• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    ARTICLE Hermiticity of Hamiltonian Matrix using the Fourier Basis Sets in Bond-Bond-Angle and Radau Coordinates?

    2016-04-08 06:36:00DequnYuHeHungGunnrNymnZhigngSunStteKeyLbortoryofMoleulrRetionDynmisndCenterforTheoretilndComputtionlChemistryDlinInstituteofChemilPhysisChineseAdemyofSieneDlin116023ChinbShoolofPhysisndEletroniTehnologyLioningNor
    CHINESE JOURNAL OF CHEMICAL PHYSICS 2016年1期
    關(guān)鍵詞:涂白剪口大櫻桃

    De-qun Yu,He Hung,b,Gunnr Nymn,Zhi-gng Sun,d?.Stte Key Lbortory of Moleulr Retion Dynmis nd Center for Theoretil nd Computtionl Chemistry,Dlin Institute of Chemil Physis,Chinese Ademy of Siene,Dlin 116023, Chinb.Shool of Physis nd Eletroni Tehnology,Lioning Norml University,Dlin 116029,Chin.Deprtment of Chemistry,Physil Chemistry,G¨oteborg University,SE-412 96 G¨oteborg,Swedend.Center for Advned Chemil Physis nd 2011 Frontier Center for Quntum Siene nd Tehnology,University of Siene nd Tehnology of Chin,Hefei 230026,Chin(Dted:Reeived on July 4,2015;Aepted on July 13,2015)

    ?

    ARTICLE Hermiticity of Hamiltonian Matrix using the Fourier Basis Sets in Bond-Bond-Angle and Radau Coordinates?

    De-quan Yua,He Huanga,b,Gunnar Nymanc,Zhi-gang Suna,d?
    a.State Key Laboratory of Molecular Reaction Dynamics and Center for Theoretical and Computational Chemistry,Dalian Institute of Chemical Physics,Chinese Academy of Science,Dalian 116023, China
    b.School of Physics and Electronic Technology,Liaoning Normal University,Dalian 116029,China
    c.Department of Chemistry,Physical Chemistry,G¨oteborg University,SE-412 96 G¨oteborg,Sweden
    d.Center for Advanced Chemical Physics and 2011 Frontier Center for Quantum Science and Technology,University of Science and Technology of China,Hefei 230026,China
    (Dated:Received on July 4,2015;Accepted on July 13,2015)

    In quantum calculations a transformed Hamiltonian is often used to avoid singularities in a certain basis set or to reduce computation time.We demonstrate for the Fourier basis set that the Hamiltonian can not be arbitrarily transformed.Otherwise,the Hamiltonian matrix becomes non-hermitian,which may lead to numerical problems.Methods for correctly constructing the Hamiltonian operators are discussed.Speci fi c examples involving the Fourier basis functions for a triatomic molecular Hamiltonian(J=0)in bond-bond angle and Radau coordinates are presented.For illustration,absorption spectra are calculated for the OClO molecule using the time-dependent wavepacket method.Numerical results indicate that the non-hermiticity of the Hamiltonian matrix may also result from integration errors. The conclusion drawn here is generally useful for quantum calculation using basis expansion method using quadrature scheme.

    Key words:Discrete variable representation,Hermiticity,Time-dependent wavepacket method,Absorption spectra

    ?Part of the special issue for“the Chinese Chemical Society’s 14th National Chemical Dynamics Symposium”.

    ?Author to whom correspondence should be addressed.E-mail: zsun@dicp.ac.cn

    I.INTRODUCTION

    Quantumdynamicscalculationswithmolecular Hamiltonians have witnessed enormous progress.In the past years,a number of numerical techniques have been proposed to reduce the integration time for constructing the Hamiltonian matrix for a chosen basis set and to improve the accuracy of the numerical results[1–12].This makes it possible to accurately simulate complex molecular dynamics and to calculate ro-vibrational spectra[13–19].However,exact quantum calculations beyond triatomic and tetra-atomic molecules are still a formidable task.Improving the computational methods will be of continued interest in the theoretical fi eld.

    Quantum dynamics calculations solving the timedependent molecular Schr¨odinger equation have proven to be invaluable for understanding dynamical process like photodissociation and femtosecond real-time experiments[20–22].In an accurate triatomic molecular calculation,the Hamiltonian used is often described in Jacobi[23],Radau[24,25],hyperspherical[26,27],or bond-bond angle coordinates[25,28].Fourier series or particle-in-the-box eigenfunctions are commonly used to expand the nuclear wavefunction along the radial degrees of freedom.As to the angular degree(s)of freedom,usually spherical harmonics(Legendre polynomials)basis functions are used.The numerical results of such calculations have been shown to be of exponential convergence[9,29].

    The standard fast-Fourier transform(FFT)technique can be directly applied to propagate the initial wavepacket when the Fourier series are used as basis functions[29].The introduction of the FFT[30,31] technique led a surge of time-dependent wavepacket applications.The FFT technique is easy to implement, even for complex kinetical operators[28].At the same time,the obtained physical concept is clear,similar to that in a time-dependent classic dynamics.

    Several time-dependent wavepacket calculations have illustrated that the Fourier functions can also be used as the basis set for the angular variable(s)[28,32–41]. However,using the Fourier basis functions for the angular variable(s),singularities may be encountered.Several groups have investigated this problem and proposed to use a transformed Hamiltonian or to use cosθ instead of θ as the angular variable to avoid the di ffi culty withsingularities[28,32–37,39].Moreover,to propagate the wavepacket with the convenient second order split operator method,which is combined with the FFT technique,a transformation of the triatomic Hamiltonian may be required[24,26,42].

    In this work,we point out that once a set of orthogonal basis functions have been chosen,for instance the Fourier basis set,there are limitations on how the Hamiltonians may be transformed.Otherwise the Hamiltonian matrix may become non-hermitian,leading to numerical problems.Tuvi et al.[43]have investigated the non-hermiticity problem using the Fourier grid Hamiltonian(FGH)discrete variable representation(DVR)method[39].They suggested that to improve the numerical convergence,the Hamiltonian operators should be in explicitly symmetric form.If the Fourier basis set is chosen,the Hamiltonian should be kept in an explicitly symmetric form to avoid nonhermiticity resulting from integration errors.

    In the following we will explicitly consider timedependent wavepacket calculations using the Fourier basis sets and various triatomic Hamiltonians in bond bond-angle and Radau coordinates.The A2A1←X2B1absorption spectrum of the OClO molecule is calculated to illustrate the e ff ect of transforming the Hamiltonian or changing the form of the Fourier basis set to the numerical results.Two types of non-hermiticity will be considered.The fi rst type we will refer to as analytical non-hermitcity.It results from the use of a Hamiltonian and basis set in which the Hamiltonian matrix is non-hermitian even if it can be analytically constructed.The second type we will refer to as numerical non-hermiticity where the non-hermiticity in the Hamiltonian matrix results purely from integration errors.

    In this work,we discuss normalization of the wavefunction,review the principles of the FFT technique and discuss how non-hermiticity arises in the Hamiltonian matrix in a Fourier basis set representation. Hamiltonians for triatomic molecules in bond bond angle and Radau coordinates are used for illustration. Numerical illustrations of the issues discussed are presented.This is done by calculating the absorption spectrum of the OClO molecule with a 3D(J=0)timedependent wavepacket model in Eckart and Radau coordinates.

    II.KINETIC ENERGY OPERATORS,THEIR EVALUATION AND HERMITICITYA.Kinetic energy operators and wavefunction normalization

    The Hamiltonian of the system can be expressed as a sum of the kinetic energy operator(?T)and the potential energy surface(V)in the nonrelativistic limit and

    within the Born-Oppenheimer(BO)approximation,

    Starting with the Lagrangian form of the kinetic energy in terms of classic velocities,successive transformations lead to

    where piis the momenta conjugate to the chosen coordinates qi(linearly independent),and G(q)is the wellknown G matrix

    where xidenotes the Cartesian coordinates of atom i with a mass of mi.Then,the Podolsky formalism[44] yields the quantum mechanical operator

    where g=|g|=|G?1|is the determinant of the metric tensor matrix g[45].The operator in Eq.(4)gives the normalization of the wavefunction Ψ(q)as

    However this standard normalization of Ψ with the weight factor g1/2(normalized with volume element dτ=dx1dy1dz1···in cartesian coordinates[46]),is not always used.Podolsky[44]considered a transformed wavefunction normalized with the weight factor equal to 1,that is

    with the kinetical operators being

    Let us assume that the determinant g(q)can be represented as a product of two independent factors g(q)=gA(qA)gB(qB)where q=(qA,qB)and let us transform the wavefunction Ψ(q)to

    which,following from Eq.(5),ful fi lls the normalization condition:

    For gA=1 and gB=g this equation gives the standard normalization de fi ned by Eq.(5),and for gA=g and gB=1 it gives the normalization with weight factor unity,which Podolsky considered[44].Because the factoris associated with the transformation of the wavefunction,we will refer toas the transformation factor in order to distinguish from the weight factor.We note here that,if the weight factoris equal to 1(that is,with transformation factor as g), the operators can always be rearranged in an explicitly symmetric form[8,44],as shown in Eq.(8).

    Let us categorise triatomic Hamiltonians in bondbond angle coordinates that have appeared in the literature according to the associated transformationand weightfactors[16].The HamiltonianH?wconsidered by for instance Bardo and Wolfberg[47,48] falls in the category of Podolsky’s normalization(weight factorequal to 1)[16].The Hamiltonian can be written[47,48],

    whereμ1,μ2,andμ3are the related(reduced)masses. The other variables have their traditional de fi nitions. As we have noted,since this Hamiltonian?Hwhas a corresponding weight factor of unity and transformation factor g,it can be rearranged into an explicitly symmetric form

    This Hamiltonian gives the wavefunction normalization condition[16,47,48]

    The Hamiltonians?Hwand?Hwsare not generally used. However,the Hamiltonian?Hcin bond bond angle coordinates given by Carter and Handy[49]is more often used,

    大櫻桃不宜在過分寒冷的地區(qū)發(fā)展。冬季來臨之際,應(yīng)對(duì)幼樹采取樹干培土、纏膜、涂白等措施以防止凍害發(fā)生。休眠期修剪一般在發(fā)芽前進(jìn)行,避免剪口在寒冷的冬季失水,凍傷樹體。

    A rearranged form?Hcaof this Hamiltonian is

    The latter Hamiltonian gives the wavefunction normalization[49],

    We note that for the triatomic Hamiltonian?Hca(?Hc) in bond-bond angle coordinates,the weight factor

    g1/2B=sinθ.Therefore,the operators of?Hccannot be written into an explicitly symmetric form.

    B.Action of the kinetic energy operator using Fourier transform

    In a time-dependent quantum calculation,the action of the potential operators on the wavefunction is sim-ple multiplication when a spatial representation is used. The evaluation of the action of the kinetic energy operator will be in this representation however involve derivatives of the wavefunction.The derivatives can be e ffi ciently found by the Fourier transform technique, which transforms to momentum space where the kinetic energy operator is local and only multiplication with the wavefunction is required.

    The forward Fourier transformFT(x,k)is de fi ned as

    It transforms the wavefunction from the space representation to the momentum representation.Similarly to Eq.(24),the backward Fourier transformFT(x,k)?1 is given byd

    It is easy to see that for the derivatives of the wavefunction we can write

    Thus the derivatives are evaluated as simple multiplications in the momentum space.Treating complicated kinetic operators with Fourier transform can be derived straightforwardly.For instance,the action of the opera-(this is the angular momentum operator which is used in the later sections,see Eq.(42)) on the wavefunction can be written as

    We note here that when model Hamiltonian is expressed in a suitable form,such as the Hamiltonian?Hcaand ?Hws,the action of each kinetic operator on the wavefunction always consists of a combination of two fi rst derivatives.As a result,the factor i(imaginary unit) resulting from a single evaluation of the fi rst derivative using the Fourier transform technique does not appear in the numerical implementation.

    C.Hermiticity of the angular momentum operator using the Fourier basis

    1.Hermiticity

    Propagating the wavepacket using Fourier transform in a time-dependent calculation is principally equivalent to evolving the wavefunction using a Fourier series.In the numerical calculation,the spatial and momentum coordinates have to be discretized as|xn>and |km>which enables the implementation of the FFT technique.The transformation between the discrete spatial coordinate representation|xn>and the discrete momentum representation|km>is given by

    Fast Fourier transform algorithms can be employed to a ff ect these transformations and to compute derivative(s)of the wavefunction for realizing the action of the operator on the wavefunction or the wavefunction multiplied by functions of the spatial coordinates.In order to have a good representation of the system,the Hamiltonian matrix should be hermitian in the discrete Fourier space.Tuvi et al.[43]have shown that writing operators of a one-dimensional nuclear Hamiltonian in an explicitly symmetric form guarantees the hermiticity of the resulting Hamiltonian matrix.Their conclusion can be extended directly to multi-dimensional problems.Therefore the Hamiltonian operators given by the Podolsky normalization condition[44]are de finitely hermitian in a Fourier basis set.We may use the corresponding Hamiltonian form,that is,use Hamiltonian with weight factor=1 in our calculation using a Fourier basis set.

    A transformationcan be made to remove the weight factor sinθ?1/2.The transformed operator then becomes

    This means that we write the angular momentum operator using Podolsky’s normalization condition[44]and the weight factor gBbecomes unity[16].Hence the operator is de fi nitely symmetric.For a triatomic case,this corresponds to transforming the Hamiltonian from?Hcain Eq.(19)to?Hwsin Eq.(13).When the Fourier basis set 1/√

    2πNe?iknθis used in a calculation where the angular momentum operator in Eq.(34)is employed, problems with non-hermiticity do not arise.

    2πNe?iknCin the calculation,whereby the resulting Hamiltonian matrix becomes hermitian.In this way the triatomic Hamiltonian can be obtained in an explicitly symmetric from.From the discussion above,it is clear that to decide whether an operator,particularly the Hamiltonian operator,is hermitian or not,the basis set has to fi rst be decided.

    2.Integration error

    Considering the integration error,the Hamiltonian operators used in the numerical calculation should be in an explicitly symmetrical form when the discrete Fourier basis is used[43].Sometimes although a Hamiltonian operator is theoretically hermitian in some basis set,the resulting Hamiltonian matrix becomes nonhermitian in the numerical calculations.For instance, the operator in Eq.(35)andare equivalent and hermitian in a Fourier basis set when the integration is exact.However because of the integration errors resulting from the discretization,the operator in Eq.(37)is not numerically hermitian in the discrete Fourier basis set.This is because the correspo

    and its hermitian conjugate,

    are only equivalent if there is an odd number of grid points N and m=l[43],where Ci=i?C,i=1,...,N. Thus[43],when the model Hamiltonian used in an FFT time-dependent calculatition contain operators of the form in Eq.(37),the numerical results may be unreliable.

    D.Hermiticity of the J=0 triatomic Hamiltonian in

    bond-bond angle and Radau coordinates in the Fourier basis

    The commonly used triatomic Hamiltonian(J=0) in bond-bond angle coordinates(r1,r2,θ)written in the form of?Hpswith weight factor gBequal to 1 is explicitly symmetric.Therefore the resulting Hamiltonian matrix is hermitian[43]in the Fourier basis setbelow referred to as FBST.However,the rearranged form?Hof the Hamiltonian in Eq.(18),with weight factor given by Carter and Handy[49] does not lead to a hermitian matrix using the FBST basis set and is not suitable for an FFT calculation.As we have discussed,the transformation factor can either be absorbed by a transformation of the Hamiltonian sinθ1/2?Hsinθ1/2or by changing the variable θ to cosθ.From the work of Carter and Handy[49],the Hamiltonian?Hcsin bond-bond angle coordinates, taking r1,r2and C=cosθ as the variables,can be written as,

    The operators of this Hamiltonian are in explicitly symmetric form and result in a herm√itian matrix with the Fourier basis set(FBSC):{1/2πNe?iklr1,

    Similar conclusions hold for the Hamiltonian in Radau coordinates.The usually used Hamiltonian (J=0)in Radau coordinates(R1,R2,θ),can be written as[50], where m1and m2are the relevant masses.Note that the variable θ here has a di ff erent meaning from that in bond bond-angle coordinates.This Hamiltonian has a volume element α?3sinθdR1dR2dθ where,with weight factorequal to sinθ?1/2.Its resulted Hamiltonian matrix is not hermitian in the FBST basis set due to the transformation factor sinθ?1/2.Similar to the case in bond-bond angle coordinates,the Hamiltonian in Eq.(43)can be rewritten as

    The di ffi culty arising from the transformation factor1/√

    sinθhasbeeneliminatedwhentaking (R1,R2,cosθ)as the variables instead of(R1,R2,θ)and using the FBSC basis set.The Hamiltonian operator is now explicitly symmetric and the resulting Hamiltonian matrix is hermitian.

    The Hamiltonian in Radau coordinates can also be transformed[24,42]

    with the weight factor being equal to 1.Therefore,the Hamiltonian?HRθsresults in a hermitian matrix in the FBST basis set.The Hamiltonian has a volume element dR1dR2dθ.

    We can expect that the convergence of the calculations are good using the Hamiltonian?Hwsin Eq.(13) or?HRθsin Eq.(45)with the FBST basis set and using ?Hcsin Eq.(40)or?HRcsEq.(44)with the FBSC basis set.However,calculations using the Hamiltonian?Hcain Eq.(19)or?HRθain Eq.(43)with either of the two Fourier basis sets should be only conditionally stable and exhibit numerical di ffi culties.

    Sometimes the Hamiltonian?Hwsin Eq.(13)is used in the expanded form?Hwin Eq.(11),or the Hamiltonian ?HRcsin Eq.(45)is used in the form,

    III.NUMERICAL EXAMPLES

    In this section,we will show absorption spectra of the OClO molecule calculated with the time-dependent wavepacket method using Hamiltonians in bond-bond angle and Radau coordinates to illustrate the arguments put forw?ard above.Results o?btained using the HamiltonianHcsin Eq.(40)andHRcsin Eq.(44)using the FBSC basis set are com?pared with results cal?culated using the HamiltonianHwsin Eq.(13)andHRθsin Eq.(45)using the FBST basis set.These comparisons are used to check the convergence of the calculation using the FFT technique.From the discussion above,we know that these four numerical models should exhibit the best convergence.?

    The results using the HamiltonianHcain Eq.(19)and H?wsin Eq.(13)with the FBST basis set are compared in order to investigate the non-hermiticity problem caused by the w?eight factor.The calculations using the Ham?iltonianHwin Eq.(11)with the FBST basis set andHRin Eq.(46)with the FBSC basis set are carried out and compared with the results from the best converged models,in order to investigate the non-hermiticity p?roblem c?aused purely by integration errors when usingHwand HR.We fi nd that for the present application even for a short time propagation a non-hermitian Hamiltonian matrix may make the results unreliable.

    OClO is a molecule of both experimental and theoretical interest,due to its presumed role in polar stratospheric ozone depletion.Accurate 3D ab initio nearequilibrium potential energy surfaces(PESs)of the X2B1ground state and the excited state,A2A2,have been reported[51].The PES of the A2A1state has a C2vequilibrium geometry and features strong coupling between the anti-symmetric and the symmetric stretch modes.The two surfaces reproduce the experimental absorption spectrum well[25]and these surfaces are used here.The equilibrium geometries of the both PESs are far from linear with deep bending wells,which enable us to ignore the singularity problem found for linear geometries[32–35].

    The absorption spectrum of the OClO molecule is obtained by Fourier transforming the time autocorrelation function of the initial wavefunction.The initial ground vibrational eigenfunction of the X2B1electronic state is obtained by a variational calculation using Morse-Morse harmonic wavefunctions[26].We note that even though the method used for obtaining the initial wavefunction leads to a non-hermitian Hamiltonian matrix, its in fl uence on the quality of the ground wavefunction is marginal[24].The method has been detailed in our previous work[24–26].The absorption spectra below are uniformly broadened with a Lorentzian function of 20 cm?1FWHM(full width at half maximum) by damping the autocorrelation functions with an exponential function.In the following calculation,a Chebyshev propagator is applied to evolve the initial wavefunction on the excited PES.The round o ff error in the Chebyshev polynomial expansion is less than 1×10?15. Usually the time-step is chosen to be 0.7 fs and a total of 1024 time steps is enough to obtain a converged spectrum.

    FIG.1(a)An expanded portion of the calculated absorption spectra and(b)the real part of the correlation functions using?Hwsin Eq.(13)with FBST(solid lines)and ?Hcsin Eq.(40)with FBSC(dotted lines).

    A.In Eckart coordinates

    1.Hermitian Hamiltonian matrix

    The Hamiltonian?Hwsin Eq.(13)using the Fourier basis set FBST results in a Hermitian matrix as does the Hamiltonian?Hcsin Eq.(40)using FBSC since these Hamiltonians are in explicitly symmetric forms[43].We can expect that the results obtained with these two numerical models should agree with each other and show good numerical convergence.In the calculations with the Hamiltonian?Hwswe set the grid ranges to[2.3,4.8] in atomic units for r1and r2and[1.3,2.7]in radians for θ.For?Hcswe set the grid ranges[2.3,4.8]in atomic units for r1and r2and and[?0.9,0.25]for cosθ.For each calculation,64×64×32 grid points are used(64 grid points along each radial coordinate and 32 along the angular coordinate).Convergence concerning grid ranges and grid spacing has been checked.

    FIG.2Time-dependent norm deviation from its initial value 1 of the wavefunction using?Hwsin Eq.(13)with FBST (a)and?Hcsin Eq.(40)with FBSC(b).

    A typical part of the absorption spectra of the two numerical models is shown in Fig.1(a).The corresponding real part of the correlation functions are shown in Fig.1(b).The results are virtually identical for the two models,indicating good numerical convergel.The norm of the evolved wavepacket is not guaranteed to be conserved in a Chebyshev propagation and the timedependence of the norm gives a measure of convergence.The deviation of the norm from unity using?Hwsin the FBST representation is shown in Fig.2(a),and that using?Hcsin the FBSC representation is shown in Fig.2(b).We see that the norm is excellently conserved.

    2.Non-hermitian Hamiltonian matrix

    In this subsection,we only calculate the OClO absorption spectrum using the Hamiltonian?Hcin Eq.(18) with the FBST basis set parameters used in subsection III(A).As we have discussed,the resulting Hamiltonian matrix is non-hermitian.Although the derivatives of the wavefunction can be evaluated accurately with FFT,the non-hermiticity of the Hamiltonian matrix makes the numerical results unreliable.The calculated absorption spectrum is shown in Fig.3(b)together with the exact result of Fig.1.There are a clear deviations.The heights of the peaks have been altered by the non-hermiticity of the Hamiltonian matrix,and a ghost peak has arisen.The time-dependent norm of the wavefunction is shown in Fig.3(a).We see drastical norm violation,which indicates that the non-hermitian matrix develops complex eigenvalues.Thus the numerical model is not stable.We note that the period of the initial oscillation of the time-dependent norm approximately agrees with that of the symmetric stretch of the

    FIG.3(a)The time-dependent norm of the wavefunction resulting from using the non-hermitian matrix of the Hamiltonian?Hcin Eq.(18)with FBST.(b)The solid line is the expanded portion of the calculated absorption spectra using the Hamiltonian?Hcin Eq.(18)with FBST and the dotted line is the exact result shown in Fig.1.

    3.Numerically non-hermitian Hamiltonian matrix

    For numerical convenience,sometimes the expanded form in Eq.(11)of the Hamiltonian?Hwsis used in numerical calculation.As Tuvi et al.pointed out[43],as long as the operators are not explicitly symmetric and the Fourier basis set is applied,the resulting Hamiltonian matrix becomes non-hermitian because of integration errors.The operators

    in Eq.(11)make the Hamiltonian martix numerically non-hermitian.We may expect that this nonhermiticity resulting purely from integration errors should be less drastic than analytic non-hermiticity. However,although the spectrum is satisfactory,which indicates that the non-hermiticity of the Hamiltonian matrix only slightly in fl uences the numerical results, the norm of the wavefunction increases exponentially with propagation time,see Fig.4.This was not observed using?Hwswith the FBST basis set.The timedependent norm is also sensitive to the values of theChebyshev parameters,which again indicates the instability of the numerical model.The FBST grid is used here too.The numerical results demonstrate that the non-hermiticity resulting from integration errors only cannot be neglected in some cases,especially for long time propagations.

    FIG.4(a)Time-dependent norm of the wavefunction which results from using?Hwin Eq.(11)such that purely to integration errors occur.(b)The solid line is the expanded portion of the calculated absorption spectrum using the Hamiltonian?Hwin Eq.(11)with FBST.The dotted line is the exact results shown in Fig.1.

    B.In Radau coordinates

    From the calculations above,we expect that the numerical models using the Hamiltonian?HRcsin Eq.(44) with the FBSC basis set and using the Hamiltonian ?HRθsin Eq.(45)with the FBST basis set should show an excellent agreement.The calculated absorption spectra using these two numerical models are shown in Fig.5(a) and the real part of the correlation function in Fig.5(b). Results from Fig.1 are also included and all results agree excellently(to within the thickness of the lines).The norms of the two numerical models are well conserved during the propagation and,for brevity,we don’t show the results here.

    The calculated absorption spectrum using the Hamiltonian?HRθain Eq.(43)with the FBST basis set is shown in Fig.6.The result using Hamiltonian?HRθsin Eq.(45)with the FBST basis set is also shown.The deviations resulting from the non-hermiticity of the matrix caused by the transformation factor are obvious. The norm of the propagated wavefunction shows similar time-dependent oscillation to that shown in Fig.3 using the unsuitable Hamiltonian in Eq.(18)with the FBST basis set and we do not show it here.

    FIG.5(a)The solid line is the expanded portion of the calculated absorption spectra using the Hamiltonian?HRθsin Eq.(45)with FBST;the dotted line is from the model using the Hamiltonian?HRcsin Eq.(44)with FBSC;and the dashed line corresponds with the numerical results shown in Fig.1.(b)The real part of the auto-correlation function .The solid and dotted lines are the results using the Hamiltonians?HRθsand?HRcswith FBST and FBSC,respectively.The dashed line corresponds with the numerical results shown in Fig.1.

    Figure 7 illustrates the time-dependent norm calculated using the Hamiltonian?HRin Eq.(46)with the FBSC basis set.The exponential increase of the norm completely destroys the auto-correlation function and its Fourier transform,the absorption spectrum,loses its meaning.We do not show the resulting spectrum but note that the surviving peaks seem to stay at the right energy positions.

    In this section,when the Hamiltonian?HRθsin Eq.(45)and?HRθain Eq.(43)were used.The grid ranges were[1.8,3.9]in atomic units for R1and R2and[1.9, 3.1]in radians for θ.When the Hamiltonian?HRcsin Eq.(44)is used,the same grid ranges for R1and R2are used but[?0.9,0.25]for the variable C,i.e.,for cosθ. For each calculation,64×64×32 grid points are used(64 grid points along each radial coordinate and 32 along the angular coordinate).Convergence concerning grid ranges and grid spacing has been checked.

    FIG.6 The solid line is the expanded portion of the calculated absorption spectra using Hamiltonian?HRθain Eq.(43) with FBST and the dotted line is the exact result shown in Fig.5.

    FIG.7 The time-dependent norm of the wavefunction obtained from evolving the non-hermitian matrix rsulting from the expanded Hamiltonian?HRin Eq.(46)with FBSC.

    IV.DISCUSSION

    We would like to note that the two absorption spectra shown in Fig.1 are not only virtually identical to each other,they are also virtually identical with those obtained using FFT and Hamiltonians expressed in Jacobi coordinates and in hyperspherical coordinates,where the convergence and the hermiticity of the Hamiltonian matrix has been carefully checked.Further,the lowest vibrational energies obtained using the relaxation method(imaginary time propagation method)[52]and the Hamiltonians in di ff erent coordinates,agree with each other better than 0.001 cm?1.This excellent agreement is in surprising contrast to the work of Katz et al.[28].This may demonstrate that the FFT is particularly suitable in the case where the PES is well bounded,for the PES of the A2A2state of the OClO molecule exhibits a deep well around the equilibrium geometry[24].

    Among the numerical models,the calculation with the Hamiltonian in bond bond angle coordinates involves many more kinetic operators which greatly reduces the computation speed.Especially,numerical calculations using the transformed Hamiltonian in Radau coordinates in Eq.(45)are e ffi cient.It only requires three forward-backward FFTs for each Hamiltonian action,in contrast to the twelve needed for the symmetric Hamiltonian?Hwsor?Hcsin bond bond angle coordinates!Further,the Hamiltonian in Eq.(45)does not mix local and non-local operator(s)of the same coordinate,which allows the application of the splitoperator method with the FFT technique to propagate the wavepacket.The numerical model using the Hamiltonian?HRθsin Eq.(45)with the FBST basis set not only gives a simple and e ffi cient way to numerical implementations but also signi fi cantly reduces the computation time[24,26].

    We emphasize that both the analytic and numerical non-hermiticities of the Hamiltonian matrix discussed here give numerical implementations which are only conditionally stable.Especially in a long time propagation,the wavefunction norm violation may completely destroy the desired physical property of the simulated system.Interestingly,the non-hermiticity resulting from integration errors only always makes the norm of the propagated wavefunction increase exponentially,while the analytic non-hermiticity makes the norm oscillate.This may indicate that more complex and unphysical eigenvalues develop using an unsuitable Hamiltonian,which is re fl ected in the calculated spectra.We also note that,although the non-hermiticity of the Hamiltonian matrix makes the numerical model unstable and changes the heights of the physical peaks, the positions of the surviving physical peaks seem to be in the correct positions.In a Chebyshev propagation,the time-dependent norm of the wavefunction is useful for checking the convergence of numerical model. When a Hamiltonian and a suitable basis set have been correctly constructed,the norm of the time-dependent wavepacket should be well conserved.

    V.SUMMARY

    In this work,requirements on the forms of the Hamiltonians to be used with a discrete Fourier basis set is discussed.It is emphasized that for a chosen basis set,the Hamiltonian cannot be arbitrarily transformed.Otherwise,the resulting Hamiltonian matrix becomes nonhermitian,which may lead to numerical errors.Further, it is recommended to use symmetric forms of the operators in numerical calculations as here demonstrated for time-dependent wavepacket calculations using the FFT technique.Thus expanded forms of the Hamiltonian should also be avoided since they lead to nonhermitian Hamiltonian matrices due to integration errors.The in fl uence of these two kinds of non-hermiticity of the Hamiltonian matrix,i.e.,resulted from unsuitable Hamiltonian and purely resulted from integration errors,on 3D time-dependent wavepacket calculations were numerically investigated in bond bond angle and Radau coordinates.It was found that both of these non-hermiticities lead to the numerical calculation be-ing only conditionally stable.The non-hermiticity problem may be marginal in some cases,perhaps a short time propagation calculation.Although the conclusions drawn here,based on the OClO absorption spectrum calculations using Fourier basis sets,suggests that the numerical errors can be expected to be case-dependent, they should be generally applicable to calculations using DVR method.

    VI.ACKNOWLEDGEMENTS

    This work was supported by the National Basic Research Program of China(No.2013CB922200), the National Natural Science Foundation of China (No.21222308,No.21103187,and No.21133006),the Chinese Academy of Sciences,and the Key Research Program of the Chinese Academy of Sciences.

    [1]R.Dawes and T.Jr.Carrington,J.Chem.Phys.122, 134101(2005).

    [2]B.Poirier and L.C.Light,J.Chem.Phys.111,4869 (1999).

    [3]B.Poirier and L.C.Light,J.Chem.Phys.113,211 (2000).

    [4]B.Poirier and L.C.Light,J.Chem.Phys.114,6562 (2001).

    [5]R.Meyer,J.Chem.Phys.52,2053(1970).

    [6]D.Baye and P.H.Heenen,J.Phys.A 19,2041(1986).

    [7]J.C.Light and Z.Ba?ci′c,J.Chem.Phys.87,4008 (1987).

    [8]H.Wei and T.Carrington Jr.,J.Chem.Phys.101,1343 (1994).

    [9]J.C.Light and T.Jr.Carrington,Adv.Chem.Phys. 114,263(2000).

    [10]D.Yu,S.L.Cong,D.H.Zhang,and Z.G.Sun,Chin. J.Chem.Phys.26,755(2013).

    [11]G.Avila and T.Jr.Carrington,J.Chem.Phys.135, 064101(2011).

    [12]X.S.Lin and Z.G.Sun,Chem.Phys.Lett.621,35 (2015).

    [13]G.Nyman and H.G.Yu,Rep.Prog.Phys.63,1001 (2000).

    [14]X.H.Liu,J.J.Lin,S.Harich,G.C.Schatz,and X.M. Yang,Science 289,1536(2000).

    [15]H.S.Lee and J.C.Light,J.Chem.Phys.120,5859 (2004).

    [16]J.Makarewicz,J.Phys.B 21,1803(1988).

    [17]B.T.Sutcli ff e and J.Tennyson,Int.J.Quantum Chem. 91,183(1991).

    [18]J.Z′u?niga,A.Bastida,and A.Requena,J.Chem.Soc. Faraday Trans.93,1681(1997).

    [19]H.G.Yu and J.T.Muckerman,J.Mol.Spectrosc.214, 11(2002).

    [20]R.Schinke,Photodissociation Dynamics Spectroscopy and Fragmentation of Small Polyatomic Molecules, Cambridge University Press(1993).

    [21]P.Marquetand,A.Materny,N.E.Henriksen,and V. Engel,J.Chem.Phys.120,5871(2004).

    [22]N.E.Henrisken and V.Engel,Int.Rev.Phys.Chem. 20,93(2001).

    [23]G.M.Krishnan and S.Mahapatra,J.Chem.Phys.118, 8715(2003).

    [24]Z.Sun,N.Lou,and G.Nyman,J.Phys.Chem.A 108, 9226(2004).

    [25]Z.Sun,N.Lou,and G.Nyman,J.Chem.Phys.122, 054316(2005).

    [26]?G.Barinovs,N.Markovi′c,and G.Nyman,J.Chem. Phys.111,6705(1999).

    [27]Z.Sun,N.Lou,and G.Nyman,Chem.Phys.308,317 (2005).

    [28]G.Katz,K.Yamashita,Y.Zeiri,and R.Koslo ff,J. Chem.Phys.116,4403(2002).

    [29]R.Koslo ff,J.Phys.Chem.92,2087(1988).

    [30]D.Koslo ffand R.Koslo ff,J.Comput.Phys.52,35 (1983).

    [31]M.D.Feit,J.A.Jr.Fleck,and A.Steiger,J.Comput. Phys.47,412(1982).

    [32]R.N.Dixon,Chem.Phys.Lett.190,430(1992).

    [33]R.N.Dixon,J.Chem.Soc.Faraday Trans.88,2575 (1992).

    [34]U.Manthe and H.K¨oppel,Chem.Phys.Lett.175,36 (1991).

    [35]U.Manthe,H.K¨oppel,and L.S.Cederbaum,J.Chem. Phys.95,1708(1991).

    [36]C.E.Dateo,V.Engel,R.Almeida,and H.Metiu, Comp.Phys.Comm.63,435(1991).

    [37]C.E.Dateo and H.Metiu,J.Chem.Phys.95,7392 (1991).

    [38]C.Woywod,Chem.Phys.Lett.281,168(1997).

    [39]G.G.Balint-Kurti,R.N.Dixon,and C.C.Marston, Int.Rev.Phys.Chem.11,317(1992).

    [40]R.C.Mowrey,Y.Sun,and D.J.Kouri,J.Chem.Phys. 91,6519(1989).

    [41]D.Lemoine,J.Chem.Phys.101,10526(1994).

    [42]?G.Barinovs,N.Markovi′c,and G.Nyman,J.Phys. Chem.A 105,7441(2001).

    [43]I.Tuvi and Y.B.Band,J.Chem.Phys.107,9079 (1997).

    [44]B.Podolsky,Phys.Rev.32,812(1928).

    [45]M.L.Boas,Mathematical Methods in the Physical Sciences,New York:Wiley,(1983).

    [46]P.R.Bunker,Molecular Symmetry and Spectroscopy, Canada:NRC Research Press,(1998).

    [47]R.D.Bardo and M.Wolfsberg,J.Chem.Phys.67,593 (1977).

    [48]G.D.Carney,L.L.Sprandel,and C.W.Kern,Adv. Chem.Phys.37,305(1978).

    [49]S.Carter and N.C.Handy,Mol.Phys.57,175(1986). [50]B.R.Johnson and W.P.Reinhardt,J.Chem.Phys. 85,4538(1986).

    [51]K.A.Peterson,J.Chem.Phys.108,8864(1998).

    [52]R.Koslo ff and H.Tal-Ezer,Chem.Phys.Lett.127,223 (1986).

    猜你喜歡
    涂白剪口大櫻桃
    大櫻桃常見病害及其防治技術(shù)
    果樹冬季怎樣涂白
    果樹冬季涂白 試試這些配方
    大櫻桃早期豐產(chǎn)的促花措施
    河北果樹(2020年1期)2020-01-09 06:59:50
    涂白
    優(yōu)質(zhì)大櫻桃主要病蟲害防治歷
    大櫻桃施肥技術(shù)
    如果銀河傾瀉
    果樹剪、鋸、環(huán)剝工具應(yīng)用需知
    山西果樹(2015年6期)2015-12-11 14:42:25
    把紙撕成三片
    亚洲av美国av| 欧美大码av| 亚洲人成伊人成综合网2020| 久久九九热精品免费| а√天堂www在线а√下载| 国产精品久久久人人做人人爽| 亚洲国产高清在线一区二区三 | 亚洲人成网站高清观看| 一本一本综合久久| 欧美激情高清一区二区三区| 精品乱码久久久久久99久播| www日本黄色视频网| 黄色 视频免费看| 亚洲va日本ⅴa欧美va伊人久久| 成人国产综合亚洲| 波多野结衣巨乳人妻| 啦啦啦观看免费观看视频高清| 免费在线观看黄色视频的| 欧美zozozo另类| 搡老妇女老女人老熟妇| or卡值多少钱| or卡值多少钱| 国产一区二区在线av高清观看| 搡老岳熟女国产| 精品日产1卡2卡| 久99久视频精品免费| 两性夫妻黄色片| 又大又爽又粗| 精品国产美女av久久久久小说| 亚洲真实伦在线观看| 国产精品综合久久久久久久免费| 一区二区三区激情视频| 国产精品亚洲一级av第二区| 国产成+人综合+亚洲专区| 不卡av一区二区三区| 久久久久久久久中文| svipshipincom国产片| 久久久久国产一级毛片高清牌| 99久久国产精品久久久| 免费在线观看亚洲国产| 女警被强在线播放| 麻豆成人午夜福利视频| 91麻豆av在线| 成人三级做爰电影| 啦啦啦观看免费观看视频高清| 成人亚洲精品av一区二区| aaaaa片日本免费| 国产日本99.免费观看| 人人妻人人澡人人看| 成年人黄色毛片网站| 大香蕉久久成人网| 国产精品综合久久久久久久免费| 身体一侧抽搐| 亚洲熟女毛片儿| 国产精品国产高清国产av| 又黄又爽又免费观看的视频| 成人国产综合亚洲| 久热爱精品视频在线9| 日韩精品中文字幕看吧| 亚洲一区中文字幕在线| 国产精品99久久99久久久不卡| 777久久人妻少妇嫩草av网站| 黑人巨大精品欧美一区二区mp4| 一边摸一边做爽爽视频免费| 在线观看免费视频日本深夜| 亚洲国产精品合色在线| 又黄又粗又硬又大视频| 亚洲自偷自拍图片 自拍| 一级a爱视频在线免费观看| 亚洲人成网站在线播放欧美日韩| 老熟妇乱子伦视频在线观看| 日韩国内少妇激情av| 日本熟妇午夜| 白带黄色成豆腐渣| 夜夜看夜夜爽夜夜摸| 亚洲三区欧美一区| 曰老女人黄片| 中文亚洲av片在线观看爽| 国产欧美日韩一区二区精品| av有码第一页| 国产精品精品国产色婷婷| 精品免费久久久久久久清纯| 欧美成人一区二区免费高清观看 | 亚洲电影在线观看av| 欧美日韩黄片免| 久久欧美精品欧美久久欧美| 高清在线国产一区| 99热6这里只有精品| 首页视频小说图片口味搜索| 成熟少妇高潮喷水视频| 法律面前人人平等表现在哪些方面| 高清在线国产一区| 亚洲 欧美一区二区三区| 亚洲欧美日韩高清在线视频| 成熟少妇高潮喷水视频| 18禁美女被吸乳视频| 亚洲一码二码三码区别大吗| 巨乳人妻的诱惑在线观看| 非洲黑人性xxxx精品又粗又长| 国产精品一区二区精品视频观看| 久久香蕉国产精品| 国产亚洲精品第一综合不卡| 亚洲国产高清在线一区二区三 | 国产蜜桃级精品一区二区三区| 男女做爰动态图高潮gif福利片| 丰满的人妻完整版| 久久精品影院6| 丝袜美腿诱惑在线| 啪啪无遮挡十八禁网站| 在线观看午夜福利视频| 成人手机av| 最近在线观看免费完整版| e午夜精品久久久久久久| 久久精品国产99精品国产亚洲性色| 99热这里只有精品一区 | 一区二区三区高清视频在线| 老熟妇仑乱视频hdxx| 国产精品久久久av美女十八| 美女大奶头视频| 国产精品免费一区二区三区在线| 亚洲av日韩精品久久久久久密| 久久这里只有精品19| 免费在线观看黄色视频的| 精品午夜福利视频在线观看一区| 国产精品一区二区免费欧美| 欧美日韩精品网址| 在线观看66精品国产| 亚洲电影在线观看av| 人人妻人人澡欧美一区二区| 欧美黑人精品巨大| 国产三级黄色录像| 亚洲九九香蕉| 黄片大片在线免费观看| 无人区码免费观看不卡| 精品午夜福利视频在线观看一区| av电影中文网址| 老熟妇仑乱视频hdxx| 2021天堂中文幕一二区在线观 | 老司机午夜十八禁免费视频| 99久久综合精品五月天人人| 黑人欧美特级aaaaaa片| 可以在线观看毛片的网站| 757午夜福利合集在线观看| 日韩三级视频一区二区三区| 亚洲精华国产精华精| 欧美成人免费av一区二区三区| 亚洲欧洲精品一区二区精品久久久| 欧美最黄视频在线播放免费| 国产熟女xx| 在线观看免费视频日本深夜| 日韩精品青青久久久久久| 日韩欧美一区视频在线观看| 欧美激情极品国产一区二区三区| 国产成人精品无人区| 给我免费播放毛片高清在线观看| 十分钟在线观看高清视频www| www.熟女人妻精品国产| 色播在线永久视频| 黄色成人免费大全| 神马国产精品三级电影在线观看 | 男人舔女人下体高潮全视频| 淫妇啪啪啪对白视频| 国产久久久一区二区三区| 波多野结衣巨乳人妻| 精品国产亚洲在线| 亚洲国产毛片av蜜桃av| 久久久久久久午夜电影| 丝袜人妻中文字幕| 欧美丝袜亚洲另类 | 欧美绝顶高潮抽搐喷水| 国产亚洲精品久久久久久毛片| 国产野战对白在线观看| 99在线人妻在线中文字幕| 99久久无色码亚洲精品果冻| 久99久视频精品免费| 国产精品 欧美亚洲| 国产成+人综合+亚洲专区| 亚洲精品一卡2卡三卡4卡5卡| 成人国产一区最新在线观看| 香蕉av资源在线| 香蕉丝袜av| 久久性视频一级片| 久久精品国产99精品国产亚洲性色| 热re99久久国产66热| 国产精品1区2区在线观看.| www.自偷自拍.com| 男女做爰动态图高潮gif福利片| 成人亚洲精品一区在线观看| 俺也久久电影网| 女人被狂操c到高潮| 精品久久久久久久人妻蜜臀av| 一级a爱视频在线免费观看| 亚洲全国av大片| 国产一卡二卡三卡精品| 一夜夜www| 精品熟女少妇八av免费久了| 桃色一区二区三区在线观看| 91老司机精品| 熟妇人妻久久中文字幕3abv| 黄网站色视频无遮挡免费观看| 亚洲精品在线观看二区| 国产精品久久久人人做人人爽| or卡值多少钱| 在线观看免费午夜福利视频| 国产片内射在线| 久久久久国产精品人妻aⅴ院| 精品一区二区三区视频在线观看免费| 国内久久婷婷六月综合欲色啪| 黑人欧美特级aaaaaa片| 色婷婷久久久亚洲欧美| 日本免费一区二区三区高清不卡| 日本 av在线| 欧美性猛交╳xxx乱大交人| 别揉我奶头~嗯~啊~动态视频| 在线播放国产精品三级| 女人爽到高潮嗷嗷叫在线视频| 亚洲国产欧美日韩在线播放| 久久亚洲精品不卡| av在线天堂中文字幕| 亚洲色图 男人天堂 中文字幕| 99热这里只有精品一区 | 久久精品人妻少妇| 在线永久观看黄色视频| 国产精品爽爽va在线观看网站 | 精品久久久久久久久久久久久 | 国产精品影院久久| 欧美在线黄色| a级毛片a级免费在线| 给我免费播放毛片高清在线观看| 一卡2卡三卡四卡精品乱码亚洲| 亚洲午夜理论影院| 天天躁夜夜躁狠狠躁躁| 宅男免费午夜| 久久精品成人免费网站| 欧美成人免费av一区二区三区| 欧美乱码精品一区二区三区| 亚洲中文字幕一区二区三区有码在线看 | 男人舔女人下体高潮全视频| 天堂动漫精品| 视频在线观看一区二区三区| 国产激情久久老熟女| 香蕉久久夜色| 欧美+亚洲+日韩+国产| 日韩欧美三级三区| 亚洲国产欧美一区二区综合| 性欧美人与动物交配| 可以在线观看毛片的网站| 变态另类成人亚洲欧美熟女| av欧美777| а√天堂www在线а√下载| 国产日本99.免费观看| 一级毛片高清免费大全| 日韩欧美一区二区三区在线观看| av有码第一页| 国产真实乱freesex| 男女那种视频在线观看| 亚洲中文字幕日韩| 他把我摸到了高潮在线观看| 精品久久久久久久末码| 18禁国产床啪视频网站| 99riav亚洲国产免费| 亚洲欧美日韩高清在线视频| 亚洲电影在线观看av| 国产精品久久久人人做人人爽| 少妇裸体淫交视频免费看高清 | 十八禁网站免费在线| 午夜福利视频1000在线观看| 国产激情久久老熟女| 欧美日韩精品网址| 一级a爱片免费观看的视频| 国内毛片毛片毛片毛片毛片| 免费在线观看成人毛片| 久久 成人 亚洲| 老熟妇仑乱视频hdxx| 美女高潮到喷水免费观看| 欧美日韩一级在线毛片| 丁香六月欧美| 999久久久国产精品视频| 国产一区二区三区在线臀色熟女| 美女 人体艺术 gogo| 热re99久久国产66热| 午夜福利在线在线| 国产精品九九99| 一本一本综合久久| 亚洲欧美激情综合另类| 听说在线观看完整版免费高清| 给我免费播放毛片高清在线观看| 欧美大码av| 亚洲电影在线观看av| 亚洲精品色激情综合| 香蕉国产在线看| 亚洲人成网站高清观看| 色哟哟哟哟哟哟| 久久香蕉国产精品| 精品无人区乱码1区二区| 亚洲专区国产一区二区| 午夜a级毛片| 免费搜索国产男女视频| 伦理电影免费视频| 亚洲 欧美 日韩 在线 免费| 欧美激情 高清一区二区三区| 国产精华一区二区三区| 成人18禁高潮啪啪吃奶动态图| 麻豆久久精品国产亚洲av| 日韩av在线大香蕉| 人妻久久中文字幕网| 少妇 在线观看| 一进一出好大好爽视频| 桃红色精品国产亚洲av| 国产av一区在线观看免费| 精品国产亚洲在线| 88av欧美| 国产av又大| 免费在线观看日本一区| 久久久久久免费高清国产稀缺| 99精品欧美一区二区三区四区| 国产精品美女特级片免费视频播放器 | 亚洲成人免费电影在线观看| 亚洲,欧美精品.| 男人操女人黄网站| 日日爽夜夜爽网站| 午夜免费成人在线视频| 大型av网站在线播放| 久久伊人香网站| 少妇粗大呻吟视频| 欧美性长视频在线观看| 天天躁狠狠躁夜夜躁狠狠躁| 久久精品国产亚洲av高清一级| √禁漫天堂资源中文www| 一区二区三区激情视频| 国产欧美日韩一区二区三| 69av精品久久久久久| 午夜久久久在线观看| 一级黄色大片毛片| 亚洲精品粉嫩美女一区| 欧美丝袜亚洲另类 | 国产野战对白在线观看| 国产国语露脸激情在线看| 91九色精品人成在线观看| 国产又色又爽无遮挡免费看| 在线观看午夜福利视频| 中文字幕久久专区| 午夜影院日韩av| 精品免费久久久久久久清纯| svipshipincom国产片| 国产午夜福利久久久久久| 黑人欧美特级aaaaaa片| 变态另类成人亚洲欧美熟女| 老汉色av国产亚洲站长工具| 一进一出抽搐动态| 又黄又粗又硬又大视频| 久久狼人影院| 久久九九热精品免费| 成人精品一区二区免费| 在线视频色国产色| 精品熟女少妇八av免费久了| 在线国产一区二区在线| 天天躁狠狠躁夜夜躁狠狠躁| 免费搜索国产男女视频| 欧美久久黑人一区二区| 久久久久久九九精品二区国产 | 久久人妻福利社区极品人妻图片| 国产精品电影一区二区三区| 午夜福利在线在线| 超碰成人久久| 两个人免费观看高清视频| 很黄的视频免费| 亚洲一区二区三区色噜噜| 夜夜爽天天搞| 精品国产国语对白av| 欧美黑人欧美精品刺激| 熟女少妇亚洲综合色aaa.| 久久久久亚洲av毛片大全| 久久性视频一级片| 色老头精品视频在线观看| 久久久久久大精品| 50天的宝宝边吃奶边哭怎么回事| 国产高清激情床上av| 成年免费大片在线观看| ponron亚洲| 青草久久国产| 美女国产高潮福利片在线看| 18禁国产床啪视频网站| 两人在一起打扑克的视频| 中文亚洲av片在线观看爽| 成人亚洲精品一区在线观看| 欧美国产日韩亚洲一区| 999久久久国产精品视频| 满18在线观看网站| 黄片播放在线免费| 女人高潮潮喷娇喘18禁视频| 一个人观看的视频www高清免费观看 | 高潮久久久久久久久久久不卡| 午夜福利18| 大香蕉久久成人网| 欧美乱色亚洲激情| 在线免费观看的www视频| 两人在一起打扑克的视频| 亚洲中文字幕日韩| 制服丝袜大香蕉在线| 午夜成年电影在线免费观看| 亚洲精品在线美女| 久久久久久大精品| xxx96com| 色老头精品视频在线观看| 18禁国产床啪视频网站| x7x7x7水蜜桃| 一二三四在线观看免费中文在| 国产三级黄色录像| 丰满人妻熟妇乱又伦精品不卡| 伊人久久大香线蕉亚洲五| 老鸭窝网址在线观看| 黄色女人牲交| 青草久久国产| 午夜a级毛片| 一本一本综合久久| 成人永久免费在线观看视频| 99国产精品一区二区蜜桃av| 美女扒开内裤让男人捅视频| 一进一出抽搐gif免费好疼| 日本免费a在线| 一级毛片女人18水好多| 村上凉子中文字幕在线| 99riav亚洲国产免费| 欧美日本视频| 国产私拍福利视频在线观看| 夜夜夜夜夜久久久久| 精品少妇一区二区三区视频日本电影| 琪琪午夜伦伦电影理论片6080| 亚洲男人的天堂狠狠| 国产精品免费视频内射| 精品熟女少妇八av免费久了| 日本熟妇午夜| 国产精品九九99| 伦理电影免费视频| 午夜福利18| 男人操女人黄网站| 亚洲最大成人中文| 天堂√8在线中文| 欧美人与性动交α欧美精品济南到| 久久久久久久久免费视频了| 搡老岳熟女国产| 欧美日韩福利视频一区二区| 婷婷亚洲欧美| 嫩草影院精品99| 淫妇啪啪啪对白视频| 男人舔女人下体高潮全视频| av福利片在线| 一边摸一边做爽爽视频免费| 中文字幕另类日韩欧美亚洲嫩草| 黄片播放在线免费| 亚洲国产看品久久| 午夜激情福利司机影院| 91字幕亚洲| 最近最新免费中文字幕在线| 亚洲专区字幕在线| 亚洲精品美女久久av网站| 亚洲片人在线观看| 久久久久久久精品吃奶| 色播在线永久视频| 亚洲精品色激情综合| 国产激情久久老熟女| 国产野战对白在线观看| 午夜精品在线福利| 色老头精品视频在线观看| 日韩一卡2卡3卡4卡2021年| 久久久久久免费高清国产稀缺| 欧美在线一区亚洲| 美国免费a级毛片| 99在线人妻在线中文字幕| 最新美女视频免费是黄的| www日本黄色视频网| 女警被强在线播放| 国产乱人伦免费视频| 国产伦人伦偷精品视频| 国产精品野战在线观看| 天堂影院成人在线观看| 人人妻人人澡欧美一区二区| 麻豆成人午夜福利视频| 亚洲专区国产一区二区| 国产黄色小视频在线观看| 中文字幕高清在线视频| 波多野结衣高清作品| 最近最新中文字幕大全电影3 | 国产不卡一卡二| 日韩有码中文字幕| 午夜激情av网站| 亚洲中文av在线| 亚洲成a人片在线一区二区| 最新美女视频免费是黄的| 免费无遮挡裸体视频| 欧美又色又爽又黄视频| 久久久国产欧美日韩av| 国产一区在线观看成人免费| 黄色视频不卡| 美女扒开内裤让男人捅视频| 12—13女人毛片做爰片一| 亚洲精品久久国产高清桃花| 色老头精品视频在线观看| 黄频高清免费视频| 最新美女视频免费是黄的| 久久婷婷人人爽人人干人人爱| 亚洲成国产人片在线观看| 欧美又色又爽又黄视频| 久99久视频精品免费| 妹子高潮喷水视频| 大香蕉久久成人网| 亚洲熟女毛片儿| 一个人观看的视频www高清免费观看 | 久久久久久久久中文| 国产精品二区激情视频| 最近最新中文字幕大全电影3 | 免费看十八禁软件| 亚洲午夜精品一区,二区,三区| 黄频高清免费视频| 国产熟女xx| 国产精品精品国产色婷婷| 热re99久久国产66热| 女生性感内裤真人,穿戴方法视频| 怎么达到女性高潮| 国产成年人精品一区二区| 国产aⅴ精品一区二区三区波| 久久婷婷人人爽人人干人人爱| 午夜久久久在线观看| 精品国产一区二区三区四区第35| 少妇的丰满在线观看| 久久国产乱子伦精品免费另类| 日本撒尿小便嘘嘘汇集6| 日韩精品青青久久久久久| bbb黄色大片| 男人舔奶头视频| 午夜激情福利司机影院| 此物有八面人人有两片| 无人区码免费观看不卡| 搞女人的毛片| 听说在线观看完整版免费高清| 亚洲午夜理论影院| 俄罗斯特黄特色一大片| 色播在线永久视频| 国产一区二区三区在线臀色熟女| 中文字幕高清在线视频| 久久久久久久午夜电影| 精品高清国产在线一区| 久久久国产精品麻豆| 亚洲色图av天堂| 久久亚洲真实| 激情在线观看视频在线高清| 亚洲aⅴ乱码一区二区在线播放 | www日本在线高清视频| 国内毛片毛片毛片毛片毛片| 久久精品亚洲精品国产色婷小说| 欧美日韩亚洲综合一区二区三区_| 女人爽到高潮嗷嗷叫在线视频| 极品教师在线免费播放| 91九色精品人成在线观看| 免费高清在线观看日韩| 真人做人爱边吃奶动态| 亚洲无线在线观看| 男男h啪啪无遮挡| 成人手机av| 国产成人欧美| 女警被强在线播放| 午夜免费成人在线视频| 久久精品国产99精品国产亚洲性色| 欧美日本亚洲视频在线播放| 成人18禁在线播放| 香蕉av资源在线| 国产又黄又爽又无遮挡在线| 国产91精品成人一区二区三区| 中文字幕最新亚洲高清| 1024香蕉在线观看| 久久热在线av| 宅男免费午夜| xxx96com| 免费高清视频大片| 可以在线观看毛片的网站| 啦啦啦 在线观看视频| 国产精品野战在线观看| 亚洲人成77777在线视频| 人人妻人人看人人澡| 久久亚洲真实| 国产精品1区2区在线观看.| 1024视频免费在线观看| 亚洲专区国产一区二区| 国产成人影院久久av| 亚洲熟女毛片儿| 真人一进一出gif抽搐免费| 成人av一区二区三区在线看| 可以在线观看的亚洲视频| 国产精品久久久久久亚洲av鲁大| 老司机午夜十八禁免费视频| 国产男靠女视频免费网站| 免费看日本二区| avwww免费| 最新美女视频免费是黄的| 亚洲国产欧洲综合997久久, | 午夜免费观看网址| 亚洲人成网站高清观看| 亚洲精品美女久久av网站| 亚洲av中文字字幕乱码综合 | 99久久99久久久精品蜜桃| 亚洲狠狠婷婷综合久久图片| 久久精品亚洲精品国产色婷小说| 亚洲一码二码三码区别大吗| 少妇 在线观看| 给我免费播放毛片高清在线观看| 国产午夜福利久久久久久| 中文字幕人妻熟女乱码| 大型黄色视频在线免费观看| 99久久精品国产亚洲精品| 18禁黄网站禁片免费观看直播| 日韩欧美在线二视频| 欧美激情 高清一区二区三区| 国产精品野战在线观看| 香蕉丝袜av|