,J.Y.Yuan,Y.C. Zhao,and W.J.Zheng,Chem.Phys.Lett.487,204 (2010).

    [16]C.T.Lee,W.T.Yang,and R.G.Parr,Phys.Rev.B 37,785(1988).

    [17]A.J.H.Wachters,J.Chem.Phys.52,1033(1970).

    [18]A.D.Becke,J.Chem.Phys.98,5648(1993).

    [19]M.J.Frisch,G.W.Trucks,H.B.Schlegel,G.E.Scuseria,M.A.Robb,J.R.Cheeseman,J.A.Montgomery Jr.,T.Vreven,K.N.Kudin,J.C.Burant,J.M.Millam, S.S.Iyengar,J.Tomasi,V.Barone,B.Mennucci,M. Cossi,G.Scalmani,N.Rega,G.A.Petersson,H.Nakatsuji,M.Hada,M.Ehara,K.Toyota,R.Fukuda,J. Hasegawa,M.Ishida,T.Nakajima,Y.Honda,O.Kitao, H.Nakai,M.Klene,X.Li,J.E.Knox,H.P.Hratchian, J.B.Cross,V.Bakken,C.Adamo,J.Jaramillo,R. Gomperts,R.E.Stratmann,O.Yazyev,A.J.Austin, R.Cammi,C.Pomelli,J.W.Ochterski,P.Y.Ayala, K.Morokuma,G.A.Voth,P.Salvador,J.J.Dannenberg,V.G.Zakrzewski,S.Dapprich,A.D.Daniels,M. C.Strain,¨O.Farkas,D.K.Malick,A.D.Rabuck,K. Raghavachari,J.B.Foresman,J.V.Ortiz,Q.Cui,A. G.Baboul,S.Cli ff ord,J.Cioslowski,B.B.Stefanov,G. Liu,A.Liashenko,P.Piskorz,I.Komaromi,R.L.Martin,D.J.Fox,T.Keith,M.A.Al-Laham,C.Y.Peng, A.Nanayakkara,M.Challacombe,P.M.W.Gill,B. Johnson,W.Chen,M.W.Wong,C.Gonzalez,and J. A.Pople,Gaussian 03,Pittsburgh,PA:Gaussian,Inc., (2004).

    [20]J.Wang and J.G.Han,J.Chem.Phys.123,244303 (2005).

    [21]J.Wang and J.G.Han,J.Phys.Chem.A 110,12670 (2006).

    [22]Q.Jing,F.Y.Tian,and Y.X.Wang,J.Chem.Phys. 128,124319(2008).

    [23]W.J.ZhaoandY.X.Wang,J.Mol.Struct.: THEOCHEM 901,18(2009).

    [24]N.Kapila,V.K.Jindal,and H.Sharma,Physica B 406,4612(2011).

    [25]D.Bandyopadhyay,J.Mol.Model.18,3887(2012).

    [26]X.J.Deng,X.Y.Kong,X.L.Xu,H.G.Xu,and W. J.Zheng,ChemPhysChem 15,3987(2014).

    [27]X.J.Deng,X.Y.Kong,H.G.Xu,X.L.Xu,G.Feng, and W.J.Zheng,J.Phys.Chem.C 119,11048(2015).

    [28]J.P.Foster and F.Weinhold,J.Am.Chem.Soc.102, 7211(1980).

    [29]A.E.Reed and F.Weinhold,J.Chem.Phys.78,4066 (1983).

    [30]A.E.Reed and F.Weinhold,J.Chem.Phys.83,1736 (1985).

    [31]A.E.Reed,R.B.Weinstock,and F.Weinhold,J. Chem.Phys.83,735(1985).

    [32]A.E.Reed,L.A.Curtiss,and F.Weinhold,Chem.Rev. 88,899(1988).

    [33]F.Weinhold and J.E.Carpenter,The Structure of Small Molecules and Ions,R.Naaman and Z.Vager, Eds.,227(1988).

    [34]J.E.Carpenter and F.Weinhold,J.Mol.Struct. THEOCHEM 169,41(1988).

    av女优亚洲男人天堂| 亚洲精品第二区| 色播亚洲综合网| 国内精品宾馆在线| 性色av一级| 日韩一区二区视频免费看| 国产午夜精品一二区理论片| 白带黄色成豆腐渣| 欧美最新免费一区二区三区| 男的添女的下面高潮视频| 日日撸夜夜添| 国产亚洲最大av| 午夜免费鲁丝| 欧美xxxx性猛交bbbb| 又黄又爽又刺激的免费视频.| 网址你懂的国产日韩在线| 精品国产露脸久久av麻豆| 3wmmmm亚洲av在线观看| 午夜亚洲福利在线播放| 99热这里只有是精品在线观看| 久久精品国产亚洲av天美| 91精品一卡2卡3卡4卡| 成人毛片a级毛片在线播放| 亚洲av免费在线观看| 丰满少妇做爰视频| 日日啪夜夜爽| 成年女人看的毛片在线观看| 亚洲国产欧美在线一区| 久久久久九九精品影院| 国产淫语在线视频| 国产女主播在线喷水免费视频网站| 国产精品人妻久久久影院| 久久久久九九精品影院| 国产探花在线观看一区二区| 国内少妇人妻偷人精品xxx网站| 亚州av有码| av国产久精品久网站免费入址| 如何舔出高潮| 在线a可以看的网站| 国产一区二区在线观看日韩| 91精品伊人久久大香线蕉| 国产一级毛片在线| 亚洲色图av天堂| 日本色播在线视频| 午夜亚洲福利在线播放| 如何舔出高潮| 国产白丝娇喘喷水9色精品| 美女主播在线视频| 国产综合精华液| 热re99久久精品国产66热6| 国产在线男女| 国产真实伦视频高清在线观看| 一级二级三级毛片免费看| 国产老妇伦熟女老妇高清| 真实男女啪啪啪动态图| 成年女人看的毛片在线观看| 久久久久久久久大av| 一本久久精品| av在线老鸭窝| 你懂的网址亚洲精品在线观看| 亚洲综合色惰| 18禁在线无遮挡免费观看视频| 又爽又黄无遮挡网站| 国产精品国产av在线观看| 国产永久视频网站| 深爱激情五月婷婷| 午夜精品国产一区二区电影 | 深夜a级毛片| 99九九线精品视频在线观看视频| 国产91av在线免费观看| 免费观看av网站的网址| 男女边吃奶边做爰视频| 天堂俺去俺来也www色官网| 成人午夜精彩视频在线观看| 日产精品乱码卡一卡2卡三| 丰满乱子伦码专区| 少妇 在线观看| 久久精品国产鲁丝片午夜精品| 欧美高清成人免费视频www| 干丝袜人妻中文字幕| 久久久久精品性色| 久久久色成人| 少妇熟女欧美另类| 国产乱人偷精品视频| 亚洲欧美成人精品一区二区| 人妻 亚洲 视频| 熟女av电影| 日韩,欧美,国产一区二区三区| 美女脱内裤让男人舔精品视频| 久久热精品热| 日韩伦理黄色片| 又粗又硬又长又爽又黄的视频| 日日摸夜夜添夜夜爱| 亚洲成人久久爱视频| 国产日韩欧美亚洲二区| 亚洲无线观看免费| 制服丝袜香蕉在线| eeuss影院久久| 国产一区二区亚洲精品在线观看| 好男人视频免费观看在线| 婷婷色av中文字幕| 精品视频人人做人人爽| 欧美日韩综合久久久久久| 一本色道久久久久久精品综合| 一本一本综合久久| 亚洲无线观看免费| 七月丁香在线播放| 国产精品嫩草影院av在线观看| 国产 一区 欧美 日韩| 国产午夜福利久久久久久| 少妇的逼好多水| 亚洲欧美一区二区三区国产| h日本视频在线播放| 99热网站在线观看| 欧美高清性xxxxhd video| 99re6热这里在线精品视频| 日韩中字成人| 日本一二三区视频观看| 赤兔流量卡办理| 中文欧美无线码| 一区二区三区四区激情视频| 欧美97在线视频| 神马国产精品三级电影在线观看| 欧美一区二区亚洲| 中文字幕人妻熟人妻熟丝袜美| 天堂中文最新版在线下载 | 国产 精品1| 免费av观看视频| 亚洲成人精品中文字幕电影| 久久国内精品自在自线图片| av在线亚洲专区| 国产一区二区在线观看日韩| 亚洲国产色片| 天天一区二区日本电影三级| 精品国产乱码久久久久久小说| 最后的刺客免费高清国语| 欧美一级a爱片免费观看看| 午夜日本视频在线| 午夜福利视频精品| a级一级毛片免费在线观看| av在线观看视频网站免费| 久久精品久久精品一区二区三区| 国产高清三级在线| 午夜福利在线在线| 一本久久精品| 伦精品一区二区三区| 日韩中字成人| 欧美xxxx性猛交bbbb| 国产一区二区三区综合在线观看 | 婷婷色综合www| 久久这里有精品视频免费| 黄片无遮挡物在线观看| 日韩免费高清中文字幕av| 欧美潮喷喷水| 在线观看一区二区三区| 久久精品夜色国产| 夫妻性生交免费视频一级片| 久久久精品94久久精品| 亚洲国产精品国产精品| 人妻夜夜爽99麻豆av| 青春草亚洲视频在线观看| 国产精品蜜桃在线观看| 国产女主播在线喷水免费视频网站| 一级二级三级毛片免费看| 久久精品国产a三级三级三级| 永久免费av网站大全| 中国国产av一级| 在线亚洲精品国产二区图片欧美 | 嫩草影院新地址| 精品人妻熟女av久视频| 日韩视频在线欧美| 男人舔奶头视频| 搡老乐熟女国产| 日韩一区二区三区影片| 联通29元200g的流量卡| 国产有黄有色有爽视频| 26uuu在线亚洲综合色| av国产精品久久久久影院| 亚洲精品中文字幕在线视频 | a级毛片免费高清观看在线播放| 国产精品嫩草影院av在线观看| 涩涩av久久男人的天堂| h日本视频在线播放| eeuss影院久久| 91久久精品国产一区二区成人| 女的被弄到高潮叫床怎么办| 日本熟妇午夜| 国产一区二区在线观看日韩| 狂野欧美白嫩少妇大欣赏| 九草在线视频观看| 狂野欧美激情性xxxx在线观看| 亚洲人成网站在线播| 寂寞人妻少妇视频99o| 色视频在线一区二区三区| 97在线人人人人妻| 国产精品国产三级专区第一集| 欧美成人a在线观看| 欧美97在线视频| 亚洲精品日韩av片在线观看| 日韩 亚洲 欧美在线| 大香蕉久久网| 一级a做视频免费观看| 极品教师在线视频| 在线观看av片永久免费下载| 美女内射精品一级片tv| 在线精品无人区一区二区三 | 亚洲国产精品成人久久小说| 看十八女毛片水多多多| 搡老乐熟女国产| 精品人妻一区二区三区麻豆| freevideosex欧美| 日本欧美国产在线视频| 久久女婷五月综合色啪小说 | 成人美女网站在线观看视频| 久久久久精品久久久久真实原创| 久久精品久久久久久久性| 全区人妻精品视频| 国产免费视频播放在线视频| 精品久久久久久久人妻蜜臀av| 亚洲av成人精品一二三区| 国产精品一区www在线观看| 看十八女毛片水多多多| 观看美女的网站| 真实男女啪啪啪动态图| 亚洲欧洲国产日韩| 久久99热6这里只有精品| 色网站视频免费| 搡老乐熟女国产| 国产亚洲av片在线观看秒播厂| 日日啪夜夜撸| 国产精品熟女久久久久浪| 十八禁网站网址无遮挡 | www.色视频.com| 天堂俺去俺来也www色官网| av.在线天堂| 免费观看性生交大片5| 成年女人在线观看亚洲视频 | 国产欧美日韩精品一区二区| 我的女老师完整版在线观看| 高清毛片免费看| 亚洲精品视频女| 色播亚洲综合网| 午夜免费男女啪啪视频观看| 高清av免费在线| 成人亚洲精品av一区二区| 天天躁夜夜躁狠狠久久av| 精品久久久久久久末码| 国产欧美亚洲国产| 久久综合国产亚洲精品| 午夜精品一区二区三区免费看| 久久精品久久久久久噜噜老黄| 久久久久国产精品人妻一区二区| 亚洲欧美一区二区三区黑人 | 日韩强制内射视频| tube8黄色片| 欧美日韩视频精品一区| 亚洲精品成人av观看孕妇| 高清午夜精品一区二区三区| 性插视频无遮挡在线免费观看| 欧美日本视频| 亚洲欧洲日产国产| 国产成人a区在线观看| 在线观看一区二区三区| 一级av片app| 天天躁夜夜躁狠狠久久av| 国精品久久久久久国模美| a级一级毛片免费在线观看| av免费在线看不卡| 伊人久久国产一区二区| 日韩不卡一区二区三区视频在线| 成人二区视频| 国产精品国产三级专区第一集| 久久久色成人| 午夜福利在线观看免费完整高清在| 啦啦啦中文免费视频观看日本| 80岁老熟妇乱子伦牲交| 国产成人福利小说| 欧美97在线视频| 少妇人妻久久综合中文| 亚洲精品乱码久久久v下载方式| 久久99蜜桃精品久久| 在现免费观看毛片| 国产午夜福利久久久久久| 亚洲精品久久午夜乱码| videos熟女内射| 国产大屁股一区二区在线视频| 99久久人妻综合| .国产精品久久| 国内揄拍国产精品人妻在线| 六月丁香七月| 新久久久久国产一级毛片| 日本-黄色视频高清免费观看| 一边亲一边摸免费视频| 亚洲欧美日韩另类电影网站 | 嘟嘟电影网在线观看| 看十八女毛片水多多多| 国产成年人精品一区二区| 精品人妻熟女av久视频| 久久久久久久久久成人| 又大又黄又爽视频免费| 久久久色成人| 熟女av电影| 亚洲人与动物交配视频| 九九在线视频观看精品| 亚洲aⅴ乱码一区二区在线播放| 日韩在线高清观看一区二区三区| 午夜激情久久久久久久| 国产免费又黄又爽又色| 中文精品一卡2卡3卡4更新| 亚洲不卡免费看| av国产免费在线观看| 免费在线观看成人毛片| 亚洲一区二区三区欧美精品 | 日本色播在线视频| 嘟嘟电影网在线观看| 只有这里有精品99| 日韩 亚洲 欧美在线| av在线蜜桃| 美女cb高潮喷水在线观看| 成人免费观看视频高清| 国产伦理片在线播放av一区| 国产精品三级大全| 可以在线观看毛片的网站| 大码成人一级视频| 在线观看一区二区三区激情| 精品久久久久久电影网| 97在线人人人人妻| 最近最新中文字幕免费大全7| 国产91av在线免费观看| 亚洲美女视频黄频| 蜜桃久久精品国产亚洲av| 五月伊人婷婷丁香| 99热这里只有精品一区| 亚洲av成人精品一二三区| 欧美日韩亚洲高清精品| 美女主播在线视频| 亚洲人成网站在线播| 精品久久久久久久久亚洲| 国产精品伦人一区二区| 亚洲精品日韩av片在线观看| 欧美日韩亚洲高清精品| 最新中文字幕久久久久| 日本三级黄在线观看| 久久久久精品久久久久真实原创| 亚洲精品乱码久久久v下载方式| 久久99蜜桃精品久久| 久久久色成人| 看十八女毛片水多多多| 亚洲av中文av极速乱| 午夜日本视频在线| 色视频在线一区二区三区| videos熟女内射| 亚洲av中文av极速乱| 精品少妇久久久久久888优播| 亚洲人成网站高清观看| 日本与韩国留学比较| 超碰av人人做人人爽久久| 国产色爽女视频免费观看| 中文字幕av成人在线电影| 夫妻午夜视频| 亚洲av不卡在线观看| 边亲边吃奶的免费视频| 一区二区三区四区激情视频| 免费人成在线观看视频色| 亚洲精品成人久久久久久| 色婷婷久久久亚洲欧美| 黄色配什么色好看| 99久久中文字幕三级久久日本| 日本黄色片子视频| 国产午夜福利久久久久久| 久久精品久久精品一区二区三区| 黄色欧美视频在线观看| 国产一区二区在线观看日韩| 国产精品一区www在线观看| h日本视频在线播放| 激情 狠狠 欧美| 午夜精品一区二区三区免费看| 久久国产乱子免费精品| 美女视频免费永久观看网站| 久久精品久久久久久噜噜老黄| 亚洲人成网站在线播| 亚洲欧洲国产日韩| 老师上课跳d突然被开到最大视频| 我的女老师完整版在线观看| 欧美97在线视频| 国产男女内射视频| 18+在线观看网站| 听说在线观看完整版免费高清| 国产毛片在线视频| 欧美zozozo另类| 精品酒店卫生间| 大片免费播放器 马上看| 成人亚洲欧美一区二区av| 18禁裸乳无遮挡免费网站照片| 99精国产麻豆久久婷婷| 国产精品嫩草影院av在线观看| 边亲边吃奶的免费视频| 人妻系列 视频| 亚洲真实伦在线观看| 欧美3d第一页| 少妇人妻 视频| 尤物成人国产欧美一区二区三区| 欧美精品国产亚洲| 80岁老熟妇乱子伦牲交| 视频中文字幕在线观看| 精品酒店卫生间| 一区二区三区免费毛片| 亚洲av日韩在线播放| 国产精品99久久99久久久不卡 | 51国产日韩欧美| 只有这里有精品99| 成人亚洲精品av一区二区| 国产精品秋霞免费鲁丝片| 乱码一卡2卡4卡精品| 18禁裸乳无遮挡动漫免费视频 | 色视频在线一区二区三区| 少妇高潮的动态图| 亚洲va在线va天堂va国产| 日本黄大片高清| 亚洲人与动物交配视频| 亚洲天堂av无毛| 九九爱精品视频在线观看| 菩萨蛮人人尽说江南好唐韦庄| 丝袜喷水一区| 久久久久久国产a免费观看| 国产午夜精品一二区理论片| 日本爱情动作片www.在线观看| 成人免费观看视频高清| 日本一二三区视频观看| 亚洲精品乱码久久久久久按摩| 性色av一级| 哪个播放器可以免费观看大片| 在线亚洲精品国产二区图片欧美 | 免费看日本二区| 亚洲欧洲国产日韩| 又黄又爽又刺激的免费视频.| 国产黄a三级三级三级人| 80岁老熟妇乱子伦牲交| 超碰av人人做人人爽久久| 高清视频免费观看一区二区| 久久午夜福利片| 国内精品美女久久久久久| 亚洲精品第二区| 免费观看a级毛片全部| 亚洲精品456在线播放app| 亚洲av成人精品一二三区| av在线老鸭窝| 狂野欧美激情性xxxx在线观看| 日韩国内少妇激情av| 亚洲婷婷狠狠爱综合网| 国产高潮美女av| 亚洲精品成人av观看孕妇| av免费观看日本| 日日啪夜夜爽| 国国产精品蜜臀av免费| 看免费成人av毛片| 日本一二三区视频观看| 午夜福利在线在线| 亚洲av不卡在线观看| 99久久中文字幕三级久久日本| www.av在线官网国产| 卡戴珊不雅视频在线播放| 国产av码专区亚洲av| 乱系列少妇在线播放| 亚洲成人精品中文字幕电影| 高清在线视频一区二区三区| 精品久久久久久久久av| 亚洲最大成人中文| 毛片女人毛片| 日日啪夜夜撸| 亚洲av在线观看美女高潮| 亚洲自偷自拍三级| 在线播放无遮挡| 久久韩国三级中文字幕| 亚洲精品aⅴ在线观看| 国产69精品久久久久777片| 亚洲欧美成人综合另类久久久| 免费少妇av软件| av在线天堂中文字幕| 国产白丝娇喘喷水9色精品| 在现免费观看毛片| 欧美日韩在线观看h| 精品人妻一区二区三区麻豆| av一本久久久久| 国产成人精品福利久久| 久久久久网色| 哪个播放器可以免费观看大片| 国产亚洲av片在线观看秒播厂| 丰满乱子伦码专区| 国产白丝娇喘喷水9色精品| 中文乱码字字幕精品一区二区三区| 2021天堂中文幕一二区在线观| av线在线观看网站| 一级毛片电影观看| h日本视频在线播放| 男人爽女人下面视频在线观看| 亚洲成人精品中文字幕电影| 高清在线视频一区二区三区| 亚洲欧洲日产国产| 国产精品.久久久| 亚洲,一卡二卡三卡| 色网站视频免费| 少妇人妻精品综合一区二区| 少妇丰满av| 青春草视频在线免费观看| 欧美一区二区亚洲| 一级毛片黄色毛片免费观看视频| 欧美xxxx性猛交bbbb| 99热国产这里只有精品6| 日韩视频在线欧美| 久久精品久久精品一区二区三区| 熟女电影av网| 国产69精品久久久久777片| 国产成人免费观看mmmm| 另类亚洲欧美激情| 男男h啪啪无遮挡| 国产女主播在线喷水免费视频网站| 亚洲精品中文字幕在线视频 | 伦精品一区二区三区| 亚洲va在线va天堂va国产| 亚洲精品久久久久久婷婷小说| 蜜桃久久精品国产亚洲av| 一级a做视频免费观看| 黄色一级大片看看| 精品一区二区三区视频在线| 哪个播放器可以免费观看大片| 成人美女网站在线观看视频| 嫩草影院新地址| 身体一侧抽搐| 在线亚洲精品国产二区图片欧美 | 久久鲁丝午夜福利片| 色婷婷久久久亚洲欧美| 欧美日韩精品成人综合77777| 久久久久久久亚洲中文字幕| 久久久久久久精品精品| 欧美xxⅹ黑人| 久久久色成人| 日本与韩国留学比较| 国产色爽女视频免费观看| 在线观看美女被高潮喷水网站| 肉色欧美久久久久久久蜜桃 | 久久久久久久久大av| 国产精品不卡视频一区二区| 国模一区二区三区四区视频| 只有这里有精品99| 日本一本二区三区精品| 69人妻影院| 91久久精品电影网| 国产91av在线免费观看| 男女国产视频网站| 久久亚洲国产成人精品v| 男插女下体视频免费在线播放| 一区二区三区精品91| 国产色爽女视频免费观看| 天美传媒精品一区二区| 午夜福利网站1000一区二区三区| 国产精品蜜桃在线观看| 亚洲欧洲日产国产| 久久久久久久久久人人人人人人| 少妇人妻精品综合一区二区| 七月丁香在线播放| 搞女人的毛片| 丝袜脚勾引网站| 99久久精品热视频| 中文资源天堂在线| 在现免费观看毛片| 视频区图区小说| 成人午夜精彩视频在线观看| 丰满少妇做爰视频| 国产一区二区三区av在线| 中文字幕久久专区| 国产成人a∨麻豆精品| 2022亚洲国产成人精品| 国产高清三级在线| 久久6这里有精品| 亚洲精品亚洲一区二区| 国产 一区 欧美 日韩| 嫩草影院新地址| av网站免费在线观看视频| 久久精品国产鲁丝片午夜精品| 18禁在线播放成人免费| 国产精品一区二区性色av| 成年av动漫网址| 激情 狠狠 欧美| 亚洲欧美一区二区三区黑人 | 日韩免费高清中文字幕av| 国内少妇人妻偷人精品xxx网站| 免费播放大片免费观看视频在线观看| 蜜桃亚洲精品一区二区三区| 少妇人妻 视频| 国产探花在线观看一区二区| 日韩强制内射视频| 亚洲最大成人中文| 最近手机中文字幕大全| .国产精品久久| 午夜爱爱视频在线播放| 亚洲av二区三区四区| 春色校园在线视频观看| 国产精品福利在线免费观看| 免费黄频网站在线观看国产| 久久久精品欧美日韩精品| 网址你懂的国产日韩在线| 黄色视频在线播放观看不卡| 国产黄频视频在线观看| 精品人妻一区二区三区麻豆| 亚洲精品国产成人久久av| 成人亚洲精品一区在线观看 | 久久精品国产自在天天线| 真实男女啪啪啪动态图| av一本久久久久| 国产成人freesex在线| 亚洲最大成人手机在线| av播播在线观看一区| 又黄又爽又刺激的免费视频.| 欧美性猛交╳xxx乱大交人|